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New limit theory is provided for a wide class of sample variance and covariance
functionals involving both nonstationary and stationary time series. Sample func-
tionals of this type commonly appear in regression applications and the asymptotics
are particularly relevant to estimation and inference in nonlinear nonstationary
regressions that involve unit root, local unit root, or fractional processes. The limit
theory is unusually general in that it covers both parametric and nonparametric
regressions. Self-normalized versions of these statistics are considered that are
useful in inference. Numerical evidence reveals interesting strong bimodality in the
finite sample distributions of conventional self-normalized statistics similar to the
bimodality that can arise in #-ratio statistics based on heavy tailed data. Bimodal
behavior in these statistics is due to the presence of long memory innovations and is
shown to persist for very large sample sizes even though the limit theory is Gaussian
when the long memory innovations are stationary. Bimodality is shown to occur even
in the limit theory when the long memory innovations are nonstationary. To address
these complications, new self-normalized versions of the test statistics are introduced
that deliver improved approximations that can be used for inference.

1. INTRODUCTION

Parametric and nonparametric regressions with nonstationary data have attracted
considerable recent attention because of the prevalence of nonstationary time series
in applied work across many different disciplines and the need for asymptotic
theory to support methods of estimation and inference in the presence of non-
stationarity. Much of this work has focused on cointegrating regression where
linkages between nonstationary processes and stationary innovations play an
integral role in the notion of cointegration and its various extensions to fractional
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processes involving long memory time series. The literature in this area is now
voluminous, as discussed in recent papers (e.g., Duffy and Kasparis, 2021; Wang,
Phillips, and Kasparis, 2021). Readers are referred to Park (2014) and Tjgstheim
(2020) for partial overviews of the field of nonlinear cointegration studies that
cover many of the relevant contributions and empirical applications. In almost all
of this literature, a key role in the asymptotic development is played by sample
covariance functionals that involve (possibly nonlinear functions of) nonstationary
processes and stationary time series. Sample covariances of this type take similar
but subtly different forms in parametric and nonparametric regressions. They
typically appear in signal functions and score functions whose asymptotic behavior
is critical in determining the limit theory needed for estimation, inference, and
specification testing in such regressions. Prototypical forms of these functionals
for nonparametric and parametric cases are shown below in (1.3) and (1.4) by Ry,
and R,,(6°). The goal of the present article is to extend existing results on such
functionals, accommodate these two forms in a general limit theory, and develop
self-normalized statistics that will be useful for inference in regression. We open
the discussion with three illustrative examples.

In the nonparametric case, simple nonlinear nonstationary regressions typically
have the form

V=8 +ug, k=1,....n, a.n

with an I(1) regressor generated by the partial sum model x; = x;_; + & with
weakly dependent and possibly correlated innovations {uy,§;}, thereby allowing
for endogeneity. In the nonparametric case, the nonlinear cointegrating function
g(x;) may be estimated at some point x by local-level kernel regression in the usual
manner via the criterion

Qun(g) =Y Kt —x) 3k — 8(x))%, 1.2)

k=1

.. ~ . —1 YkKn (g —x) .
giving g(x) = argmin, Q,, ;(g) = % where Kj(s) = 1K (3), K(-) is a

nonnegative real kernel function and the bandwidth parameter 4 = h, — O as n —
00. The limit theory of g(x) then depends on the behavior of suitably normalized
forms of the two sample functionals

n n
Riy= Ky(x—x) and Ry, =Y Ky (i — X)iu, (1.3)
k—1 k—1

where R}, is a sample signal process and R», is a sample score process, both of
which are nonlinear in the nonstationary regressor x;. Test statistics typically also
require estimation of the innovations using the regression residuals ity = y, — g(xz)
and a sample functional such as Rs, = Y ;_, K7 (x¢ — x)éi7. Full development
of a limit theory for estimation and inference concerning the function g(-) in
(1.1) requires joint convergence results for suitably normalized forms of sample
functionals such as (R}, R, R3,). In applications, allowance is typically made for
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endogeneity of the regressor x; in the regression (1.1). Importantly, as shown in the
nonlinear cointegration study of Wang and Phillips (2009b), such nonparametric
nonstationary regressions do not require the use of instrumental variables and do
not suffer from ill-posedness, in contrast to stationary regressions and there is, in
contrast therefore, no need for regularization.

In the parametric case, the nonlinear cointegrating function has a specific
functional form g(x;) = g(xy; 6) that depends on some unknown parameter vector
0 € ® C R?, where © is a compact subspace of R” for some finite p. The nonlinear
least squares estimator is then g(x) = g(x; 6) with § = argming.q@Q,(6) where
0,0) = szl(yk — g(xk;e))z. In this case, the limit theory for 2 depends on
normalized versions of the sample functionals

n n
R, (0%) =) GGy and R,,(0°) = Y Guy, (1.4)
k-1 k-1

where 62 = 0g(x;;0°)/36 and 6° is the true value of A. As in the nonparametric

case, test statistics usually depend on regression residuals it = y, — g(xk;é),
leading to sample functionals such as R3,(9) = Y GlGlas.

The sample variance and covariance functionals in (1.3) and (1.4) are closely
related but differ because of the critical role played by the presence of the
bandwidth sequence 4 in the functions of (1.3), making a general theory difficult.
Asymptotics for regression estimation and inference in such cases have therefore
been studied in past research separately and often in special cases.' More complex
models that include spurious nonlinear regression (Phillips, 2009; Tu and Wang,
2022) and functional coefficient (FC) nonstationary regressions involve similar
sample functionals for which asymptotic theory is also needed to facilitate empir-
ical work.

FC regressions are of particular interest in applications because covariate
dependence or time variation in the regression coefficients is often of interest
in applications. Such models with nonstationary regressors were originally con-
sidered by Xiao (2009).> It was later shown in Phillips and Wang (2023) that
important subtleties arise in such FC regressions that affect the limit theory in
material ways because nonstationarity in the regressors amplifies the impact of
bias in nonparametric FC regression. Models of this type are typically linear in
(possibly multivariate) regressors x; and take the form

e =0@@) x+ue, k=1,...,n, (1.5

with coefficients 6(z;) that are smooth functions of a covariate z; that may be
stationary or nonstationary. In FC models of this type, estimation of the coefficient

lSee, for instance, Phillips and Park (1998), Park and Phillips (1999, 2000, 2001), Karlsen and Tjostheim (2001),
‘Wang and Phillips (2009a, 2009b), Gao and Phillips (2013), Li, Tjgstheim, and Gao (2016), Wang and Phillips (2016),
and Wang et al. (2021)

2See also Cai, Li, and Park (2009), Sun and Li (2011), Sun, Cai, and Li (2016), and Liang, Shen, and Wang (2023).
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functions 6(-) at some point z in the domain of z; necessarily involves the three
sample functionals

Ry = Zxkx;cKh (zx —2),

k-1
Rsn = ZKh (@ —Dur,  Ren = Zxkx;([e (zx) — 0D 1Kn(zk — 2), 1.6)
k=1 k—1

where Rg, is an additional sample covariance bias functional that depends on the
regressors, the kernel function, and bias effects that need further decomposition to
fully resolve the asymptotic theory.’

These examples motivate a general formulation that is relevant in many dif-
ferent applications. To fix ideas, suppose an observable time series x; is a scalar
nonstationary process, either integrated /(1), near I(1), or a similar time series with
fractional process innovations, as detailed in what follows, and wy = (W, . .., Wa)
is a sequence of stationary random vectors. The article is concerned with sample
quantities S,, of x; and wy defined by sample sums of nonlinear functions of x; and
wy that take the general form

Sn = § )(Xk/h, Wk)a
k=1

where h = h,, > 0 is a sequence of positive constants indexed by the sample size
n and f(x,y) is a real function on R'*“. The partial sum S, is a scalar nonlinear
functional of multivariate arguments that involve both stationary and nonstationary
processes. Such functionals play a dominant role in the development of the
theory of estimation and inference in nonlinear cointegrating regression, where the
regressor is usually a nonstationary time series, including those with autoregressive
unit roots and local unit root properties. In such regression contexts, a prominent
example of S, has the form of a sample covariance function that involves both the
nonstationary regressor and the equation innovations. In this case, two covariance
functions are most typical, one of the form Sy, = ZZ:I F X Woky -+« o s W) Wik
and the other of the form Sy, = Y ;_,f(xx/h)wi, where an auxiliary sequence
h = h, may be present that depends on the sample size, as in nonparametric kernel
regression discussed above.

As is now well known in the literature (see, for instance, Karlsen and Tjostheim,
2001; Park and Phillips, 2001; Wang and Phillips, 2009a, 2009b; Chan and Wang,
2015; Dong and Linton, 2018; Duffy, 2020; Hu, Phillips, and Wang, 2021 and
the references therein), covariance expressions such as Sj, occur in nonlinear
parametric cointegrating regression and expressions such as Sy, with the auxiliary

3As explained in Phillips and Wang (2023), the bias effect Rg,, has both a “deterministic” component (ZZ_] xkx/k)]E&/;k
and a “random” component (3_;_; xxx;)ngk where £gr = [B(zx) — B(2)1Kn(zk — 2) and npr = Epx — E&py. The
presence of these two components influences the limit theory, rates of convergence, and bandwidth choice in important
ways. Readers are referred to Phillips and Wang (2023) for details.
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sequence h, arise naturally in Nadaraya—Watson estimation where f(x) is a kernel
function and 4 — 0 is a bandwidth used in the nonparametric regression.

It transpires that the limit behavior of S, depends on the value of the integral
[72, g (s)ds, where g(x) =Ef(x,w;). When [ g (s)ds # 0, it was shown in Wang
et al. (2021) that upon suitable normalization S, satisfies

ﬁSn —D /OO gx)dxLg(1,0), 1.7)

nh

provided d,,/nh — 0 and d,,/h — oo, with d,zl = var(x,) and where Lg(t,s) is
the local time of a stochastic process G(¢) at the spatial point s, as defined
in the following section. Result (1.7) was established in quite general settings,
generalizing and improving previous related work on convergence to local time
given by Akonom (1993), Borodin and Ibragimov (1995), Phillips and Park (1998),
Jeganathan (2004), Wang and Phillips (2009a, 2016), and Duffy (2016). This
fundamental limit result enabled the investigation of asymptotic theory for latent
variable nonparametric cointegrating regression in which some variables were
observed with measurement error.

The present work is concerned with developing a limit theory for the sample
function S, in the case where ffooo g (s)ds = 0, which is commonly known as the
zero energy case. Towards this end, in some specialized cases such as f(x,y) = m(x)
or f(x,y) = m(x)y where m(x) is bounded and integrable, the asymptotic behavior
of S, is known and has been considered in Wang and Phillips (2009b, 2011),
with the attendant requirement that # — 0, and in an unpublished manuscript by
Jeganathan (2008) (with 2 = 1). This article provides a unified extension of these
existing results that encompasses the two cases where &7 = 1 and & — 0, together
with the setting of general functionals f(x,y) rather than the specialized forms
f(xy) =m(x)y or m(x).

In unifying, the two standard limit cases where 2 = 1 and & — 0, our work
might be compared with Gozalo and Linton (2000) who showed how to non-
parametrically encompass a parametric model by using a local nonlinear least
squares criterion that allows for recentering a nonparametric regression on a
specific parametric model. In the present context, that approach would involve
replacing (1.2) with the criterion Q,, (x,0) = Y _, Kj(xx —x) (v — m(x, a))? for
some parametric function m(xy, o), leading to the estimate g(x) = m(x,&), where
& = argmin, Q,, (x,). When the parametric form m(x;«) is correct or nearly
correct around the point x, there is an advantage to using a wider bandwidth &
in such a regression; and, if the parametric model m(x; ) were correct almost
everywhere, there would be an advantage in letting 7 — oo rather than & — 0.
The limit theory for this approach in Gozalo and Linton (2000) relies on an
independent and identically distributed (i.i.d.) setup. Extending that approach to
the present setting and exploring possible advantages of parametric information in
local nonparametric nonlinear regression with nonstationary data are interesting
lines of future research.

It should be mentioned that the zero energy case where the functional
ffooog(s) ds = 0, in which g(x) = Ef(x,w;), arises naturally in regression
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applications. For instance, in nonparametric cointegrating regression, the
development of a limit theory for normalized versions of functionals such as
the sample covariance Sy, is vital for both estimation and inference. Thus, when x;
is an I(1) regressor and wy; is an error process, use of the natural centralizing
condition Ew;; = 0 in turn implies that [*_g(s)ds = [ f(x)dxEwy; = 0.
Such situations arise even in complex settings where endogeneity is present (see
Wang and Phillips, 2009b, 2011, 2016 for details and econometric applications).
Similarly, in regression with nonstationary nonlinear heteroskedasticity when
nonstationary volatility is present in the errors [with u, = f(x;, w;), say], the zero
energy condition | _OODO g (s)ds = 0 where again g(x) = Ef (x,w)) is usually required
for the development of an asymptotic theory. In this case, the use of general
functionals such as f(x,y) in the sample covariance limit theory enables a full
representation of nonstationary nonlinear volatility in the regression errors.

The remainder of the article is organized as follows: Section 2 provides the main
limit theory for nonlinear functionals of nonstationary time series and a series
of remarks that analyze the findings and connect to later discussion. Section 3
provides numerical evidence which reveals an intriguing bimodality for self-
normalized statistics that arises in finite samples and that can persist in extremely
large samples even though the limit theory is Gaussian. Section 4 discusses these
findings, explains the slow convergence, and shows how bimodal limit theory
does arise in the presence of nonstationary long memory innovations. Alternative
self-normalized statistics are considered that substantially improve finite sample
performance. Concluding remarks are in Section 5. Proofs of the main results are
given in Section 6 and supporting propositions and lemmas that play key roles in
proving the main results are in Section 7. Proofs of the lemmas are in the Appendix.

Throughout the article, = denotes weak convergence of probability measures
with respect to the uniform topology (see, for instance, Billingsley, 1968) and —p
is distributional convergence in euclidean space. For a vector A = (A, ...,Ay), we
define ||A]| = |A;| + - -+ |Ag4|. Constants are represented by C, Cy, Cs, ..., which
may differ in different locations.

2. MAIN RESULTS
2.1. Assumptions and Preliminaries

Let A; = (€;,¢;), i € Z be a sequence of iid random vector innovations with
E||Axo]|> < o00. Let & = Z;io ¢jer—; be a linear process where the coefficients
o, k > 0, satisfy ¢p # 0 and one of the following conditions:
LM: ¢p ~k " p(k),1/2 < u < 1 and p(x) is a function that is slowly varying
at 0o.*

SM: Y 2 Ikl <ocoandp =2 i #O.

4That is, p(x) is a measurable function from (0, 00) to (0,00) so that, for all a > 0, p(ax)/p(x) — 1 as x — oo, for
example, a positive constant, log(x) or log” (x) for any real b > 0.
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In the following development, observable nonstationary time series x; are gener-
ated by the linear process innovations &; as detailed in the near unit root process
given in A1(i). The inclusion of additional innovations e; in A; is useful for spec-
ifying (possibly correlated) model disturbances, as in the generating mechanisms
used in simulations later in the article in Sections 3 and 4. For the development
of the asymptotic theory in our main results, the following assumptions are made
about the components of S, = Zzzl f G/ h,wie).

Al (1) x¢ = puxe_1 + &, where xy =0, p, = 1 — yn~! for some constant y > 0.
(ii) Ee; =0and [ |Ee|df < oo .

A2 (a) wy = Wik, ..., Wa), where wy = T'j(Ag, ..., Ak—m,) for some fixed mg > 0
and I';(.),i = 1,2,...,d, are real measurable functions of their respective
components.

(b) E|jw,||m>248} < o0, where B is given in A3(I).
A3 (I) A bounded function T (x) exists such that, for some g > 0,

e <T@ A +]IylI”)  and / (I+xDT(x)dx < oo.

D [ g(x)dx =0, where g(x) = Ef (x,wy).
() [ E[f(x,wi)ldx < 00, where f(x,y) = [ e™f(t,y)dt.

Assumption A1(i) accommodates near integrated time series x; that are derived
from either short memory (SM) or long memory (LM) innovations, thereby
covering a large class of nonstationary time series. The extra distributional assump-
tion A1(ii) is a smoothness condition requiring integrability of the characteristic
function Ee'! that is often useful in establishing convergence to a local time
process. The condition can be relaxed to limsup,_, |z|*Ee™1| < oo for some
a > 0, but is generally difficult to eliminate completely in the development of
limit theory for nonlinear cointegrating regression. The zero initialization xy = 0
is assumed for convenience to avoid notational clutter and can be considerably
relaxed, as is well known from earlier research. In particular, all the main results
still hold if instead xo = op(d,), where a’ﬁ = var(ZZ:l &p). Tt is also well-known
(see, for instance, Wang, Lin, and Gulati, 2003) that

cy n3~% p%(n), under LM,

2 w2
4 Eeg { o’n, under SM,

n

and x|, /d, = Z, on D[0, 1], where c,, = m Jo x*(x+1)""dx and

t
Zi=WH+y / eV IW(s)ds, >0,
0

B3>, (t), under LM,

W) = { B1)2(D), under SM,

and By (¢) is fractional Brownian motion with Hurst exponent H and By (¢) is
standard Brownian motion. In this event, Z; is a fractional Ornstein—Uhlenbeck
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process, having a continuous local time process which we denote by Lz(z,x). As
in Geman and Horowitz (1980), the local time process Ly (t,x) is defined as

1 t
Ly(t,x) = Elir% > / 1(1Z, — x| < €)dr. 2.1
- 0

These notations will be used subsequently without further explanation.

Assumption A2 ensures that wy, kK > 1, is a sequence of stationary random
vectors. No restriction is imposed on the relationship between €; and ¢; of A; =
(ex, ex)’, which enables the results established here to be widely applicable in non-
linear cointegrating regression models with endogeneity, where the components €,
and ey, drive regressor time series and regressor errors, respectively. The extension
of A2 to include linear process formulations is possible if the functional f(x,y)
has a certain structure still allowing for endogeneity. We refer to Corollary 2.1 for
further details on this extension.

Finally, Assumption A3 provides conditions on the function f(x,y). These,
together with A2(b), ensure that,

/ h [Ef* (e, w) +Ef* (x,wi) ]dx < CE [[wy ||™ 347 / b T(x)dx <oo,  (2.2)

o0 —00

the Fourier transform f ty) = ffooo ei”‘f (x,y)dx is well defined, sup, g(x) < oo,
[lg@)ldx < [E|f(x,wp)dx < oo, and [ (14 [x)E |f(x,w;)|dx < co. Further-

more, it follows from Ef(O, wy) = f_oooo Ef(x,w;)dx = 0 that

|Ef(t,w1)| < /oo |(e™ — 1)Ef (x,w))|dx < Cmin(1, #]}. 2.3)

—0oQ
On the other hand, using the inverse Fourier transformation, A3(IIl) ensures the
representation of f(x, wy), almost surely,

o0

1 o
fewi) = oy / e " (1, wi)dt. 24
T

—00

These properties will be used in the main results that follow without further
reference.

2.2. Asymptotic Theory

Our main result is as follows.

THEOREM 2.1. Suppose AI1-A3 hold. For any h = h,, — 0 satisfying nh/d, — oo,

we have
dn s 2 dn 1/2 |nt]
(n_h Zl:f (xk/h,wk)v (E) kz;f(xk/h,wk))
= (2Lz(1,0), tNL/*(1,0)), 25
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on Dp2[0, 1], where 2 = ffooo Ef%(s,w1)ds, and N is a standard normal variate
independent of Lz(t,0) for 0 <t < 1.

If in addition y = 0, where y is used in Al(i), and ffoooE{[f(t,wo)(l +
||w,||’3)}dt < oo for any r > 0, then

L] 172 Lnt)
dy 2, d,

(; ;?:1’ (e Wi ). (;) ;f(xkywk))

= (22Lz(1,0), 7 NL/(1,0)), (2.6)

on Dg2[0, 1] (recall Z, = W(t) when y = 0), where ‘512 =Gy+ 22:21 G, with
1 RN X )
Gr=5=- / E {f (s, wo)f (s,w,)e™ ™" }ds
27 J_ oo
o0
= / E{f (. wo)f (v 4 x-. w;) }dy. 2.7
—0Q0

Remark 2.1. Different constants T and 7| appear in the second components of
results (2.5) and (2.6). In fact, as & — 0, we have

dn n n
52 > E{fCu/hwof sj/howie)} = o(D),

k=1 j=k+1

(see the proof of (7.2) in Proposition 7.3); but when A= 1and y =0

I
D S 0 W G Wie) = Gilz(1,0), 2.8)
k=1

for any j > 1 (see (7.5) of Proposition 7.4). These facts indicate that the influence
of cross product terms such as f(xx/h, wi)f (Xetj/h,wiy;) on the variance of
(%)1/2 Z,&g (xk/h, wk) is eliminated as 2 — 0, but this is not the case when
h = 1. In consequence, different constants appear in the two results (2.5) and (2.6).
In addition to (2.6), the following joint convergence holds in which, for any g > 0,

dn |nt) |nt]

(_ Zfz(xk’ Wk), % Zf(Xk, Wk)f(Xk+1,Wk+l), ey

n k=1 k=1

4. 4\ 12 L]
DICRBI T C R W)
k=1

n
k=1
= (t?Lz(,0), G\ Ly(1,0),..., G,Ly(1,0), yNL;*(1,0)), 2.9)

on Dgy+1[0, 1]. The proof of (2.9) involves only minor additions to that of (2.6) and
the details are omitted.
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Remark 2.2. In special cases where f(x,y) = K(x)y (with K(x) bounded
and integrable) and f(x,y) = K(x) ( with f K(x)dx = 0 and K(x) bounded and
integrable), a similar result to (2.5) has been considered in Wang and Phillips
(2009b) and Wang and Phillips (2011), respectively, and a similar result to (2.6)
can be found in Jeganathan (2008). Theorem 2.1 provides a unified generalization
of these existing results to functional limit theorems. Our proof makes use of the
methodology developed in Wang and Phillips (2009b), which seems simpler than
that used in Jeganathan (2008).

Remark 2.3. The quantity my given in A2 (a) is set to be a fixed constant, but
it can be chosen as large as required in applications. Further, careful examination
the proof reveals that the result continues to hold when my = m,, — oo provided
the expansion rate is slow enough. Moreover, when f(x,y) = K(x)y, the stationary
component wy in Theorem 2.1 can be extended to include linear processes and
endogeneity, as the following corollary shows, thereby covering regression models
with errors u, and regressors x; that allow for endogeneity.

COROLLARY 2.1. In addition to Al, suppose that:

(a) K(x) is a bounded continuous function satisfying f Kx)dx < oo and
f |K (x)|dx < 0o, where K(x) = [ €K (s)ds.
®d) wy = Zfio Wi Ai—j, where EXy =0, E||[A1]|* < oo and the coefficient vector

Vi = (Y1, Vo) satisfies Y po o k(Y] + [Yax]) < 00 and Y 32 i # 0.
For any h = h, — 0 satisfying nh/d, — oo, we have
dn n 5 5 dn 1/2 n
(E I;K (e /)i, <E> I;K(xk/h) )
—p (22L2(1,0), TNLY*(1,0)), (2.10)
where T2 = ffooo K*(s)dsE u% and N is a standard normal variate independent of

Lz(1,0).
If h =1 and in addition y = 0, where y is used in AI(i), then

dy & d d ' &
=N K () up, — T (—n> K (e )uy
—p (22Lz(1,0), T2L(1,0), 7 NL/*(1,0)), (2.11)
where, for some M = M,, — o0,
n M ] n—j
Iy = ;KZ (i) uz +2 ;z <A—4) ;K(xk)K(ka) Uk Ugsj, (2.12)
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takes the form of a heteroskedastic and autocorrelation consistent (HAC) estimator
inwhich £(i) is a lag kernel weight function such as the Bartlett triangular kernel

5(1-}) =1- 1%' and where ¥2 = Go+23"% | G, with

~ 1 © ) 1)

6= g [ RODPE e Jas= [ KO s KO-+
21 J_oo .

2.3. Self-Normalized Statistics and Discussion

Result (2.10) coincides with (7.4) of Proposition 7.1 in Wang and Phillips (2016)
but with less restrictions on # (the requirement 2logn — 0 used there is removed
here), indicating the following self-normalized result: as # — 0 and nh/d,, — oo,

Sy K (/R
Sy K2 (v /i

Jo(h) := —p N(O,1). (2.13)

In view of the standard normal asymptotics, this result is convenient and useful for
purposes of estimation and inference in nonparametric regression models involv-
ing nonstationary time series and kernel estimation with a shrinking bandwidth
parameter 4 — 0, as explained in Section 1.

Result (2.11) with fixed & = 1 is similar to that of Theorem 5 in Jeganathan
(2008). In this case, a suitable self-normalized version of the sample covariance
statistic can be constructed from the elements of (2.11) and (2.12) as

Ty :=J,;7 Y K () e —p N0, 1), (2.14)

k=1

which again has standard normal asymptotics making the formulation convenient
in applications that involve nonlinear parametric regressions with nonstationary
time series. We mention that the result that jnz —p flzLZ(l,O) holds for any
continuous function £(x) satisfying £(0) = 1, although in the present case, it
is assumed that E(Xj) is a lag kernel weight function which ensures the pos-
itivity of 7, in finite samples. Furthermore, we prove (2.11) for some M, —
oo. The existence of such an M, is clear from (6.14) and (6.15) in the proof
of Corollary 2.1.

While these naturally constructed self-normalized statistics have elegant Gaus-
sian limit results, numerical work (reported below in Section 3) reveals that neither
(2.13) nor (2.14) perform well in finite sample simulations. In particular, when
X, is generated with long memory innovations in & and the memory parameter
is large (u close to 0.5), bimodality appears in the finite sample densities even
when the sample size is as large as n = 5,000. Such bimodality is known to
arise with self-normalized statistics and ¢ ratios in other contexts, especially in
the presence of heavy tailed data where individual large draws can dominate both
the numerator and the denominator in the ratio (see Logan et al., 1973; Fiorio,
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Hajivassiliou, and Phillips, 2010). The explanation of the phenomena in the present
setting is unrelated to heavy tails but is instead related to strong dependence in the
data. Heuristically, strong memory when u is close to 0.5 ensures that the weight
function K (x;) is generally so small that only a limited number of terms dominate
the numerator and denominator summations ZZ:I K (xk)uk and ZZ=1 K? (xk)ui
(see Figure 4 for illustrative trajectories), thereby inducing bimodality in the finite
sample densities of 7, (1) around the modes £1. To control this behavior, a
modification of (2.14) such as the following:

—12

> K (x)we —p N 1), (2.15)

k=1

() :=7,

might be considered where 7, in (2.12) is replaced by

n—j

A= ~2 ZKZ Xk +2ZZ< i ) ZK xx)K Xk.H Uk Uktjs (2.16)

for some consistent estlmator a of 02 = Eu? 1 and with M =M, — oo as n —
0o. The advantage of 7, is that the use of G2 > i K*(x) in the first term,
rather than );_, K*(x7)uZ, attenuates the blmodahty 1nduced by the numerator
and denominator summations Y ;_, K (x)ux and Y_;_ K*(xx)ui discussed above
and in the heuristic analysis of (3.4). However, the estimate :7-; in (2.16) is not
necessarily positive. For instance, in 40,000 replications when n = 100 around 15
cases of negative values occur with d = 0.1, rising to 60 cases with d = 0.55. To
address this difficulty, the following adjustment to (2.16) is employed

Toape = Z K (x +2Z£( ) ZK ) K (i) e s, (2.17)

where
M* —Mx]l(j >0)+M*x]l(jn <O) (JnM* >O), (2.18)

in which the truncation lag number M is reduced by one lag at a time when /j; <0
to the first value M* for which /j;M* > (. In 50,000 replications with n = 100 and
n = 1,000, the modification (2.17), with the simple rule (2.18), was found to work
well. Using :7\,,,‘,,* in place of 3; leads to the same standard normal asymptotics as
(2.15) for the statistic

=7 WL”ZK (%) u —p N0, 1), (2.19)

k=1
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provided M* — oo as n — oo. Simulation results for the statistic f;,(l) are shown
in Figure 3 in the following numerical section and confirm that the statistic
removes bimodality in finite samples and has distributions considerably closer to
the standard normal limit than the statistic J;(1) in (2.14) for various values of the
long memory parameter d and samples as small as n = 100.

Similarly, we may use the following result instead of (2.13): as 7 — 0 and

nh/d, — oo,
T.(h) = it K/ 1) ug —p N, 1). (2.20)

Vo2 T K2 (/)

The proofs of (2.15) and (2.20) follow easily from (2.14), (2.13) and the following
fact by using (4.8) of Wang et al. (2021) [see also (7.42) in the proof of Proposition
7.4 with f (x,y) = K(x)y]: for any & > 0,

d, —
— ];KZ (x/h) (Bug — u?) = 0p(1). (2.21)
The details are omitted.

3. NUMERICAL EVIDENCE

We explore the finite sample properties of the self-normalized statistics J,, and
J¥(1) defined as in (2.13) and (2.14). Since earlier research has considered models
with shrinking bandwidths 7 — 0, the model employed here focuses mainly on
the case h = 1 for which the general limit theory is given in (2.9). As indicated
above, the key difference in this case is that the cross product term (2.8) is not
eliminated when & 4 0. The statistic J(1) takes this into account by estimating
the appropriate self-normalizing quantity. As is apparent from (2.9) and (2.11),
the limiting form of the denominator of J; (1) has the form of a long run self-
normalization, with the major difference that in the present case, this quantity has
a random limit since J, — flz Lz(1,0) as n — oo in place of the usual nonrandom
quantity that arises in standard problems with stationary short memory time
series.

In the simulations here, x; is generated according to Al with autoregressive
coefficient p, = 1. The linear process & = Y_ X, ¢;€;—; in LM is generated using the

. . . . a;
fractional integration mechanism & = (1 — L) %¢, =) ]920 %e,,j, where (d); =
L(d+) PO S i i
Fig) SO that ¢; ~ = @i where I'(-) is the gamma function and the memory

parameter d = 1 — u € (0,0.5). Endogeneity in x; is introduced by defining the
innovations in the linear process &, by ¢, = (1 — o) %€, + pu, where u; is the short
memory autoregressive process u; = 0u;_ + ey, 0] < 1, with e,; ~;;¢ N'(0,1) and
independent of €,; ~;;z A(0, 1). With this specification of u;, we have
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[e ] o0 o o0
=) g i=0-p)"Y deawt+p) ¢ 0w
j=0 k=0 j=0  ¢=0

00 o0 k
TN ST o (z@_eef)
k=0 k=0 \{=0

= Z |:1/_flk€xr—k + 1/_fzk€uz—k] 3.1

k=0

with Y1 = (1 — p?) 2 and Yoy = p ZIZZO ¢x—¢. The innovation &, has long mem-
ory parameter d and endogeneity measured through the correlation coefficient p.

The self-normalized statistics J,(h), J,(1), and J;; (1) defined in (2.13) and
(2.14) are computed for f(x;/h,w;) = K(x;/h)u; with h =2/n°2 or h = 1. In the
following computations, we used K(x) = (I/M)e"‘z/z, 0 =0.5 p=5.0, and
d € {0.1,0.25,0.4,0.55}, where d = 0.55 lies in the nonstationary long memory
region and is included for comparison. Kernel estimates of the densities of J,,(h)
were computed using

D it K(xk/h) Uk
Vit K2 (/g

for h = 2/n®? and h = 1 and are shown in Figures 1(a) and 1(b). The self-
normalized statistic J;'(1) was computed by the explicit formula

Jn(h) =

3.2)

> K (xk) Uy

i) = 172
[ZZ=1 K2 +2 500 ¢ () ST K (@)K (xess) e Mk+j]

3.3)

with lag truncation parameter M = |2n'/%] and its densities are shown in Figures
2(b) and 2(c). The number of replications employed was 40,000, with sample size
n =100 in Figure | and n = 1,000 in Figure 2.

The densities in Figure 1 where n = 100 are all non-normal. Bimodality with
modes around %1 are clearly evident in all cases and all values of d. For J,(1),
the dual modes are evident but somewhat less pronounced than for J,,(h) with & =
2/n%2. The bimodality is clearly stronger in the presence of nonstationary long
memory innovations & with d = 0.55 (shown by dashed green lines). Bimodality is
most prominent and with greatest concentration for the statistic J; (1). Bimodality
is evidently weaker for the lower memory parameters, particularly cases where
d = 0.10 (shown by black unbroken lines).

In Figure 2, the densities are computed for n = 1,000. In Figure 2(a), bimodality
is clearly evident for J,,(h), applies for all values of d and is again stronger in the
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nonstationary case. The densities of J, (1) and J;; (1) in Figures 2(b) and 2(c), where
n = 1,000, are closer to normal than when n = 100 except for the nonstationary
innovation case (d = 0.55); and bimodality is still more pronounced for J (1) than
for J,(1). When d = 0.1, there are no apparent modes in the density of J, (1) and
only minor modes in the density of J}(1). Nonetheless, convergence to normality
when 0 < d < 0.5 appears slow and shape differences in the densities persist
between the stationary and nonstationary error cases. The tendency to bimodality
continues to be more marked in the nonstationary case.

As discussed in Section 2.3, when the innovations & have strong dependence
with memory parameter d close to the nonstationary boundary 0.5, the weight
function K(x,) is negligible except for a very small number of terms in which
X = Z,t{:l & ~ 0. Suppose x, is closest to zero for t = t, then K(x;) ~ 1 and
so J,(1) & %1, thereby inducing a tendency to bimodality in the finite sample
densities of 7,(1) around modes at £1. When 2 — 0, this facet of the weight
function is accentuated for K(x,/h) and we may therefore expect greater evidence
of bimodality in finite samples for J, (#), which is corroborated by the results in
Figures 1(a) and 2(b).

Further, in Figures 1 and 2, it is evident that J3(1) shows more evidence of
bimodality than J,,(1). This may be explained by the following heuristic. Suppose
X; is closest to zero in the sample at # = t and next closest to zero at = 7 + 1, so

_ g2
that K (x;) &~ K(0) ~ 1/+/27 and then K (x, 1) ~ K (£,41) = e *t+1/?//27 (Figure
4 shows an illustrative case). With a Bartlett kernel £(-), we then have

K )ur + K1) 41
[K(xr)zu% +K(xr+1)2”3+1 +2 (1 - %) K(xo)K (e )urttg1]12

_ K(xr)ur + K ey 1)ty =+140 <i> 3.4
K (x0)utr + K (e Dttz 411+ 0, (35) M)

Jy ()~

showing a clear tendency to bimodality.

e

i
R

(a) Jn(h) densities (b) Jn(1) densities (c) Jx(1) densities

F1GURE 1. Empirical densities of J,,(h) with h = n(]%’ Jn(1), and J;i (1) for sample size n = 100 and
d € {0.10,0.25,0.40,0.55}.
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Juh)

(a) Jn(h) densities (b) Jn(1) densities (¢) Jx(1) densities

F1GURE 2. Empirical densities of J,(h), J,(1), and J;(1) for sample size n = 1,000 and d €
{0.10,0.25,0.40,0.55}.
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(a) Jn(1) densities, n = 100 (b) Jn(1) densities, n = 1,000 (¢) Jn(1) densities, n = 5,000

FIGURE 3. Empirical densities of jl(l) for sample sizes n = 100 and for n = 1,000 and d €
{0.10,0.25,0.40,0.55}.

_ . 2 r(1=2d (’52/77
Next, note that & = (1 —L)™“¢; has variance o7 = o FE]_ d)Z) ~a Ty

d— 05. Let & = a‘gét, where é, has unit variance. Then K(x; 1) ~ K(&;41) =
—o2E2
e ¢t /2w and

— OO as

o
K(x)ur + K(xep1)Ur 41 u: +e % Sr“"trJrl Ur —o?

22 22 2 22 ~ +0P<e g)
(K (xr)?u2 + K (xr41)?u; 1Y [12 + ¢ & r41]1/2 |ue |

1

showing a tendency to bimodality as the memory parameter d — 0.5. The same
tendency to bimodality is also present in the approximation of J;(1) in addition to
that given in (3.4), thereby implying that J; (1) is more likely to manifest bimodal
behavior in finite samples than J, (1), corroborating the simulation findings.
Figure 3 shows finite sample densities of the statistic Z,(l) in (2.17) using the
same simulation design with the same set of long memory parameters, endogeneity
correlation p = 0.5, and for sample sizes increasing from n = 100 to n = 5,000
based on 40,000 replications. As evident in the graphics, the statistic removes
bimodality in finite samples although there are extended shoulders on either side

Ju(1) ~
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of the origin to around %1, particularly when n = 100. The distributions are far
closer to the standard normal limit than those of the statistic J; (1) in (2.14) at
every sample size with evident convergence in shape to normal for all values of
the long memory parameter and clearest for d = 0.1, as would be expected. These
findings support the heuristic analysis leading to (3.4) and (3.5). For when the
variance estimate /j;M* is employed, the scaling-out effect that leads to bimodality
is removed, thereby explaining the finite sample distributions being closer to the
standard normal.

4. FURTHER ANALYSIS: FINITE SAMPLE AND ASYMPTOTIC
BIMODALITY

As noted in Section 2.3, natural self-normalization of sample covariance statistics
does not perform well in finite samples relative to the asymptotic theory when
strong effects of long memory are present in the data. This result in nonlinear
nonparametric regression is new to the literature. But the observed finite sample
bimodality has a subtle connection in its origins with earlier findings on bimodal ¢
ratios where behavior is dominated by a few observations when there is heavy
tailed data. In the present case, behavior is dominated by the few neighboring
observations whose impact is not diminished by the kernel weights under strong
dependence. Figure 4 illustrates with a single shot picture of typical data trajecto-
ries generated for x; and u, with d = 0.1 and n = 1,000.

Some additional analysis and computations are now provided to shed light on the
finite sample properties of self-normalized sample covariance statistics in which
nonstationarity originates in partial sums of long memory processes. The following

10

ety i

20 -
30 -
-40 +

-50 -

-80 | . . . . . . . .
0 100 200 300 400 500 600 700 800 900 1000

FIGURE 4. Single shot trajectories of x; and u, generated with d = 0.10 and n = 1,000 according to
the simulation design given below.
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simple framework with no endogeneity is used for the following discussion and
data generation.
Simulation design

e Both ¢; and u;, are iid N'(0, 1) and the ¢; are independent of the u;.

® Xy = Z,’-;léj, where (1 —L)4& = ¢;, with0 <d < 1/2and 12<u=1-d<1,
so that & = (1 — L) ¢; = 375 diej—; with ¢ ~ I‘(d i1,

o K(x)= e’x2/2/«/2n.

For j =1 and 2, define
Sin =T ' ZK(xk) U
k=1

where Ji, = Y ;_ K*(xx) and Jo, = Y ;_; K*(x)ui. Under these conditions, &
is a long memory process with memory parameter 0 <d =1—pu < 1/2 and x;
is nonstationary with memory parameter 1 + d. S, is a natural self-normalized
sample covariance statistic, matching J(1) in (2. 14).3

Recall that d? = var(x,) ~ Ayn'T, where A, is a positive constant depending
only on d. It is readily seen from (2.11) and (2.21) that

1 1 Ag\1/2
n1/2—d jlns 1/2—d \72}1 D (7) LB(1+2d)/2(170)5
jﬂ jn
S, @.1)
In

where By (t)} is fractional Brownian motion with Hurst exponent H and Lg,, (¢, s)
is the local time process of {Bg(f)};>0. In view of the independence of x; and uy
and since u; ~;ig N(0,1), we have S, ~4 N(0,1) for all n > 1 and

AN\ 172
Su=(22) S0 o MO, 42

2n
so that S5, has a standard normal limit distribution. Now consider the finite sample
performance of the statistics Sy, and Sy,.

A. Simulation results for Siy: Kernel density estimates of the finite sample
distributions of S, are shown in Figure 5(a) for sample size n = 100 with
d € {0.1,0.25,0.4,0.55} from 40,000 replications. The graphs confirm the exact
finite sample A(0,1) distribution for all values of the memory parameter d,
including the nonstationary case d = 0.55.

B. Simulation results for Sy, : Figure 5(b) shows the finite sample densities of
S»,, for n = 100 and same memory parameter values d € {0.1,0.25,0.4,0.55} again
from 40,000 replications. Bimodality in these distributions around the points £1
is clearly evident for all d > 0.10 and strong in the nonstationary case d = 0.55;

5When € and x;, are independent of 1y the term 22 e ) Yic = | K (x%) K (Xk47) uk urs; that is included in 7, is
unnecessary since the terms G, appearing in Corollary 2.1 are zero for all r > 1.
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\ [—d=0.10]|
i d=025
e d = 0.40
% |- - -d =055

F n
04r —d=0.10 04 "

Son

(a) Sin densities, n = 100 (b) S2n densities, n = 100

F1GURE 5. Empirical densities of Sy, and Sy, for n = 100, d € {0.1,0.25,0.4,0.55}.

0.4

0.1r

Son S,

(a) San, densities, n = 1,000 (b) Sa,, densities, n = 5000

FIGURE 6. Empirical densities of Sy, for sample sizes n = 1,000 and n = 5,000 and d €
{0.1,0.25,0.4,0.55}.

for d = 0.10 the density has shoulders at the same points +1. Figures 6(a) and
6(b) show the corresponding densities for n = 1,000 and n = 5,000. The slow
convergence of these distributions to normality in the presence of stationary long
memory is evident, especially for d = 0.4 where shoulders in the density around %1
are evident even when n = 5,000. In the nonstationary d = 0.55 case, bimodality
remains evident, although it is not as strong as it is for smaller sample sizes.

Although S5, has a normal limit distribution for all memory parameters d €
(0,0.5), the finite sample performance of Sy, depends on the value of d, in contrast
to S1,. Bimodality is strongest for stationary values of d closest to the boundary d =
0.5 and remains present even for very large sample sizes. This anomalous behavior
can be explained in terms of relative convergence rates as follows. Recalling (4.1),
when d = 0.4, we have

(jln)l/z_]: \7ln_s72n
Ton Tl (Tt + Tl

= 0p(n™"),
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(a) S2n densities, n = 100 (b) S2n densities, n = 1000 (c) S2n densities, n = 5000

F1GURE 7. Empirical densities of Sy, for sample sizes n = 100,1,000 and n = 5,000 and d €
{0.75,1.00}.

whence J»,/J1, —p 1 as n — 00; but the convergence rate is seen to be very slow.
With such a slow convergence rate, even for n = 5,000 (where n~995 ~ 0.65) and
with S, ~¢ N (0, 1) forall n > 1, the value of S», = (&) 12, canbe substantially
impacted by the factor (?") , leading to departures from the normality of S,
and the presence of b1m0da11ty in the distribution.

When x; = Z/ (& with (1 — L)9&; = €; and d > 1/2, the input & is a nonsta-
tionary long memory process and the limit distribution S, is not normal. In fact,
bimodality must appear in this case and we have

Tin—>pA=Y K). Ju—pBi=Y K(xul, 4.3)

k=1 k=1

where A and B (A # B) are well-defined positive random variables. Hence, as

n— 00,
Son = (2:)1/251,,—m( ) N, 1), 4.4)

since S, ~ N(0,1) for all n > 1. The presence of the ratio A/B of the random
variables (A, B) assures bimodality in the limit distribution (4.4).

The proof of (4.3) and (4.4) is straightforward. Let A, , = Zzzm K?(x;) and
recall that x,, ~4 N'(0,d,,), where d = var(x,) ~, Agn'*t** as n — oo, it is readily
seen that, whenever d > 1/2 and m,n — oo,

EAy =) EK* ()= f K2(dgy)e™ dy
k=m k=m

<CY d'=C )y kIR,

k=m k=m

Hence, A := Z,fil K?(x;) is a well-defined random variable and 7,, —p A.
Similarly, we have EB,, , — 0 where B, , = Zzzm K2(x) 77,%, and hence J,, — p B.

https://doi.org/10.1017/50266466624000276 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466624000276

A GENERAL LIMIT THEORY FOR NONLINEAR FUNCTIONALS 21

Figure 7 gives simulation results for S, in the nonstationary innovation cases
d=0.75 and d = 1 for n = 100, 1,000, and 5,000 based on 25,000 replications.
Bimodality appears a prominent feature of the densities of S,, for both d =
0.75 and d = 1, showing little tendency to diminish even in very large sample
sizes, corroborating the non-Gaussian limit theory in the nonstationary case. The
bimodality is stronger when d = 1 than when d = 0.75 for all sample sizes.

5. CONCLUDING REMARKS

Sample covariance functionals of regressors and innovations play a key role in
nonlinear nonstationary regression models and self-normalized versions of these
statistics are a foundation for inference. The limit theory given here covers a
wide class of such functionals and reveals important differences between station-
ary and nonstationary long memory innovations. Methods involving bandwidths
h = h, — 0 in nonparametric models and fixed 7 = 1 suited for parametric
applications are jointly included in the present findings. Numerical work shows
strong bimodality in the finite sample distributions, slow convergence to the
Gaussian limit theory under stationary long memory innovations and non-Gaussian
limit theory when the innovations have nonstationary long memory. New forms of
self-normalization are shown to provide the same limit theory but improved finite
sample performance suitable for practical work in these difficult cases.

It is of interest to explore the performance of this modified form of self-
normalization in regression test applications. Bimodality, when induced by self-
normalization as in the cases considered here, typically leads to the presence of
modes around %1 (Logan et al., 1973; Fiorio et al., 2010). The general impact of
such bimodality is to transfer extreme tail probability in the distribution towards
the modes, which in turn, typically makes testing somewhat conservative in
applications and this is inclined to reduce power in testing under local alternatives
when using nominal asymptotic critical values. We might therefore expect some
such impact in the present examples with long memory innovations. The new form
of self-normalization introduced here is designed to attenuate such effects and
an investigation of the size/power implications of this modification in regression
applications is a topic for future research.

The present framework, in conjunction with earlier findings in the nonsta-
tionary nonlinear regression literature, can be extended to cover a wider class
of models than already discussed. One such model is a nonlinear distributed
lag cointegrating regression of the following additive nonparametric type y; =
glx) + Z{=1 8i(Axy_j) + ux, where the I(1) regressor x; is nonlinearly related
to y; with additive and nonlinear distributed lag effects from the regressors
{Axi—; : j=1,...J}. In such models, the cointegrating function g(x;) is usually
of primary interest. If the additive component ZLI gj(Ax;_;) were ignored and
instead absorbed into the primary component, the equation y; = 4 g(xx) + vy =
8, (xx) +vi may be consistently estimated by kernel methods. Indeed, with some
modification, the results and limit theory of Wang and Phillips (2009b)) would
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continue to hold in such cases because they cover regressions with an endogenous
regressor x; correlated with a stationary error such as vy. If the g; are measurable,
integrable functions and Axy is stationary, then setting u = Zf:l Eg;(Ax;—;) and
Ve = U + Z{:l (gj(Axk,j) —Egj(Axk,j)), estimation and inference concerning
g, (xx) in the system yx = g, (xx) + v can be justified as in Wang and Phillips
(2009b) under some extension of the underlying conditions to accommodate the
properties of the induced error process vi. Full exploration of this and related
extensions is left for future research.

6. PROOFS OF THE MAIN RESULTS

Proof of Theorem 2.1. First note that, for any bounded # > 0 and nh/d, — oo,

A\ 12
(—") max |f (xx/h,wi)| = op(1), (6.1)

nh I<k<n

by a similar argument as in Proposition 7.4.° Due to (6.1), without loss of
generality, we assume

fGx/hwe) =0 for k=1,...,A, (6.3)

where Ag is a fixed constant that can be chosen large enough. This convention
will reduce notational complexity in the proofs of propositions that are given in
Section 7 and the lemmas in the Appendix.

We adopt the methodology employed in Wang and Phillips (2009b), starting
with an outline of the proof of (2.6), where some useful propositions will be given
in Section 7. Define, for 0 <r <1,

[nt]
d,
Su(t) = (;)”2 > F G wo),
k=1

q
Yo (1) = Ya0() +2 ) Y (1),

=1

6Indeed, as in (7.4) of Proposition 7.4, it follows from nh/d, — oo that, for any A > 0,

dy )
()" max 1 Cxe/howo)l
dy , o
< [% ;fZ(xk/h,Wk)l(lf(xk/h,wk)\ zA)] +A(E)I/2
oo 12
P [./ EF? ) (f (x| EA)dXLZ(l’O)] , asn— oo. (6.2)

This implies (6.1) since [0 Bf2(x, w)I([f(x,w1)| > A)dx < A™2 [°0 Ef*(x,w1)dx — 0 by (2.2), as A — o0.
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where forj=0,1,...,q,

d, Lnt]
Yng(0) = ~1 3k W ks Wiy,

k=1

and forall ;, i € R,0<sp <s1 < - <sp<oocand0<fy <t; <--- <1 <00,

l m
Zp = Zai[§n1 () — S (- |+ Zﬁi[inz(si) —Zn(sicn)],

i=1

where ¢, (f) = T ZLmJ €jand §,n (1) = f > JW]J €_;. An application of Proposition
7.4 implies that, for any g > 1,

(wno, Yt oo Vg an(r)) - (GO,G,,...,Gq, A,,) L,(1,0), (6.4)

on Dpq+20,1], where A, = Go + 22;’21 G,. This, together with the tightness of
{Sn(#)}n>1 (see Proposition 7.2 with h = 1), yields

{Su(®), Yug(t), Zp}p=1 is tight on D3 [0, 1]. (6.5)
Hence, for each {n'} C {n}, there exists a subsequence {n"} C {n'} such that

{Sw (1), Yurg(0), Zya} = {n(0), Ay Lz(1,0), Zo}, (6.6)
on Dy3[0, 1], where

1 m
Z, = Z%’(Blzi —Bi, )+ Zﬂi(st,- —Bay ),
i=1

i=1

and 7 (f) is a process continuous with probability one due to (6.1).

Let Zs = > iy vi[Su(t) — Su(ti=)] and Z3 = Y, vi[n () — n(ti—1) ], where
ypeRand0 <1y <t <--- <1, <s. Since, foreach 0 <7 <1, §,(?) is uniformly
integrable (see Proposition 7.1 with & = 1), it follows from Proposition 7.3(i) with
h =1 that, for any s < f,

Ee 52 [n(t) —n(s)]
= lim Ee'%3 2028, (f) — S (s)] =0 (6.7

n’"— o0

(see, e.g., Billingsley, 1968, Thm. 5.4). Similarly, by Propositions 7.1 with A =1
and 7.3(iii) with 2 = 1, we have

Ee S22 [n() — n(s) — [Y(1) = Y ()]} =0, (6.8)
where Y (1) = 7 217(1,0). Indeed, by letting Y, () = A,Lz(t,0) and noting

sup E|Y, (1) —Y()| <2|A,—TP|E sup Lz(1,0) < C Z |G,| — 0,
0<t<l1 0<r<l1
r=qg+1
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due to Proposition 7.5, it follows from Propositions 7.1 with 2 = 1 and 7.3(iii) with
h =1 that, for any € > 0,

[E 2 [n(0) —n())* = [Y®) — Y(9)]}|
< [E@H2{[n(1) — n(s)]* — [V (1) — Yo ()]}
+E|[Y,0)0 = YO]|+E|[Y,(s) = Y (9]
< lim [Ee 342 {[S,(£) — Sy ()17 — [Yirg () — Yurg ()1} | + 2¢€

n’—o0

<3¢, (6.9)

by letting ¢ — oo. This yields (6.8) as the left-hand side of (6.9) does not depend
one€.

Let F; =0{B1,0 <t <1;B,0<t<00,n(t),0 <t <s}. Results (6.7) and (6.8)
imply that, forany 0 <s <t <1,

Il
L
8
A

E([n0-ne]1 F)
E({tn) —nP = [y -¥0)]} | )

0, a.s.

Note that F; 1, n(s) is Fy-measurable foreachO <s<1land Y(¢) = ‘L’lsz(t, 0) (for
any fixed ¢ € [0, 1]) is Fy-measurable for each 0 < s < 1. It follows from Wang
(2015, Lem. 3.4) that the finite-dimensional distributions of (1(¢), Y(¢)) coincide
with those of {NY'/2(¢), Y(¢)}, where N is a normal variate independent of Y (r).
Since 1 (#) does not depend on the choice of the subsequence {n"}, it follows from
(6.5) and (6.6) that

{84(0), Yug(} = {[11L2(t.0)]'*N, A L7(1,0)}, (6.10)

on Dx2[0, 1], where N is a normal variate independent of Lz(#,0). This, together
with (6.4) and the continuous mapping theorem, yields (2.6).
The proof of (2.5) is similar. Set, for0 <¢t<1land & > 0,

Lnt] |nt]
dy
E fOx/howi),  Z (@) = o kEZIfz(xk/h, wi).

1/2

nh(t) - l’l

Ash— Oandnh/d, — 00,7, ,(t) = Z(t) := 2L,(t,0) by (7.4) in Proposition 7.4.
The same arguments as those leading to (2.6) can be used to establish (2.5) except
that S,,(¢), Y,,4(1), and Y (?) are replaced by S, (1), Z, x(?), and Z(1), respectively.
The corresponding propositions with 7z — 0 are given in Section 7. O
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Proof of Corollary 2.1. We only prove (2.11). The proof of the other result

. .. _ mg BV _ _ _ o0 Y —
is similar. Let uj; = ijo Vjhp_js Yok = U — Urg = Zj:m0+, YjA,_; and, for r =
0,1,2,...,

Gr,mo :/ K(y)E{ulOuHK(y+xr)}dy

Using (2.9), for any mp > 0 and g > 0, we have

d, & d, &
(= K = 3 Kunk (et

n k=1 n k=1
12 n

dy
- ZK(xk)Mle(xk+q)u1,k+q, <—> ZK(xk)ulk)

k=1
(GO mOLZ(1 O) Gl mOLZ(l O) 5 quLZ(1 O) Tl mONL (1 O))

where Ty, = GO. mo + 22:21 ér, mo- This implies that, for any mg > 0, > 0 and
any continuous function with /(0) =1,

172 n

— ~

(7 ZKz(xk)u%k, N (—) ZK(xk)ulk>
k=1

= (GomeLz(1,0), 7 ,Lz(1,0), T, mONLl/z(l 0)),

~2 q -
where 7 = Gomy +23_,_; Gy,m, and

ZK( )ZK ) K () ik 1, k-

Consequently, to prove Corollary 2.1, it suffices to show the following:

— dn n
u7n,q = ; ZKZ(
k=1

(a) As my — 00,

oo
1Go— Gomgl+ Y 1Gr = Gruy| — 0. (6.11)
r=1

(b) For any mgy > 1,

E| Y un K@l < Clo/d) [ Y77 (vl + 1] (6.12)

k=1 Jj=mg
(c) For any r > 0, as n — oo first and then my — oo,

d, n—r
" ZK(Xk)K(Xk+r) (w1 vy, esr — Wettir) = 0p(1). (6.13)
k=1
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Further, if my = my(n) — oo, that is, my depends on n, it also follows that
there exists M| = M\, depending on my such that, as n — oo,

n—r

Z|2ka (%er) (i tt1,ar — it ) | = 0p(1). (6.14)

(d) There exists M = M,, — oo so that, as n — oo first and then g — o0,

M
d;" Z ( )ZK (o) K (¥ietr) g e, = 0 (1). (6.15)

r=q+1

For the proofs of (6.11), (6.12)—(6.14), and (6.15), we refer to Propositions 7.5,
7.6, and 7.7, respectively. ]

7. SUBSIDIARY PROPOSITIONS

This section proves the following propositions which are required in the proofs of
Theorem 2.1 and Corollary 2.1. The notation is the same as in the previous section
except where explicitly mentioned.

ProposiTION 7.1. For any fixed 0 <t <1, r > 0 and any bounded h > 0
satisfying nh/d,, — 00, Y, (t), Z, 5 (t), and 52 (D), n> 1, are uniformly integrable.

PROPOSITION 7.2. For any bounded h > 0 satisfying nh/d, — 00, {Z, 1(t)}n>
and (S 5 (t)},>1 are tight on D[0, 1].

PropPOSITION 7.3. For any 0 <s <t < 1, we have that:
(1) if h > 0 is bounded satisfying nh/d, — oo, then

lim Ee@3t2n)[S, (1) — S, n(s)] = 0; (7.1)

n—o0o

(i1) if h — O satisfying nh/d, — oo, then

lim B e/ @342 (S, 1. (t) = S, 4(5) ] = [Z1(1) = Zy ()]} = 0; (7.2)

n—oo

(iii) for any € > 0, there exists a qo > 0 such that

lim |Ee'“3t2{[S, (1) = $,(5)]> — [Yog (1) = Yug()]}| <€, (7.3)

n—00
for all g > q.
PROPOSITION 7.4. For any bounded h > 0 satisfying nh/d, — 00, we have

Z (1) = 2L4(1,0), (7.4)
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on Dg[0, 1]. If, in addition, y =Oande {[f(t,wo)(l +||w,||’3)}dt <00,0<r<m,
then

[0, U1 (1), Y (D} = {Go, G .., G } L (1,0), (7.5)
on DRnH—l[O, l].

PROPOSITION 7.5. If y = 0, we have 32 |G,| < 00 and 3" |G,| < oo, and
(6.11) also holds.

PROPOSITION 7.6. Results (6.12)—(6.14) hold and, for any bounded h > 0
satisfying nh/d,, — oo, we have

E| Y unKa/m)|* < Cnjd) [ D7 (wyl + 19D (7.6)

k=1 j=mo

PROPOSITION 7.7. Result (6.15) holds.

7.1. Preliminary Lemmas
Except where explicitly mentioned, the proofs of all lemmas are given in the

Appendix. Throughout this section, we let F; = o (Ag, Aj—1, ... ).

LEMMA 7.1. Let p(s,si,...,Sm) be a real function of its components and
t,...,tm € Z, where m > 0. There exists an Ay > 0 such that the following results
hold.

(1) Forany h > 0 and k > 2m+ Ay, we have

Ch [
Elp /by )| < / Elp(t, A, ... At .7
d —o0
(i) Foranyh>0,k—j>2m+Agandj+1<ty,...,t,, <k, we have
Ch [
E[|pG/hhys oA [ 1 F] < — | Elp(t Ay, ..., d)ldr. (7.8)
dij J o0
(iii) Forany h> 0 and k—j > 1, we have
Ch (%
E[IpCae/h)| | F;] < T |p(x)|dx. (7.9)

k—j J—o0

Proof. For the proofs of (7.7) and (7.8), we refer to Lemma A.1 of Wang et al.
(2021). As ¢o # 0, the proof of (7.9) is simple (see, for instance, Lemma 2.1(iii)
of Wang, 2015). ]

https://doi.org/10.1017/50266466624000276 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466624000276

28 QIYING WANG AND PETER C. B. PHILLIPS

Recalling (6.3), f(x,y) < T(x)(1+||y||#) and E ||w; ||™*{248} < 0o, where T'(x)
is bounded and integrable, a simple application of Lemma 7.1(i) and (ii) yields
that, for any /# > 0,

S EfCu/hw) < Cnh/d, E[ Y 12u/h, wk>]2 < C(nh/dy)" (7.10)

k=1 k=1

and (7.10) still holds if £ (x;/h, wy) is replaced by ng defined by

Yij = E [£ Coe/h,wi) | Fij] — E [f G/l wi) | Fijm1 ],

where j > 0 is a fixed integer. Furthermore, it follows from Lemma 7.1(iii) that,
for any r > 1,

[ f G/ wir DIF] < {E[T2 /B | ]} 2 [+ w11 7]} 2
< Ch'?Ry,

where R, = {IE [(l + [ Wetr| |2/3)|.7-"k]}1/2 depending only on Ay, ..., Ax_n,. Hence,
foranyr>1,h >0, and 0 <s < < 1, we also have

Lnt]

> B[/ howol I G/ howii ) | Fing |

k=[ns]+Byg
Lnt)
= Y B[/l E{f G/ hwien) || Fi} | Fius |

k=[ns]+By
Lnt]
<Ch'? " B{lf Cu/hw)|Re | Fiug )
k=[ns]+By

< Cnh**(t—5)%/d,, (7.11)

for some « > 0, whenever B is sufficiently large so that (7.8) is applicable. We
remark that (7.11) holds for r = 0 if 4%/ is replaced by h. These results will be
used later.

In the next lemma, €2, is set to be a subset of 2 = {1,2,...,k}, 2, = Q—Q
and

k
a =Y et +p).
v=I

LEMMA 7.2. Suppose that Zﬁ:l a2<C Tkz and, for any Q; satisfying #, < Vk,
By:i=Y ol =7, (7.12)

VEQZ
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for some sequence of constants ti. Then, for any § > 0 and sy, s, € R*, we have

/minu,s1 It]° + 52} [E | dt

k
< CkP 45ty P 1+ (0B 45217 (7.13)

v=1

/min{l,s1 ||} min{1, |¢[}|E % |dt

k
< C(k+sit [14+ ) BY)). (7.14)

v=1

If, in addition, lezl ,312 <a < oo, then
/ |Ee®|dt < C(k+1,'B™"), (7.15)
[t>B/7)

for any B > 2a'/?.
Proof. The proof of Lemma 7.2 is similar to that of Wang and Phillips (2011, pp.

246-247) and is therefore omitted. But an outline of the proof is given in Appendix
A.1 for completeness. U

Since Lemma 7.2 still holds when z;(f) is replaced by zx_,, (f) when k > m%
and since wy depends only on A, ...,Ar_p,, the following lemma is a direct
consequence of Lemma 7.2.

LEMMA 7.3. Let g(x,y) be a real function satisfying
e [Eg(t,w))| < Cmin{l, |¢]} and sup,E { (1 + |eo])|g(t,w))|} < co.

For any bounded h > 0 and 7, < Ck3, we have
0 .
/ [E ™M g(t,wp)|dt < Ch, (7.16)
—0oQ0
forall k > m(z). Instead of (7.16), we also have
S .
/ ‘Ee’zk(’/h)g(t,wk)’dt
—00

k
< Ch {0+ a0t 2 [1+ (D2 8) 1+ ot '} (7.17)

v=1
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where oy = MaxXo<i<myv k-1 |—i| and Bro = Maxo<i<movk—1) |Bi—il- Similarly,
when sup; o = O(1), we have

/ ” min{1, |¢|/h} |E /P g(t,wy) |dt
k

< Ch{k? +[Bo(r 2+ k) +7°](1+ > B2} (7.18)
v=1

Proof. See Appendix A.2. O
Let i(m) = [E (eisx"/ W41 g(s,wp) | Fuu)ds and

fean) = [ / I (¢ e W g s i) g (1 wi) | )i,

where g(x,y) is a real function given in Lemma 7.3, and let

. ; iy e
Hk,l(B) :/ / gl(t)gz(t)E(ezsxk/h-k—nxl/h-&-zzj:lwej | fo)dsdl‘,
Is|=B/dy J|t|=B/d)

where g; () and g, (¢) are bounded real functions. The next lemma is an application
of Lemma 7.3.

LEMMA 7.4. Let m > 0, l—sz%—i—l andk—mzA(2)+1, where Ay > my and

my is given as in Lemma 7.3. Suppose a := ZJI»ZI yjz < 00.
(1) For any h > 0, we have
Li(m)| < Ch[d 2, (1+a"*) + Bod ). (7.19)
L) < CRd, !, [d 5 (1 4a') + Bod; ], (7.20)

where /31() = maxoi,gmo |]/1_j|.
(i) Under SM, if |y;| < C/«/n where m < j <1, for any h > 0, we have

L(m)| < Ch((k—m)~" +vVk—m//n), (7.21)
T (m)| < CR* [(1—k) ' (k—m)~' + (1= k) > (k—m)~"/?]. (7.22)

(iii) For any h > 0 and B > 242, we have
I (B)| < CR*[(1—k) >+ B 'a}]d; " (7.23)
Proof. See Appendix A.3. O

Let Iy(h) =f (x/h,wi) exp {i Z;l:mﬂ wj€j/~/n} and

Hy(h) = f G /how) f afhown) expli Y wiei/~/n},

j=m+1
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where f; are constants satisfying |u;| < C. Using Lemma 7.4, we have the
following results.

LEMMA 7.5. There exists a By > mq such that, forallm >0, | —k > By, k—m >
By, and bounded h > 0,

(1) under LM,

E [l | Fu]| < Ch(d 2, + di-n//n), (7.24)

|E[i1n(h) | F]| < CH 2, (d73 +di—i/v/n), (7.25)
(i1) under SM,

[E[L(h) | Ful| < Ch(tk—m)~" +k—m//n), (7.26)

[E[Hk(h) | F]| < CR* U= k—m)~" + A= k) > (k—m)~'72].
(7.27)

LEMMA 7.6. There exists a By > mg such that, forallm >0, | —k > By, k—m >
By and bounded h > 0,

(i) under LM,
|E{f G/ wDE [f Gic/howi) | Fiem|}| < CR*a; " d3, (7.28)
(i1) under SM,
|E{f /o wE [f e/ howi) | Fien] }]
< CR[U- "K'+ -k (7.29)
The proofs of Lemmas 7.5 and 7.6 are given in Appendices A.4 and A.5.

LEMMA 7.7. Let T'(.) be a measurable function with T'(L1) = 0 and ET?(A,) <
00. There exists an Ag such that:

(a) for all k > Ay and | — k| < Ay,

|E{T () T ) K G /B) K (/) Y| < Cha s (7.30)
(b) for all k > Ay, | —k > Ao, and | —j < k,

|E{T () T (L) K /W) K (/) }| < CHPd 't d (7.31)
(c) forall k> Ay, [—k > Ay, and [ —j > k,

|E{T Q) T Qi) K i/ ) K G/ 1) }|

S |1l d a2, under LM,

7.32
- kY1 —k) " 4+ k2 (1= k)32, under SM. (7.32)
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Similarly, uniformly for y € R, we have

[E{K(+2x/m)T (Gu-p) T (o) } |

4, if 11—+l < Ao,
<Chidy Lk s e (1.33)
o |®s| Dot sl 1(d " +170),  if [l—j+k| > Ao,
forany Ay > 1 and j,k > 0.
Proof. See Appendix A.6. O

Our final lemma gives a useful tightness criterion for a class of stochastic
processes on D[0, 1].

LEMMA 7.8. Let X, be a sequence of random variables and X, (t) = Z,E';”l Xk
The sequence {X, (1)} is tight in D[0, 1] if maxj<k<, |Xux| = op(1) and there exist
an integer Ay > 0 and a number «,(€,8) such that

[ns]
P10 Xl z el Xt Xaltw) < cu(e.),
k=[ntm]+Aq

and

lim lim sup «,(€,8) =0,
(g n—>00

for each positive € > 0, where 0 <t; <tp <--- <t, <s<lands—t, <é.
Proof. If Ap = 0, Lemma 7.8 is a special case of Billingsley (1974, Thm. 4).

Extension to integer Ap > 1 is trivial under the condition that max;<x<p | Xu| =
op(1). The details are omitted. ]

7.2. Proofs of Propositions

Propositions 7.4 and 7.7 are treated separately due to their complexity and their
proofs are given later in Sections 7.3 and 7.4, respectively.

Proof of Proposition 7.1. We only prove uniformity of S2 ,(1) for bounded
h > 0 satisfying nh/d,, — o0o. The other results are similar and simpler. Let m > my
be a constant that will be specified later. Let

S = ()" Dl i

dy, .
S2n = <_>1/2 Z {f(Xk/h, Wk) —E [f(Xk/h, Wk)|]:k—m]}-

nh
k=1
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Note that, for any A > 2,

ES. ,(DI(Ss (1) = A) <2ES}, +2ES3 1(S}, + 53, > A/2)
<2ES? +8A7'ES; +2ES3 I(ST, > A/4)

<4ES}, +16A7'ES;,.

It suffices to show that, for some ¢y > 0,

(a) ES3, < com*;

(b) under LM, ES? < cody/*™";
(¢) under SM, IE52 < co(dn'"* +1og?n//n).

Indeed, for any € > 0, by taking A, n sufficiently large and m = A'/3, it follows
from (a) to (c) that
(1) > A) <dco(d,"* +d)/* ")+ 16c1A7" > +colog’ n//n < e,

under both LM and SM, due to d,, — O and u > 1/2.
To prove (a), let Yy = E[f(u/hwlFiej] — E[f Gx/hwi)| Fiej1],0 <
Jj <m—1. We may write

ES2 (DS

nh

Note that Y;; forms a martingale difference. Holder’s and Burkholder’s inequalities
imply that

m—1 m—1 n
ES3, <m 2ZE ZY"J <C2m ZZ]E(ZY,gj)zfcom“,
Jj=0 j=0 k=1

for some ¢y > 0, which yields (a), where we have used the result (7.10) with fz(.)
replaced by Y, 13,
We next prove (b) and (c). Let gy = I [f(x/h, wi)| Fx—m]. For some g > 1, we

may write
n  k+q
ES, = [Z]EgﬁZZ > Egkg,+22 Z E (gxg)) ]
k=1 j=k+1 k=1 j=k+¢
=Ru1 +Ruo + Ry3. (7.34)

Recall (6.3). It follows from (7.8) in Lemma 7.1 that |g;| < Ch/d,,. On the other
hand, E |g;| < E|f(xx/h,wi)| < Ch/dy. As a consequence, we have

n

d, _
IRut| + |Ra| < Cgh /dy — > Elqil < Cghd,,".
nh —

As for R,3, by taking m > By where By is given in Lemma 7.6,
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(i) under LM, it follows from (7.28) that, for any g > B,

< ZCZ' D) gl < Chnﬂ S dfla

k=1 j=k+q k=1 j=k+q

R

o0
< ch / 24732 () db,
q

(i1) under SM, it follows from (7.29) that, for any g > By,

Rl < = ZZ| (e8!

k 1 j=k+q

TZZ =0k (=R

=1 j=k+q

<Ch (logzn/\/ﬁ+/ x’3/2dx).

q

Taking these estimates into (7.34), we obtain (b) and (c) by letting g = d,, as h
is bounded. This completes the proof.

Proof of Proposition 7.2. We prove tightness of S,, ;,(¢). Tightness of Z, ;(¢) is
shown in a similar way to Wang (2015, Thm. 2.20) and the details are omitted.

Recalling (6.1) and Lemma 7.8, it suffices to prove the following: for any fixed
s € [0, 1], for each € > 0 and any bounded & > 0 satisfying nh/d,, — oo, there exists
a sequence of (€, §) satisfying lims_,¢limsup,,_, ., @, (€,8) = 0 such that

Lnt]
I := sup P(| 3 fCa/how)| = € ah/dy) | f[m]) <an(6,8),  (1.35)
lt=sI=8 4 [nst4B,

where By is chosen as in Lemma 7.5. In fact, by noting

D0 =K k_:é%f(xk/h RE
Lnt]

<2 > " E(F@/hwol I i/hwp)l | Fiag)

k=[ns]+Bg k<I<2By
|nt] n

+2 Y Y [Efr @/ wofea/hw) | Fing)

k=[ns]+B I=k+2By

’

it follows from (7.11) and Lemma 7.5 that, for some «a > 0:
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(a) under LM [using (7.25)],

|nt] n
Ju(s1) < Crh(t—9)°/dy+C12 Y Y dilydi
k=[ns]+11=k+1

<2Cnh(t—s)*/d,;
(b) under SM [using (7.27)],

J.(s,) < C/nh(t—s)*+
|nt] n

a3 Y (=R k= nsh T+ A== s ]

k=[ns]+1I=k+1
<2C+/nh(t—s)*.

Now (7.35) follows by choosing (¢, 8) = 2Ce~26% and the fact that

I, <€ %d,/(nh) sup J,(s,1) < a,(e,8).

|t—s|<é

|

Proof of Proposition 7.3. We start with (7.2). Due to the iid properties of A,
there exist constants u; with |u;] < C,

(B @218, = Sy (5)F = 1 Z0s(0) = Zu ()]

Lt _6_
< E[E[¢/Z505419 {[$,0(0) = $,.0() P = [Zus(0) = Zus(1} | Fi

dn n n
=3 Y BR[| Fiu]

k=[ns]+1I1=k+1
k+By n

<l oS (4 Y )EE[mG | Fu

k=[ns]+1 I=k+1 I=k+Bg
=: Ru4 + Rys, (7.36)
where By and Il (h) are defined as in Lemma 7.5. Similar to (7.11) with minor

modifications, under both LM and SM, we have R,s < Ch'/2. To estimate R,s,
under LM, it follows from (7.25) that

RnS <

Cd, "N
nh " Z Z di' (di 5 +di—i//n) < Ch.

k=1 I=k+B

Similarly, under SM, we have R,s < Ch by (7.27). Taking these estimates into
(7.36), we have (7.2) as h — 0.
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In a similar way for any g > By, we have

|E " “nt 28, (1) — 8,()17 — [Yug (1) — Yog ()1}

dn n n
=23 BR[| F)|

k=[ns]+1 I=k+q
d, n n —1 -2
0 Zk=[ns]+1 Zl=k+q d_(ns1 4"y, under LM,

< T S [0 =)+ (= b2k~ [as) 2],
under SM,
-c / qoo X2=3 under LM,

fqoo x32dx+1log*n//n, under SM,
<e+Clog*n//n,

by choosing ¢ sufficiently large. This proves (7.3). The proof of (7.1) is similar
and simpler, so the details are omitted. O

Proof of Proposition 7.5. With y = 0 in assumption A1(i), we may write

Xr = ZZ¢J€Z -j = Zar —i€j + Z[ar+j a‘]]efjv (7.37)

i=1 j=0

where a; = Zi:o ¢sanda;=0if <0.Letz, =) ,_, €a,—rand zy, = Zj@o[arﬂ -
a;jle_;. We have var(z,) ~ df for r > 2my and, when my is fixed,

IEF (s, wo)e ™17 | < E|f (s, wo) (e — 1)| + [Ef (s, wo)|
< C(1+|a,|) min{1, |s]}.

Now it is readily seen from the i.i.d. properties of €, and (7.18) in Lemma 7.3 that
1 o0 ~ . ~ .
G = 5 [ LG = E e as
T J-
o0 ~ .
< CAt+ad) [ min(LIs) B [Fswe ) ds
< CU+la > +r7).

Hence, ) 0 amg 107 < 00 due to |a,| < C under SM and |a,| < d, under LM.

To prove (6.11) and Zfil |Gr| < 00, we make use of (7.33) in Lemma 7.7. In
fact, for any r > 1 and y € R, it follows from (7.33) that

|E {(M10M1r — uou)K(y+x,) }|

(X 4D 3 )Rl k)

k=mp+1 j=0 k=0 j=mo+1

https://doi.org/10.1017/50266466624000276 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466624000276

A GENERAL LIMIT THEORY FOR NONLINEAR FUNCTIONALS 37

00 r+k+1

<2 > Y d Myl

k=mo+1j=r+k—1

r+k
+2 Z annnwlnZ|¢;|Z|¢s||<d +r7)
k=mp+1 j=0
<2d7" Y (Il Z||wj+r+k||
k=mg+1 Jj=—1
r+k
+2C Z anuwf,nZ|¢s|Z|¢s||(d +r7).
k=mp+1 j=0

Note that 3 _ |¢os] 37K |51 (d3 +773) < Gj*/2k'/2r~3/2 under both SM and LM.
It is readily seen from ) .-, k'/ 2 [|¥]| < oo that

ZIG Grmgl < f K(y)DE (urour, — ou) K (v +x,) }|dy

r=1

<3 Kl [ &0 (7.38)

k=mg+1
as my — o0o. Similarly, we have |Go Go mol — 0, as my — o0, and Z 1 |G | <
00. The proof of Proposition 7.5 is then complete. O

Proof of Proposition 7.6. The proofs of (6.13) and (6.14) are simply estab-
lished using Lemma 7.1. Indeed, by noting that

n—r

|ZK 0 ) K (X4 M1ku1,k+r—ukuk+r)|

(X LAY S ) ) [k v |

I=mg+11=0  1=0 l}=mo+1 k=1

it follows from Lemma 7.1(i) and Z?io [||Y] < oo that, for some constant Ag > 0,

e o0 dn - —
BRI <CMy Y D Ialllvn 12 [(o+2)+ )4, ]

I=mo+11;=0 k=1

[o.¢]
<CiMy Y Il < CMymy
I=mp+1

Hence, (6.14) follows if we take M| = /myg. The proof of (6.13) is similar.
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We next prove (7.6). Let Zj:k =0 for k > [ and I"(.) be a measurable function

with T'(A;) = 0 and EI'?(1) < oo. Since K (x) is bounded, for Ay being chosen as
in Lemma 7.7, we have

An= Y TOuKa/h) |

k=1

n Ag
<2| > TGupK@i/m) | +C (31T Gupl )
k=Ag k=1

n—1 n

=2(X Y 423 3 ) TOa DT Ksi/m K /b

k=Aq |k—I|<Ag k=Ag I=k+Aq

Ap
2
+C (Y IP )
k=1
= A+ Ay + Az, say. (7.39)

It follows from Lemma 7.7 that

n n

E|Aw| <ChY Y 1/d < Cinh/d,,
k=1 |k—I|<Ag

n—1 — nA(k+j) ;— j n _

k=o i 1 (Zﬁ;ﬁﬁ;’; A+ o 1l Dk d,_2k> under LM
E|Az| < Ch DI SED Sy (R SRR

Z;flxo Z?:H—j [k 0=k~ +k2(1—k)*?]  under SM

jldi+ ZJ,;ZO |x| under LM,
j'?+1og’n//n+1 under SM,

< Cj"*ni?/d,,

< C(nh*/d,) {

where we have used the fact ij;:o |l < Cj/d; < C j'/2 under LM. On the other
hand, it is readily seen that E|Aj,| < CA%. Taking these estimates into (7.39), for
any bounded h, we have

E| > TGup) Ku/h) |* < Cj'* nh/d,. (7.40)
k=1
The result (6.12) now follows from

B> i, K/ =E| Y > wyai Ka/h) |

k=1 j=mg k=1

< Sy D DA A+ D T ELD i K G/

j:mo j:m() k=1
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<23 Ml ) D i A+ D)

J=mg J=mg

(B Y e iKa/m [P +E[ Y ex sKeu/h )
k=1 k=1

o0
. 2
<Ceh/d)[ D7 (il +1v2D]
J=mg
where we employ Holder’s inequality and (7.40) with A (A;) = €; and ey, respec-
tively. The proof of Proposition 7.6 is complete. O

7.3. Proof of Proposition 7.4

We start with (7.4). The tightness of Z, , () has been established in Proposition
7.2. It suffices to show that the finite-dimensional distributions of Z, ; (f) converge
to those of T2L,(t,0). To this end, let g(x) = Ef%(x,w;). Under A2(b) and A3(I),
g(x) is bounded and integrable. Furthermore, by using Wang (2015, Thm. 2.20),
we have

[nt] 2
— k;g(xk /h) = t2L4(1,0), (7.41)

whenever d,/h — oo and d,/nh — 0. In terms of (7.41), the finite-dimensional
distribution of Z, ,(¢) will converge to those of T2L,(t,0) if we show that, for any
fixed) <t <1,

|nt)

— D LeCu/m) =2 (/1 wo)] = op (D). (7.42)
k=1

This is essentially the same as in the proof of (A.20) for i =2 in Wang et al. (2021)
(also see (4.8) in the article) and hence the details are omitted. (7.4) is now proved.
We next prove (7.5). It suffices to show the following:
(a) foreach O <r <m, {{,,(t)},>1 is tight on D[0, 1]; and
(b) the finite-dimensional distributions of {¥,0(1), ¥u1 (©), .. ., Y (1)} converge to
those of {Gy. Gy, ...,Gy } Lz(1,0).
The proof of part (a) is simple. Indeed, by noting

Lnt]
[War () = V(D] < —2 D7 1 G Wi g W )|

k=[ns]+1
|nt]+r

d,
<= Y Pwe) S1Zai (0 = Zui ()] +op(1),
n k=[ns]+1

uniformly for s < ¢, the tightness of v, (¢) is implied by that of Z, ; (¢).
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To prove part (b), let i, (y) =E {f(y, wo)f OV +xp, W) } We have £, (y) is bounded
and integrable due to assumptions A2(b) and A3(I). Hence, as in (7.41),

|nt] m
=3 [oohoGa) + -+ + b (5)] = D GrLz(1,0),
n
k=1 r=0
on DI[0, 1], for any (g, ...,a,) € R"*!. The Cramér—Wold theorem now implies
that part (b) will follow if we prove
d Lnt]
[Wr () = =Y " he ()| = 0p(1), (7.43)
"=

for any r > 0 and any fixed 0 < < 1.
The proof of (7.43) is quite technical, starting with some preliminaries. Let a; =
Zi:o ¢s and q; = 0 if [ < 0. With y = 0, we may write

0 k
Xy = Z [ar—j—a_jle;+ Zak_jej, (7.44)
Jj=—00 j=1
and
k+r
Xitr — Xk = Z [ak+r —j — dk 1]6]+ Z Aft-r—j€j
j=k+1
0
= Z lar—j—a—jlejx + Zar—j€j+k
Jj=—00 j=1
= X1k, r +x2k,r» (7‘45)
where
—A

Xy = E [ar/ a—jl€jix,

,
Xok,r = Z lar—j—a_jl€jr+ Zarfjejjtk-

J=—Ag+1 j=1
It is readily seen that, for any Ay > 0,xj , is independent of x , and Xy, is
independent of wy and wiy, when Ag > mo + 1. By letting y; = a,; — a;, we further
have ), ¥ < oo and

—Ap k—Ag 0
Xlk,r = Z [ar—] a—j €j+k Z Yi—q€q + Z Yik—q€q- (7'46)
g=1 g=—0

7We remark that the r in (7.43) is allowed to depend on n and we have in fact established the convergence in (7.43)
in L; rather than in probability. These enhanced properties will be useful in the proof of Proposition 7.7.
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We next let f(z,s) = [72 €™ f(x, 5)dx,

Vk(ta s) :f‘(_t, Wk)f‘(s’ Wk_"_r)e_i“‘xzk‘r’
A(t,5) = E{f (—t.wo)f (s.w)e ™™ ).

Using the Fourier transformations, under assumption A3(III), it is readily seen that
1 ‘ , u ‘

Iy (y.8) = 5= f VYo (1, 5)dt = e E{f (3, wo) (s, wr)e M0,
14
1 i(t—s)y —isy 7 —isx

har(y,8) := ol A YA (t,s)dt = e T E{f (5, wo)f (s, wr)e T ],
14

1
) =Ef 00 0 +)} = 5 [ o)

We are now ready to consider (7.43). Without loss of generality, assume r = 1. We

have
dn 7 —isx,
Yur(1) = 5 wi) | f(s, Wrrr)e” " rds
== F (=t Wi f (5, W) @™%=kt =X0 gt 4 Ry
(2m)n ; / |s|<A *
— n i(t—s)Xp—isx|g, RV,
e «(t,8)dsdt + Ris + Roa
(27'[)2}’1 ; ~//|;|<A
& Xn:/ e~ Skr by, (xg, 5)ds + Ria + Roa
27'[71 |s|<A
d” - —isx
= Z e "Mk by (xg, 8)ds + Roa + Ria + Roa
2nn =1 Jlsl<A
d, —
=3 Z hor(Xk, 8)ds + R3p + Roa + Ria + Roa
wn k=1 YIsI=A
pr—
= W Z hy(xr) — Raa + R34 + Roa +Ria + Roa, (7.47)
k=1
where
d” . 7 —isx,
Roa = m S X wi) F s, Wig et ds,
Sl |s|>A
Ris = il / / M=M= [V(t, 5) — EVi(t, 5) | dt ds,
(27T)2 Is|<A
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n

d, -
Rop = / e ks | by (xg, 8) — hor (i, ) |ds,
2mn |s|<A kzzl: [ ]
d n
Ryp = — / e N kr — 1) by, (xy, s)dtds
27[11 Is|<A k:Zl ( )
_ Z f / I (¢ INkr —1)A, (1, 5)ds,
(2m)%n 1 v Isl<A
R dy Z / hoy (X, 5)d.
= (X, 8)ds .
an=5 2 o 2r (Xk
Recalling wy depends only on Ay, ..., At_,, Where my is a fixed integer, it follows

from Lemma 7.1(i) and [f(y,wo)| < T(») (1 + ||wol|?) that

d, < .
ElRpul=C—t ) | E{lfGwol (s weer) }ds
k=1 |s|>A

d, " R
=Cy de‘/ /E{lf(y,wOW(s,wm}dyds
k=1 |s|>A

= [Ty [ B{FmIA ol }ds o

as A — oo. Similarly,

d, -
BiRul<C > [ Blhnolds
k=1 |s|>A

p—
<c=>) d,jI/
n
k=1 |

s|>A

/ |har (v, 8)|dyds

<c / / E {If (v wol [F(s.w,)1 Y dyds — O,
Is|>A

as A — o0. Hence, |Roa| + |Rsa| = 0p(1), as n — oo first and then A — o0. This,
together with (7.47), implies that (7.43) will follow if we prove: for any fixed A > 0,

Rja = op(1), j=1273, (7.48)

as n — oo first and then Ag — o0.
The proof of (7.48) for j = 2 is simple. Indeed, due to the independence between
X10,r and wy, w,, we have

f / iy (7.5) — i (3.5)] s
[s|<A

< /| B f E{If (v, wo) | [ (s, w,)| [e~¥107 — 1| }dyds
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<A / f E {1 (o wo) [F(s. wn)ldyds E xi0, |

> 1/2
< CA[Z(ar+j_aj)2] 2

J=Ao

for any fixed A > 0. This yields that

dil ‘
E[Rul < / D E|hir(xe5) = hor (i 5) | ds
|

2nn s|<A =

dy
<2 [ [~ e sidds
s|<A

k=1 |
o0
<CA [Z(arJrj —Clj)z]]/2 — 0,
J=Ao

as n — oo first and then Ay — o0, as required.
It is readily seen that (7.48) for j = 1 and 3 will follow if we prove: for any fixed

A>0,

d " . ‘

— sup IE‘ Z / IR [V (u, 5) — BV (u, S)]du} =o(1), (7.49)
n [s|<A k=1

d n

Z supE /ei(”_s)xk e "k —1)A,(u, s)du’ =o(1), (7.50)
n \s\sg Z ( )

k=1

as n — oo first and then Ag — o0.
We first prove (7.50). We may write, for any B > 1 and |s| <A,

Z/emxk (e*isxlk.r _ l)Ar(u+S’ s)du
k=1

n

= ( / + / e (€75 1)A, (u -+ 5,5)du
k=1 |ul>B/dy lu|<B/dy

= Aln (S) + A2n(s)’ say. (7'51)

Recalling |f(x,y)| < T(x)(1 + ||y||?), where T(x) is a bounded and integrable
function, we have

supld, .91 = [ [ B{ircemf e}y < o (.52

sup f 1A, (u,8)ldu < f / E{If(t, wo)|f (x w,)| }didx

< fT(x)dx/E{[ff(t,wo)(H||w,||ﬁ)}dt< 00, (7.53)
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— sup/ ’/A (t+s, s)e”vdt‘dy— supf oy (v, 8) |y
<C / f E{If (2, wo) lf (x, w,) | }dtdx < oo. (7.54)

Due to (7.52), it is readily seen that, uniformly for |s| <A and any B > 0,

E|A2(s)| <C sup |4, (u+ss)|Bde E ik,

Jul. 5] <A P
[e.¢]
< CBn/d,[ Y (@re—ap?]"”. (7.55)
k=Ag

To consider Aj,(s), writing Ay, (s) = Ay, 1(s) + Ay 2(s), where
n

Ay i(s) = Z MWRTIkr A (u 5, 5)du,
’ lul=B/dy

n

Atp2(s) = Z /u>B/dk e kA, (u+s,s)du,

then (7.50) will follow if we prove

d,
2 Sup E|A,i(s)] < C(n/d,) /B~ +BA%d,/n, i=12. (7.56)

njsi<A

Indeed, due to (7.51)—(7.56) and 7, := Z,fiAO (ar+k —ap)? — 0as Ay — 00, (7.50)
follows by taking B =1, S

We only prove (7.56) for i =1 as the result for i = 2 is similar. We have

A1 ()] < ZZ /

k=1 j=1 [t|=B/d

=( Z + Z }/ / A(t+5,5)A (u+s,5)ETydrdu |
[t|=B/dy J |ul=B/d;

lk—j|=A3+1  |k—j|<A2

/ Ap(t+5,5) A (u+s,5)E Ty dtdul
|u|>B/d

= an + QZm say, (7.57)
where T} j = ™15 =501k 41ir) Recalling (7.46), it follows that
|E(Ty; | Fo)l
. . . k—Ag . Ao
< [E(eM e ¢~ gt Heoata g L0t Vet | Fo)

. . kv
= |E(e s ¢ g1 (7.58)
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where

Vieqg+Vi—g f1=<qg<knj,
Vg =1 Vivi-g ifkAj<q<kvj—Ao,
0, if g > kvVj— Ao,

satisfying Z;’;l yf < 00. Now, by noting (7.52) and using (7.23), we have that,
uniformly for |s| <A,

Q,<2E ) f / ALt +5.9)A, (u+5,9) | [E(Ty | Fo)ldrdu
i ion2y ¥ 2B/ S ul=B/d;
jZAG+1

<C Y [u-b2+B'd )d;!
I—k=A3+1

<CB™'(n/d,)*.

Turning to consider €25,, note that

E(/ A,(t—l—s,s)ei’xkdt‘ < BJdsuplA, (i +5,5))|
|t|>B/dj, 1,8
n E‘fAr(t+s,s)ei’Xkdt’

< CB/dy+ Cd;! / ‘ / A,(z+s,s)eifydr)dy < CB/dy,

due to (7.52) and (7.53). Uniformly for |s| < A, we have

|24l < Z[ |Ar(u+s,s)|duE\f Ap(t+5,5) Ty

o Db 12B/dy
<y / |A,(u+s,s)|IE’/ A,(t+s,s)ei’xkdt‘du
2 uizsrg 12B/dy
=4

< CBA%n/d,.
Taking this estimate into (7.57), for any fixed A > 0, we have

sup E[Ay,,1(5)* < C(B™" + BAJd,/n) (n/d,)?, (7.59)
[s]<A

yielding (7.56). Then (7.50) is established.
Finally, we prove (7.49). Let oy (¢, 5) = Vi (t,5) —EV,(2,s). Uniformly for |s| <A
where A is fixed, we have

k=1

n o n
= ZZE/ / e_is(xlk*’+ﬂj’r)eim‘+iuxjo‘k(t+s, S)O'J'(M+S, s)dtdu

k=1 j=1
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= ( Z + Z )E/ / eiis(xlk.r*xlj.r)el.[kari“on'k([—I-S’ s)o}(u-}-s’ S)d[du

li—kl=AZ+1  |j—k|<A}
=: R+ Ry, say. (7.60)

Note that oy (¢ + s, s) depends only on €iy, ..., €x_4,, Eor(u+s,5) =0 and
supox(1+5,5)] < C+sup f (¢, wi) | sup [F (¢, wiy,)|
t,s t t
< CA+ [1wil PP + [ wiey PP,
As in the proof of (7.50), it follows from (7.20) in Lemma 7.4 that

Rel< Y |E / / e~ W) G o (1 5) 07 (u, ) dtdlu
li—k|=AZ+1

. ot —is kvj
< Z E // |E[em"+mf s Tt Y8 0y (t+5,5)03(u+ 5, ) | Fo|dtdu
li—kl>A3+1
(where yq/ is given as in (7.58))

—1 42
=C Y gy
li—k|=AZ+1

n/d,, under LM,

- { nlogn/d,, under SM. (7.61)
To consider R,7, let [ (y) = f eor(t+ s, 5)dt. It is readily seen that
1) < FOWOIF (s Wi )|+ E{IF 0w l1F (5, Wi ) |}

< ClIF Gwol A+ [wigr1P) + CE{IF 0 wid I (L + [wiir 1 1P) ],
and by Lemma 7.1,
Eh(x)|* < Cd'E(1+||wi][*) < C1d; "
This yields that
Ral< Y E{LGollixl} < Y. d;' < CAn/d,. (7.62)
li—k=AG+1 li—kl<A3+1

It follows from (7.60) to (7.62) that
d, < _
—EIZ ek ”"“‘v’ok(t—i—s,s)dt|
n

k=1

d,
< C(A(2)+logn)(7)1/2 -0,

as n — oo first and then Ay — oo. This proves (7.49) and also completes the proof
of Proposition 7.4.
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7.4. Proof of Proposition 7.7

Recall (6.14) and that /(x) is continuous with /(0) = 1. It suffices to show that there
exists M = M,, — oo so that, as n — oo first and then ¢ — oo,

— Z ( )Z () K (tr) 1, er = 0p(1), (7.63)

r=q+1 k=1

where uj(=u1;) =Y o o Wikj_; for some mg = mo(n) — oo and mo = o(v/n/d,).
To this end, as in (7. 45) and (7.46), for Ag = my+ 1, we write

Xietr — Xk = X1k, r + X2k, rs

where, by using the notations a; = Zi:o ¢s witha;=0if I <Oand y; =a,; —a,

—Ap k—Ag
Xlkr = § [arfj a—j €j+k— E Vi—j€j E Yik—j€j»
j=—o00 j=—o00
0
Xok,r = E lar—j —a—jl€j i+ E Ar—j€jtk-
J=—Ap+1 J=1

Recall that K (x) = ﬁ f e K (t)dt under the condition (a). For any r > 0 and /, > 0,
we have

n—r

ZK(xk)K(karr) Ul UL k+r
k=1

n—r

=5 K(xk) Uy U k+r/ K(s)e %+ ds 4 Ly,
27[ k=1 [s|<ln

= L1, (r) + Lon (r) + L3, (1), (7.64)

where, with Vi (s) = e ™% uyuy or,

l n—r A y
Lin(r) = o ZK(xk) Uik Ml,k+r/ K(s)e is+r ds,
k=1 |s|>1,

1 A .
Ly, (r) = Z ZK(XI‘)/ K(s) e~ SCtx1k ) EVi(s)ds,
k=1

Is|<ln

Ly (r) = % > K (x) f K(s) e 80160 [V (s) — EVi(s)] ds
k=1

Is|<ln
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Using Lemma 7.1(1) and f|k(s)|ds < oo, for any my — oo satisfying my =
O(n/d,), there exists M| = M},, — oo so that, whenever [, — oo,

M
d,
- IE’|Lln(r)|
n

r=q+1

3my

coy b [ZEWM wlt Y] [ ikos

r—q+l 3mo+1 Is1>In
<CM, / |K(s)|ds — 0. (7.65)

[s]>1n

To estimate L, (r), let Z,(y) = ]E[K 6% +x20,,)u10u1,]. It is readily seen that E(y)
is bounded and integrable. Furthermore, using (7.33) in Lemma 7.7 with minor
modifications, we have

mgy - mg

)] < D3 [E[KG+x0 0w vk
=0 v=0
Sy if [r—v+I <1
=C gl Il . - ) =5
;2; ' Zg 0|¢S|Z+’|¢s||<d 3473, if r—v41 > 2,
mgy r+l+1 my  mg
SCZHWZ” Z ||1/fv||d;1+CZZ11/2”1/,1”v1/2||wv||d;3/2
=0 v=r+i-1 1=0 v=0

< Cr_ldr_1 +Cr3? < Cr_3/2,

uniformly in y € R, where we have used the facts that d-!' < Cr~!/? and
S o losl S bl (d? + r73) < CvV/2 12732 under both SM and LM and

szovllwvl| < o0o. Now, by noting that EVi(s) = EVy(s), sup,E|Vi(s)| <
Elujguy,| < C < oo and

n () = /K(s) e EVy(s) ds,

standard calculations, together with the Holder inequality, show® that

d, .
—]E|L2,,(r)|<—ZE (xt) | (xk+x1k,)|]+C ZEK () / |K (s)|ds

=1 =1 IsI>1n
[ X:]EK‘V3 X ] [ Z]E|h (e + X1k ) | ]

+C / K (s)|ds
[s|>1n

8Note that xx + x4, = Zjli_oo ag—jej where ay—j = ag—j+ yi—jI(j < k—Ao) if j > 1 and ay—j = ar—j — a—j + yr—j if

j<0,and Zj__oo ~j2 = d2 Lemma 7.1 still holds when the xy is replaced by xx + X1, .

https://doi.org/10.1017/50266466624000276 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466624000276

A GENERAL LIMIT THEORY FOR NONLINEAR FUNCTIONALS 49

sl [ k0D [ fwla) e [ ko

[s|>1,

<crf4cC f K (s)|ds.

s]>1n

As a consequence, for any /, — oo and M; — o0 as given in (7.65), we have

d Ml Ml
=3 Bl <C Y r—9/8+CM1/ K (s)|ds
n

r=q+1 r=q+1 Is1>1n

<Cq '+ M, K (s)|ds — 0, (7.66)

[sI>1n

as n — oo first and then g — oo.
We finally estimate L3, (r). It follows from the Fourier transformation that

1 n—r . . . ]
L, (r) = G Z / | K(—)K(s) =% e 1kr [Vi(s) — EVi(s) ] dsdt
k=1

s|<ln

=— K(5) L, (s, r)ds, (7.67)
27 Jysi<iy

where £,(s,r) = Y _} [ K(—1) =% e=51r [V (s) — EVi(s) ] dt. Let oy(s) =
Vi (s) —EVi(s). Uniformly, for |s| < [,, we have

EL2(s,r) = E| Z/k(r—i—s) ei“"”vs’”"v’ak(s)dt|2
k=1

= Z Z E / f K(t45) K(u+s) eSO 40100 o015 6y (6) o5 (5) dtdu

k=1 j=1

=( X + X )E f / R(t+5) R(uts)emiswnrtnn

li—kI=AZ+1  |j—k|<A3
x "% gy (s)0;(s)dtdu

=: Ry1 () + R2(s). (7.68)
Note that oy (s) depends only on €, ..., €—a,, Eor(s) = 0 and

sup ok (s)| < C(1+ |upi] 11, gesr])-
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As in the proof of (7.50), it follows from (7.20) in Lemma 7.4 that

Ra < Y ’E//e—is(Xlk.r+X1j.r)eitxk+iuxjgk(s)o'j(s)dtdu’
li—kl=AZ+1
7 iux—is Y57 yle

< Z E// |E[eztxk+uuj ‘Zfl=/l Yq qO'k(S)Gj(S) | ]:():Hdldu
li—k|=A3+1

(where y; is given as in (7.58))

<C Y dld A+l

li—k|=AZ+1

n/d,, under LM,

=C+lsh { nlogn/d,, under SM.

(7.69)
As for R,»(s), by recalling K(x) = ﬁ fIA((t)e”xdx and Ag = my+ 1, we have

Ro(s) < Y E[K(x) K(x)suplo(s)|suploj(s)|]

li—kl<AZ+1
<G Y d;' <Cmjn/d,. (7.70)
li—kl<AZ+1

It follows from (7.67) to (7.70) that, for any [, — oo satistying [, = o(s/n/d,) and
mo = o(y/n/d,), there exists M, = M, — o0,

M
d,
= 3" ElLs(r)]
n

r=q+1
< CM, sup IE|[,,,(s, r)| |k(s)|ds < CM,; sup [E[,ﬁ(s, r)]l/2
s|<ln [s|<ln [s|<ln
dy
< CM[1,(1 +1ogn) +m3]* (Z2) % > . (7.71)
n

By virtue of (7.64), (7.65), (7.66), and (7.71), for any M = M,, — oo and M, <
min{M,,,M>,}, we have

n—r

d, &
?rzqzﬂe (5)E| ;K(xk)K(ka)ulkul_m

d, 2 cd, &
<c2 E|L, E|L,, z E|Ls, 0,
< nr;( L) |+ ElLay (1)) + = g;l L3, (r)| —

as n — oo first and then ¢ — oo. This proves (7.63) and completes the proof of
Proposition 7.7.
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A. APPENDIX: PROOFS OF LEMMAS

A.1. Proof of Lemma 7.2

The idea of the proof is similar to that of Wang and Phillips (2011, pp. 246-247) and the
following outline is provided here for completeness. We first prove (7.13). Write Q| =
Q1 (1) (22, respectively) for the set of 1 <v < k such that |[tay + By > 1 (Jtay + By] < 1,
respectively), and

By = Z ayBy and Bz = Z ,33.

ven veS2

Since B% < Biy B3 by Holder’s inequality, we have

> (tay+ ) =Bl +2tBy+ B3
qeS

= Bix(t+B2/Bi)” + (B3 — B3 /B1y) = Bix(1+Ba/B1)”.
On the other hand, there exist constants y| > 0 and y, > 0 such that

e, if|ll=1,

]Eeiéll < )
| = el it <1,

(A1)

since Ee; =0, Eelz < oo and €] satisfies the Cramér’s condition due to [ |Eeif€0|dr < oo
(see, e.g., Chapter 1 of Petrov (1995)). Without loss of generality, assume o 7% 0 and
let g(t) = Eéi™1€0, From these facts and the independence of ¢, it follows that, for k
sufficiently large and all ¢,

k
B0 < |g] [T mefrteatho)

q=2
<lgWlexp{—n# Q) —y2 Y (ten+5)?}
VEQZ
< |80l exp{ - y1#(Q1) — 2 Bk (t+B2/B1p)*}. (A2)

Hence, by recalling (7.12) and |B>| < Zl‘le |y By, simple calculations show that
fmin{l,sl 1t1° + 52} [E e O |dr

<

ls(0leVdr+C / (51 [£]® + sp)e™ 72 Bk (+B2/Buo? gy

-/#(Ql)zﬁ #Q)<Vk

< ce VK4 Csy /(|t| + |Bz|/Blk)“e*V231kf21(B]k > m%)dt

_ 2
+Cs2/e 2Bty zm%)dt

k
<O st [m 70 m T (Y e Bul) ]+ s2m ).

v=1
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Result (7.13) now follows from the fact that
k k

k k
Slew il < (1) 218072 < om (Y 1802) .

v=1 v=1 v=1 v=1

The proof of (7.14) is similar and hence the details are omitted. We finally prove (7.15). In
fact, by recalling B%/Blk <B3<a,ie, By/Bi < al/z/mk due to (7.12), it follows from

(A.2) that
/ |E e |dr
|t|>B/my
S/ |g(t)|e_‘/Edt+C/ e—)’zBlk(H‘BZ/Blk)zdt
#(Q=Vk #(Q)<Vk, |1|>B/my

<cak3 +/ e BUL (B > md)d
1112271 B/my
-3 —1p—1
<Ck+m'B7Y,

as required.

A.2. Proof of Lemma 7.3

Let Vi (f) = Zﬁ:k—mg—i—l (tay, + By)ey. Note that

|]Eeiz’<(t/h)g(t, wp) | < ‘EeiZkme(t/h)| !Eeivk(’/h)g(l" wi) |
<Elg(t,wp)l[Ee%mo /],

It follows from (7.13) with s; = 0 and sp = 1 that

f |E &M g (1, wy)|dr < Ch f [Ee“-m0®|ar < ch (k=3 + 171,

yielding (7.16). Similarly, by noting that

|EV U gt wp) | < |E@VEOD — Dg(t,we) |+ [Egt, )|
< 2min{1,axo |1]/h+ Bro}E {leollg(t. w)| } + Cmin{1, |2}
< CBro+ Cmin{l, ayq |t|/h} + Cmin{1, |z|}, (A3)

we have
/ |E {eiZk(T/h)g(l’ Wk)} |dl
<cC / min{1,ago7l/h} | &Sm0 /M |ds 4 Cpy f | Eefkmo /1) | gt

+C/min{],|l|}|Eeizk—mO(t/h) dt

k
< Ch{(l—f—ako)rk_z[l+(Zﬁ3)1/2]+ﬂkork_1},

v=1
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as required in (7.17). As for (7.18), by noting that
|Ee/VEUM o(1,w) | < € Bro+ Cmin{1, 1]} + Cmin{1, |1 /h),

due to (A.3) and supy agg = O(1), it follows from (7.13) and (7.14) that
fmin{l, lt]/h} |E {5 UM g (1, wy) } | e
< Cho / min{1, |1 /h}| B¢ /M |q1 4 € / min(1, (|¢]/h)2}| EeS=mo @/ |4y
+C/min{1,|l|}min{l,|t|/h}|EeiZk—mO(t/h) |dt
k
< Ch{k 3+ [Bro 2+ D+ 731+ Y 82))-
v=1

This proves (7.18).

A.3. Proof of Lemma 7.4
We only prove (7.20) and (7.22). The other proofs are similar and simpler. Note that

k k J 0
Xk = Zplr:_j ";:j = sz_/(Z‘F Z )€u¢j7u
j=1 j=1 u=1 u=—00
k e
= qu Af—y + Ze—ubu,kv (A4)
u=1 u=0

where aj_, = ZI:;(’; k== ¢ and byx= Zle k=3 ¢ty Tt follows from the indepen-
dence of the ¢; that

[Tk, 1(m)|
is 3K - 1 ! -
S//|E{eléZu:m+1Clkfva//’H'lth:erl(llfvév//’H'le:m#»lyjéjg(S,Wk)g([,wl)}|dsd[
-l
(A.5)
where

-k
A(l‘,k) = / |]E {elZv=m+l (Sak—y/h+taj_, /h+yy)ey g(S, Wk)} |dS

As in Lemma 7.2, denote by 2| a subset of Q = {m+1,2,...,k} and Q, = Q — ;. Note
that, for any k —m > 1, ZVGQZ a]%_v = d,%_m whenever #Q21 < +/k —m. It is readily seen
from (7.16) with oy, = ay_,, and B, = ta;_,,/h+ y, that

Atk) < Chd ! . (A.6)
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By similar arguments, it follows from (7.17) with o, = a;_,, and B, = y, that

/ |E [eiZizkH(lal,v/h+y‘,)ev gt Wl)} | dt

!
< (-0 vapd 3 [1+( Y v2)' 1+ pod )
v=k+1

< cnld; (1 +a"?) + d; L, (A7)
where a = Zl —1 yv2, Bio = maxg<j<m, |71—j| and we have used the fact:

o= max |oj_;|= max |ag;| =0().
0<i<myg 0<i<myg
It follows from (A.5) to (A.7) that

-/
T/ (m)] < Chd]:_lm / ’]EelZv=k+l(ml—v/h‘i’yv)fvg(t,wl)|dt
scr?d! [dAa+a ) +ppd L],

implying (7.20).
The proof of (7.22) requires some modifications. First notice that, under SM, we have

At,k) < Ch[(k—m) ™"+ min{1, 1] /h} (k—m)~1/?], (A8)

rather than (A.6). Indeed, under SM, it follows that:

(@) A(t,k) < Ch(k—m)~"/2 by (7.16) and, for any € R,
(b) A(t,k) < Ch[(k—m)~" + [t|/h(k —m)~1/] by (7.17) with &, = ay—, and B, =
tai_y/h+ v //n,

implying (A.8). Now, by using (A.5) first and then (7.17) and (7.18), we have
g, 1(m)|

< Ch(k_m)—l / ’]E{eiZ{.=k+1(l‘a[—v/h"r}’v)Gv g(t, Wl)}‘dt
+ Chk—m)~1/2 / min{1, 1]/} | { vmker (/11 g1 )Y |t
<R~ h=m) (=732 ke —m) =12,

which yields (7.22).

A.4. Proof of Lemma 75

We only prove (7.25). The other proofs are similar and use the corresponding results in
Lemma 7.4. Recalling (2.4), we may write

1

i (h) = (27_[7)2

/ / Pt wif (s, wy) e/ h gl e 6/ gy (A9)
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It follows from (A.4), the independence of ¢; and (7.20) with y; = u;/ J/n and g(s,wg) =
f (s, wy) that

|E [ (h) | Fon]|
. . ! R n
- (21)2 //E (elSXk/h+lfxl/h++le:m+1 ujej/ﬁf(s, WOl (6w | fm)dsdt
v/

< CR 4, (45 +dii/ V),

as required.

A.5. Proof of Lemma 7.6
Recalling (A.4), as in (A.9), we have

[E{fa/mwnE[f Ga/hwe) | Fiom]}|
= [ [ e s Sl 501 ] s
o] [ g

E[e(islf1 Yk areve it Y AUy (s, w) |dsd

1 .
<C / |E{ezth Zv:kal—vevf(_h Wl)}|A(t, k)dt,
where, by letting a;"iv =0ifk—m+1<v<kand a;"iv =aj_, if | <v <k—m, we have

A(t,k) = / |E [eiZ{{:l(mk—v/h+m}k,v/h)€v]?(s’ Wk)] |dS.

The remainder of the proof is the same as that of Lemma 7.4 and is omitted.

A.6. Proof of Lemma 7.7

Take Ag as required in Lemma 7.1. Recalling K (x) is bounded, (7.30) follows immediately
from Lemma 7.1(1). If k > Ay, [ —k > Ag, and [ —j < k, it follows from Lemma 7.1(ii) and
the conditional arguments that

I:= [E{T Ou—) T (1—j) K G /) K (/) }|
< E{IT G—) T (i) K i/ W) | [E[K (/1) | F ]

< CEr?(unta ' a},

J

indicating (7.31).

https://doi.org/10.1017/50266466624000276 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466624000276

56 QIYING WANG AND PETER C. B. PHILLIPS

We next assume that k > Ay, [ —k > Ag, and [ —j > k. Recalling (A.4), as in (A.9), we
have

I =// |E{e”x1/" ef“k/"r(xk_j)F(A,_j)}||f((—s))| \R (=1)|dsdt
- 1
< C/ |E {e’th Dy ey r(}‘l—j)l | At k)dt,
where
S/ ‘IEI {eiZ{Ll (sag—y/h+taj—y/h)éy o —i(sex—jbj—k k/h+1€1—kbi—k k /h) F()»k—j)} |ds,
At k) = ifk—j<0,
[|E [ei Yo (st /Aty /1)y r(xk_j)] \ds, ifk—j> 1.

It follows from arguments similar to those given in the proof of Lemma 7.4 with some minor
modifications’ that:

(a) under LM, A(t,k) < Chd; " and

j
r1<chd! [ |E{e" Smave vy < S I 2 d d 72
k J k “l—k

s=0

(b) under SM (noting |bj_pym| < Z’l::j;mld)il < C < oo for any m > 0 and
maxji<y<k lay| < C < 00),

Atk) < / |E {eiZ]fr:l.v#k*j(Sak—v/hﬁ*lal—v/h)ev }| (min{l, s|/h} + min(1, |t|/h})ds

< Ch (k™" +min(1, |¢|/h}k~ ")
and

1<Chk™! / \E{e"fh*‘fo:k”lfvar(m-j)}ydt

k2 [ mingt i m) B [ Zeke 0 a
<CR kY= k- k)2

This proves (7.32).
Similarly, by letting zp, = Y ;_; kst-r—j €kar—k, we have

|E{T (T (_p)er/M}|

1, if [r—j+k| < Ao,

< C|Eéser/h { . . .
=¢| | |aj||ar+k—ak|mm{1,|s|2}, if [r—j+k[ > Ao,

9Replace my by j, set y, = 0 and take m = 0. In this case, oo used in (A.7) satisfies
J
®jp = max |o—;| = max |a;| < s
10 = max la—| = max [a;] < Zolm
s=

which can not be eliminated.
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implying that, uniformly for y € R,
|E{KG+x1/MT G- T (—p) }|
< / REDI[E{™/ T (TG ds

-1 e
=Ch dlj’ I+k -3, -3 %f” {+kI§AO’
I losl S Il 163 +173), i 11— j+kI > Ag,

as required in (7.33).
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