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Abstract

Microscopy is a widely usedmethod in biological research to observe themorphology and structure of cells. Amongst
the plethora of microscopy techniques, fluorescent labeling with dyes or antibodies is the most popular method for
revealing specific cellular organelles. However, fluorescent labeling also introduces new challenges to cellular
observation, as it increases the workload, and the process may result in nonspecific labeling. Recent advances in deep
visual learning have shown that there are systematic relationships between fluorescent and bright-field images, thus
facilitating image translation between the two. In this article, we propose the cross-attention conditional generative
adversarial network (XAcGAN)model. It employs state-of-the-art GANs (GANs) to solve the image translation task.
The model uses supervised learning and combines attention-based networks to explore spatial information during
translation. In addition, we demonstrate the successful application of XAcGAN to infer the health state of translated
nuclei from bright-field microscopy images. The results show that our approach achieves excellent performance both
in terms of image translation and nuclei state inference.

Impact Statement
Fluorescent images reveal information that cannot be revealed from bright-field images. Fluorescent image
acquisition is a well-established technique but also complex. It requires sample preparation and can be time-
consuming and error-prone. We present an image translation method based on deep learning which allows for
revealing concealed information in bright-field images. The method has a high working efficiency, and whose
speed of translating a fluorescent image (512×512px2) from a bright-field microscopy image stack can be less
than a minute using publicly available Python libraries (mainly PyTorch) on mid-range, consumer hardware. In
addition, our model is also able to infer the “health” state of nuclei from bright-field microscopy images
simultaneous to the image translation process. Our method presents an alternative method for fluorescent image
acquisition in biological research, for instance, where fluorescent labeling is not possible.

1. Introduction

Microscopy is a fundamental method for visualizing and interpreting cellular structures and processes
invisible to the eye. Since around 1280 AD, the field of optics has evolved to go beyond the limits of
human vision, eventually leading to the creation of simple single-lens microscopes(1). Scientistcs’
understanding of light, optics, and materials has improved throughout the centuries and have brought
forth far more powerful imaging technologies such as confocal laser scanning, fluorescent, electron,
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X-ray, and even acoustic microscopy(1). Some cellular micro-structures are concealed in transmitted-light
images, such as those acquired via bright-field, differential interference contrast (DIC) and phase contrast
(PC) imaging. Fluorescent labeling can compensate for this limitation by highlighting specific cellular
structures and can allow for their real-time tracking. The principle of fluorescence can be summarized as
follows: electrons absorb energy from a photon (such as provided by the light source/laser beam),
electrons become excited and rise to a higher energy level, and finally, the electrons lose their energy
(as visible light) and return to their original energy level(2). Materials that display fluorescent properties
are classified as fluorophores. Fluorophores can consist of fluorescent chemicals (e.g., nuclear dyes such
as DAPI and Hoechst) and fluorescent proteins (e.g., green fluorescent protein [GFP]) bound to
antibodies(3,4). Additionally, some endogenous biomolecules such as the coenzymes: nicotinamide
adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) display fluorescent properties(3,5).
Fluorescent imaging is especially useful in the study of the nucleus or DNA as it is very difficult to observe
DNA with traditional light microscopes. This can be remedied by staining it with Hoechst or DAPI,
fluorescent chemicals specific in binding to DNA. The Hoechst stain is the preferred choice as it provides
greater cell permeability and is less cytotoxic to cells compared to DAPI. It is excited by UV light (~350
nm) and emits blue light (~460 nm)(3,6). Therefore, Hoechst is incredibly useful in studying nuclear
morphology during apoptosis.

Apoptosis, referred to as programmed cell death, is a mechanism within multi-cellular organisms that
occurs during embryonic development (formation of body parts). It controls the cell population, that is, by
removing aged or unhealthy cells. It is also extremely important in destroying cells that have become
infected or damaged by harmful agents, to prevent them from influencing the rest of the organism(7). The
morphological features of apoptosis entail cell and nuclei shrinkage (pyknosis), followed by the
breakdown of nuclear material into smaller fragments (karyorrhexis). Finally, the organelles, DNA
fragments, and cytoplasm are deposited into smaller membrane (apoptotic) bodies which break away
from the main cell body (budding or blebbing) and are destroyed by the host’s immune cells(7). Whilst
fluorescence imaging is a powerful technique, the disadvantages of following these events in live cells are
also prominent. Fluorescent nuclear stains including Hoechst, bind to the DNA and as a consequence
prevent DNA replication during cell division, essentially ending the viability of the cells(8). Phototoxicity
is also increased during live cell fluorescence imaging. As the cells are exposed to high intensities of light,
the fluorescent labels produce reactive oxygen species in their excited states, which in turn damages the
structure and functionality of critical biomolecules(9). Additionally, fluorophores can eventually become
irreversibly damaged if they are not imaged correctly or for an extended period, referred to as photo-
bleaching. It has been recommended to employ the optimum imaging parameters, spend minimum time
searching for perfect images, and remove the oxygen from themedium. Regardless, all of these factors are
still genuine limitations experienced by users of fluorescence microscopy(10). Studies on apoptosis
generally start with healthy cells imaged under optimal conditions. Such conditions need to be established
first and could already introduce cell damage. The onset of the apoptotic process can then be induced by
the addition of drugs or other stressors. Together with the time needed to prepare the samples (including
repeats), which can be time-consuming, the whole process of fluorescence imaging can lead to the
introduction of artifacts and ultimately failure of the experiment. To overcome these drawbacks,
researchers have started to explore the latent information hidden in the bright-field images to simulate
the fluorescent images using computer vision technologies. Up to now, there have been very few
conventional methods for fluorescent image translation, the reason being that the amount of latent
features within images is too big to be extracted manually, and it is even harder to align features between
the two image domains.

The rapid evolution of machine-learning techniques provides new opportunities for applying image
translation in this area. The first image translation method was implemented by Christiansen et al.
in 2018(11). They established a model based on deep learning that reliably predicts labels from
transmitted-light images. Deep learning is a machine-learning technique that specifically uses deep
neural networks(12,13). In the field of image processing, it was first adopted for image classification and
segmentation(14,15). Deep convolutional neural networks (CNNs) are employed to extract useful and
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unapparent information from images automatically, circumventing the problems of manual feature
extraction. The work of Christiansen et al. determined that there were strong relationships between
bright-field images and the corresponding fluorescent images(11). The idea of translating a bright-field
image into a fluorescent image using deep learning is thus feasible.

The generative adversarial network (GAN) is one of the most popular neural networks and has been
widely used in image translation tasks(16–19). It has the advantage of solving the blurring problem that
generally occurs when generating synthetic images(20). GANs were recently introduced in fluorescent
image translation and showed significant advantages in generating multiple channels of fluorescent
images simultaneously and predicting sub-cellular structure details(21–24). In some existing work, each
channel of the output represents a specific labeling result with a different stain or dye derived from a single
bright-field image(21–23,25). For nuclei belonging to the same species but in different states, such as the
instance shown in Figure 1, previous approaches would have difficulties in distinguishing between the
different states of the nuclei, one such example of this is shown in Section 5. In this work, we propose a
novel deep-learning model based on a conditional GAN (cGAN) aimed at translating bright-field images
to fluorescent images with simultaneous nuclei health state inference. In addition, we extracted the spatial
dependency information from the state inference process and used it as supplementary information for
image generation. Inspired by self-attention mechanisms(26,27), which have been used for calculating
long-distance spatial dependencies during image generation, attention-based modules were included in
our model for learning spatial dependencies. The attention-based modules take feature maps from both
image generation and segmentation paths and feed them into the classification mechanism, a process
referred to as cross-attention.

Following this general introduction to the subject, in Section 2, we set the scene by introducing
previouswork on fluorescent image translation using deep learning and in particular, approaches based on
GANs. We also describe the attention network mechanism. In Section 3, we elaborate on the architecture
of our model, including specific details of the generator and discriminator. Section 4 introduces the

Figure 1. Information comparison between bright-field light microscopy (left) with fluorescence light
microscopy (right) of the same cells. Green boxes indicate zoomed areas of healthy nuclei and magenta
boxes indicate apoptotic nuclei with yellow arrows pointing to the position of the cells in the overview

images.
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methodology, including the biological experiment, microscopy image acquisition, image pre-processing,
and other preparation work for model training. Section 5 presents the experimental results. Section 6 is the
ablation study. Finally, Section 7 concludes the article.

2. Theoretical Preliminaries

2.1. Image translation using convolutional neural network

In silico labeling (ISL) was one of the first published deep-learning approaches that could determine the
correlation between transmitted-light microscopy images and fluorescent images(28). It succeeded in
predicting the location and intensity of nuclear labeling on bright-field images with good accuracy. The
fluorescent images generated by the ISL model could be used in quantifying the dimensions of cellular
structure and classifying the physiological state of cells(11). Specifically, the ISLmodel performed the task
of pixel-to-pixel classification and Christiansen et al. used a z-stack image, consisting of z slices of bright-
field images, as the input for multi-channel fluorescent image prediction. The model was inspired by the
popular U-Net(29) and inception networks(30). For each translation, five image patcheswere cropped out of
the input bright-field image stack with different side lengths at the same centroid location and simultan-
eously fed into five independent input computational heads of the model, respectively; the outputs from
the five computational heads were concatenated together and transmitted to the final prediction compu-
tational head of model to synthesize the fluorescent images. As each input computational head processed
one side-length area, it allowed the model to learn spatial information from multiple spatial extents. The
other special point of this network was that it was composed of repeated modules; the mutually
independent modules had the same architecture but different parameters that controlled the number of
hidden convolutional kernels. The ISL model implemented the translation piece by piece. A stack of
bright-field image patches with 250×250px2 was fed into the model. The ISL model predicted an 8-bit
gray-scale image, where each unique gray-scale value had a probability. For each pixel, these probabilities
were represented by a 256-element vector. Such a process ensured accuracy; however, it sacrificed
computational efficiency, as the model was large and the parameters for each repeated module were hard
to tune(11).

Soon after the first trial for fluorescent image translation, Ounkomol et al.(22) proposed their work for
label-free prediction of multi-channel immuno-fluorescence (IF) images from 3D transmitted-light or 2D
electron microscopy (EM) images. As EM images contain plenty of sub-cellular structure information,
this model was capable of presenting more intracellular details. The model can also automatically register
EM images on large target IF images. The model for label-free prediction was a CNN based on the U-Net
architecture. It contained down- and up-sampling substructures with shape concatenation processes.
Compared to an ISL model, its architecture was much more intuitional and close to the initial U-Net
architecture(22).

2.2. Image translation based on generative adversarial neural network

Image translation approaches with deep learning have gone through a breathtaking evolution in recent
years. The initial attempt using CNNs was an impressive achievement, but its results tended to be blurry.
This was because the loss function wasminimized by averaging all plausible outputs(20). To overcome the
disadvantages of the blurring issue, the generative adversarial neural network (GAN) was pro-
posed(16,31–33). The basic concept for GAN was adding another CNN to the generative model for
discriminating whether the output is real or fake. This adversary system was trained together and
encouraged the generative network to produce more convincing results and prevent the outputs from
being blurry.

The original GANs generated outputs from random vectors(34,35); however, subsequent variants have
since been derived. For example, Li et al. employed CycleGAN(18) for unsupervised content-preserving
transformation for optical microscopy (UTOM)(21). CycleGAN employed two generators to transform
images between two domains back and forth, respectively, and two discriminators were used for
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penalizing whether the generated images belong to each domain; images transformed forward and then
transformed backward should be the same. One speciality of CycleGAN was that images from the two
domains did not need to be corresponding, so it allowed for unsupervised translation(18). Meanwhile, the
UTOM model used a saliency constraint to maintain the saliency within the images unchanged during
transformation to avoid distortion of content. Generators in UTOM had the same number of input and
output channels to simplify the transactions. It was shown that UTOM achieved comparable performance
to the supervised CNN model without having any paired training datasets. However, the training dataset
for UTOM was larger than the supervised model, otherwise, the accuracy of translation would be
limited(21).

UTOM achieved a great performance for image translation, but the limitation of the dataset could not
be neglected. Therefore, amodel that combined the advantages of supervised learning andGANs could be
another solution. cGAN was a promising approach suitable for tasks with limited but paired datasets(36).
The discriminator in cGANs not only judged whether the outputs were real or fake but also determined
whether the inputs and outputs were consistent. As a supervised learning process, the loss of the generator
was a combination of the discriminating result and the distance between the outputs and ground truth.
Isola et al.(20) proposed an image-to-image translation model with cGAN. The model succeeded in image
generation from sparse annotations, future frame prediction, or photo reconstruction. Their generator for
cGANswas inspired byU-Net(29), and the discriminator used a specially designed “PatchGAN” classifier
to enhance the spatial penalization(20,37). This approach was widely used as the benchmark for style
transfer of cellular images(38).

Based on the concept of cGAN, Han et al.(39) produced a model for cellular image translation. The
model was established for the DIC to PC transition. The only difference in the architecture from the
original cGAN model was the model took the predefined cell masks as additional inputs and the system
consisted of two discriminators, one for DIC–PC pairs and one for mask–PC pairs. This model showed
that the generator performed better compared to only DIC images for inputs.

After the success of applying cGANs in microscopy image translation, Nguyen et al.(23) designed a
complex systemwith multiple cGANs applied onmicroscopy images taken from breast-cancer and bone-
osteosarcoma cell lines. The system implemented not only the transformation of images from fluorescent
images to PC images but also the interpretation between different fluorescent channels. The architectures
for each translation model were basic pixel-to-pixel image translation networks introduced in the work of
Isola et al.(20), and they implemented a novel algorithm for evaluating the generated result. Their work
achieved great success in the prediction of subcellular localization of proteins with other proteins on well-
registered images. It proved that a cellular image translator based on cGAN was an effective tool for
studies about relationships between proteins and organelles and to visualize the subcellular structure(23).

Lee et al. provided the DeepHCS++ model for the fluorescent image translation task(40). The
architecture of the DeepHCS++ model consisted of two parts: transformation and refinement networks.
The transformation network was similar to the label-free model of Ounkomol et al.; however, instead of
using one up-sampling decoder for multi-task learning, three independent decoders were applied to
produce three channels of fluorescent images, respectively. The intermediately produced fluorescent
images were then fed into three U-Net shape refinement networks for the final predictions. Conditional
adversarial loss calculations were only applied to the final output images rather than intermediate
products. Results showed that the performance for translation-refinement networks was better than single
translation networks(40).

2.3. Attention neural network

Images generated by GANs derived from lower-resolution feature maps and higher-level details are
calculated with spatially local points. This process has a significant limitation as it only takes spatially
local information for calculations(27,41). However, the ISL model showed that the translation required
information frommultiple spatial extents of correlated bright-field images, which iswhy it took five scales
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of inputs. Fortunately, self-attention GANs (SAGANs) provided an approach for long-range dependency
modeling for image generation.

Self-attention mechanisms allowed for computing dependencies within a single sequence without the
restriction of position(26,42,43). It had been successfully used in sequence-to-sequence processing such as
reading comprehension, textual analysis and language translation. This approach can be transferred to
spatial analysis in image processing(44). Zhang et al. proposed the SAGAN, which aimed to calculate the
dependencies of one position on all others through feature maps. The result showed that the SAGANwas
an effective model for the calculation of long-range dependencies and upgraded the qualities of output
images(27). Besides, SAGANs applied spectral normalization(45–47) to the generator and discriminator to
enhance the stability of GAN training. Themechanisms of SAGANwere introduced in our model, further
details will be elaborated in the next section.

3. Proposed Approach

The framework proposed in the translation task relies on a cGAN. Similar to the basic GAN network, it
also includes a conditional generator system for image translation, in conjunction with a discriminator to
evaluate its outputs. Both generator and discriminator are composed of a series of sub-modules. What is
different is that the generator contains two generation paths: one for image translation and one for nuclei
segmentation. Thereinto, nuclei segmentation is implemented by producing masks for nuclei with
different health states. Attention modules in the network are used for transferring information between
the two generating paths within the generator. The module is based on self-attention mechanisms, and we
refer to it as the cross-attention module. Because of the dual-output generator, the loss function consists of
a weighted combination of both paths.

3.1. Generator

The architecture of the generator is inspired by the U-Net(29) and ResNet(48) networks. U-Net was the first
network designed for biological image segmentation. It contains an encoder–decoder system linked by
skip connections. The encoder consists of a down-sampling process to transform the images to feature
maps with more channels but smaller sizes; on the contrary, the decoder is an up-sampling process that
transforms the intermediate feature maps to the output size. Intermediate outputs from the encoder are
concatenated to the decoder which enhances spatial accuracy. One difference in our model is its two
independent generation paths for image translation and nuclei semantic segmentation. Each channel of the
image translation output represents one health state of the nuclei, meanwhile, the nuclei segmentation path
provides binary masks for each state or background. The generator is constituted by a series of sub-
modules, and each sub-module corresponds to one down-sampling or up-sampling process. Additionally,
there is one bottleneck module to connect the encoder and decoders. Figure 2 shows the structure of the
sub-modules. Skip connections for residual learning are employed in the sub-modules to enhance the
robustness of the model. Each sub-module contains three parts, a shape-invariant convolutional layer, a
sampling convolutional layer, and a residual connection(48). The final activation function layer for the
image generation decoder is Tanh to restrict the range of image values between�1 and 1. The output of the
mask generation process is sent into a SoftMax function to calculate the probability of pixels belonging to
each category. The output of the mask generation path has one more channel than the image generation
path, which is for the background probability prediction. Finally, the image generation outputs are
multiplied by the probability results from the segmentation path to produce the translation result. Details
of the architecture of the generator are shown in Figure 3.

3.2. Attention-based module

Attention algorithm-based modules are utilized to learn long-distance spatial dependencies. They are
inserted between the decoders to exchange spatial information during image generation. The initial
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attention algorithm module is self-attention which calculates the spatial dependencies within the feature
maps themselves. However, we want the attention module to also share the spatial dependencies between
two generation paths. As our attentionmodule derives from the self-attentionmodule, wewill describe the
structure of the self-attention module first, and then compare the improvement of our attention-based
module. The self-attention network is presented in Figure 4a, and the processing steps are listed below.

1. Send the input feature map stack into three 1 × 1 convolutional layers and reshape the outputs into
1D sequences, q, k, and v.

2. Calculate the attention of feature q and k.
3. Feed the attention output into a SoftMax activation function.
4. Calculate the attention of the SoftMax output with feature v.
5. Reshape the 1D sequence back to the original shape.
6. Send the feature into another 1 × 1 convolutional layer to keep the self-attention module output the

same shape as the input.
7. Add the self-attention output back to the feature map stack andmultiply with a learnable parameter.

In our model, our aim is to share the spatial dependency information from both generation paths.
Therefore, we extract hidden features from both generation paths using in Step 1, (qimage, kimage, and vimage
from image feature domain; qmask , kmask , and vmask from mask feature domain). Our attention module
contains two self-attention calculation pathswhich remain the same as the self-attentionmodule; at the same
time, hidden feature qimage (from the image path), kmask and vmask (from the mask path) are sent to
the algorithm from Step 2 to Step 6 to measure the correlation between decoders. This process is similar to
the work in by Hou et al.(49). These are concatenated with the image self-attention outputs and sent to the
next layer in the image generation path. As previous work proves that a U-Net with one encoder–decoder
pair is enough for biomedical image semantic segmentation(29), we decided not tomake themask generation
process as complex as image generation. Therefore, the correlated attention algorithm is not applied to the
mask generation path. Themodule is named cross-attention as it takes inputs fromboth paths and feeds them
back. The cross-attention modules are inserted between feature map layers of the same size from different
generation decoders. The architecture of the cross-attention module is presented in Figure 4b.

3.3. Discriminator and spectral normalization

The discriminator does not produce translation results but instead guides the training destination of the
generator and self-upgrades simultaneously. Normally, the discriminator is a down-sample process which

Figure 2. Network architectures of sub-modules for generator. (a) Down-sampling sub-module.
(b) Bottleneck sub-module. (c) Up-sampling sub-module.
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assesseswhether the input is good or not. Isola et al. introduced a discriminator named PatchGAN for their
image-to-image translation network(20). PatchGAN outputs N × N patches and penalizes the patches
independently, where the size of patches can be much smaller than the full size of the image. They found
that the PatchGAN in the discriminator performed well in enforcing correctness at high frequencies and
that low-frequency correctness could be achieved using conventional methods, such as the L1 distance
restrictor. The discriminator takes the concatenation of bright-field image stacks and generated translated

Figure 3. Generator architecture. The numbers in each sub-module indicate the numbers of input and
output channels, respectively. Architectures of sub-modules are presented in Figure 2, and attention

modules are shown in Figure 4.
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images as the input and runs a series of convolutional calculations. The architecture of the discriminator is
shown in Figure 5; it is also made up of down-sampling sub-modules which have a similar structure as the
one used in the encoders of the generator. Self-attention modules are applied in our discriminator; they are
inserted after the down-sampling sub-modules at higher levels.

To improve the performance of the discriminator, Miyato et al. created a new normalization
method called spectral normalization and applied it to the discriminator of their GAN(45). They
discovered that spectral normalization can stabilize the training of the discriminator, as it tuned fewer

Figure 4.Attentionmodule architectures. (a) Architecture of the self-attention module. (b) Architecture of
the cross-attention module.

Figure 5.Discriminator architecture. The numbers in each sub-module indicate the numbers of input and
output channels, respectively. Numbers in attention boxes represent the size of input feature maps.
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extra hyper-parameters and had lower computational costs compared to other regularization techniques.
In the work of Zhang et al., spectral normalization was applied to both the generator and discriminator.
This achieved better performance compared to applying it only to the discriminator. Hence, we also apply
spectral normalization to our discriminator and generator(27).

3.4. Loss function and evaluation metrics

The fundamental workingmechanism ofGANs can be understood as a competition between the generator
and discriminator. The generator aims to produce outputs that fool the discriminator into being unable
to distinguish whether its products are real or fake. On the contrary, the discriminator aims to train itself
to not be fooled by the generator. Mathematically, this process can be regarded as finding the solution to
minimum and maximum objective functions. In cGAN, the generation process is under given conditions,
in the translation task the output fluorescent images need to be correlated to the input bright-field image
stacks. Therefore the discriminator needs to take the input bright-field image stacks as the condition
during the penalization. The objective function of cGAN is shown in Equation (1):

LcGAN G,Dð Þ¼Ex,y�Pdata x,yð Þ logD x,yð Þ½ �+Ex�Pdata xð Þ 1� logD x,G xð Þð Þ½ �, (1)

where Pdata is the ground truth dataset, x is the input bright-field image, and y is the target fluorescent
image; G and D represent the generator and the discriminator, respectively. The generator is trained to
minimize the objective function and the discriminator is trained to maximize it; the generator is described
in Equation (2):

G∗ ¼ argmin
G

max
D

LcGAN G,Dð Þ+λLImage Gð Þ� �
, (2)

where LImage is the conventional loss between the generated outputs and the ground truth targets, such as
L1 loss (details to follow). λ is the weight that balances the two types of losses.

The total loss for the system is a combination of adversarial loss and conventional losses. Typical
conventional losses include mean absolute error loss (MAE) or mean squared error (MSE) loss, also
known as L1 and L2 distances, respectively. The conventional loss function does well in penalizing the
low-frequency errors which are supplementary to adversarial loss. In previously published
approaches(20,40), the weight of the conventional loss is normally one or two orders of magnitude higher
than the adversarial loss in cGAN, we will follow this precedent. Meanwhile, MAE losses are used rather
than MSE losses in image generation as research showed that MAE-based methods cause less blurring in
practice(20). Moreover, based on the experience fromHore et al., we introduce a structural similarity index
measure (SSIM) distance for the conventional loss calculation(40). SSIM is a method for measuring the
similarity between two images; it is a perception-based model that considers the degradation in structural
information, which is expressed in Equation (3):

SSIM x,yð Þ¼ 2μx μy+c1
� �

2δxy+c2
� �

μ2x +μ
2
y +c1

� �
δ2x +δ

2
y +c2

� � , (3)

where μ �ð Þ and δ �ð Þ are the mean and variance of x and y, δxy is the covariance of x and y; c1 and c2
are constant values based on the intensity range of x and y. The output value of the SSIM function is from
0 to 1, the more similar they are the higher the value is, and hence, the SSIM distance of x and y can be
calculated asLSSIM ¼ 1�SSIM y,G xð Þð Þ. Thus, the conventional loss for image generation is presented in
Equation (4):

LImage ¼ 1�αð ÞLL1 y,G xð Þð Þ+αLSSIM y,G xð Þð Þ, (4)

where α is the weight to balance L1 loss and the SSIM distance, α ∈ 0,1½ �.
Other than losses from the image generation path, the output of the mask generation path predicts the

possibilities of pixels belonging to each category. The loss of segmentation from the mask generation is
defined as the classical cross-entropy. The final loss for the generator is a weighted sum of image

e12-10 Ruixiong Wang et al.

https://doi.org/10.1017/S2633903X23000120 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X23000120


generation losses, including conventional loss and adversarial, and mask loss, total loss calculation is
shown in Equation (5):

LTotal ¼LcGAN +μ1LImage+μ2LMask , (5)

where, μ1 and μ2 are weights for each loss. In practice, we chose a dynamic weight for μ2, the loss for mask
generation. A higher value for μ2was applied to ensure themask generation reaches the convergence point
first so that the mask generation path provides highly credible spatial information to the cross-attention
module, and gradually lowers the weight of the mask to enhance the image generation.

In addition, the performance of the model is evaluated using three metrics: the L1 distance (i.e., the
MAE), the structural similarity index (SSIM), and the standard peak signal-to-noise ratio (PSNR)(50).

4. Experimental Setup

4.1. Biological experiment and microscopy operation

In this section, we further describe the methodological approach from a biological point of view,
providing further motivation for the work and presenting the datasets employed.

The cells used in this study are Chinese hamster ovary (CHO)-K1 cells [ATCC-CCL-61], which are
induced to undergo apoptosis, to analyze and predict the state of their nuclei. These are cultured in Ham’s
F-12K (Kaighn’s) Medium (Life Technologies Limited, Gibco, Paisley, Scotland, United Kingdom)
supplemented with 10% fetal bovine serum (FBS). They are grown in T-75 flasks (10 ml of culture
medium) and incubated at 37°C and 5% CO2.

1. When the cells have reached minimum confluency of 60%, ~100,000 cells are seeded onto glass
coverslips (13 mm diameter) in 500 μL of medium and left to adjust overnight. All rinsing steps are
done with Phosphate buffered saline (PBS).

2. To induce apoptosis, the cells are exposed to 500 μL of 1 μMof staurosporine (inmedium, Apexbio
Technology LLC, Houston, Texas, United States) and incubated for 0, 1, 3, 6, and 8 hr.

3. Once the respective time has been reached, the cells are fixed in 4% Paraformaldehyde (PFA) in
PBS for 30 min.

4. The nuclei are stained with Hoechst solution (1:10,000 dilution in medium, Thermofisher Scien-
tific, Pierce Biotechnology, Rockford, Illinois, United States) for 10 min.

5. Finally, the coverslips are mounted onto glass slides and left to curate overnight.

The cells are imaged on a Leica SP5 confocal laser scanning microscope using an HC PL APO CS2 63×,
1.4 NA oil objective. Hoechst-stained nuclei are excited with a 405 (nm) diode laser (laser power: 7%).
Single-plane bright-field images and fluorescent image stacks are taken of the nuclei. The fluorescent
image stacks have a z-axis range of 7.2 μm and consist of 24 slices spaced 0.3 μm apart.

4.2. Dataset preparation

Our method is designed to produce fluorescent images together with semantic segmentation. The most
important part of the image pre-processing pipeline was segmenting the fluorescent images based on the
health state of each nucleus. The states of the nuclei change over time, that is, after 3 hr nuclei start to split.
In the pre-processing phase, fragmented nuclei were merged using Gaussian and median filters. Subse-
quently, a marker-controlled watershed segmentation process was applied to separate adherent nuclei. All
steps in the pre-processing pipeline are listed below and shown in Figure 6.

1. Resize raw images to an appropriate size that maintains adequate information. In this work, we
resize the images from 512×512px2 to 256×256px2.

2. Apply min–max normalization for each raw fluorescent image and rescale to 0 to 255 (8-bit
intensity range).
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3. Concatenate fluorescent images along z-stack. Choose the maximum value along the z-stack for
each pixel and generate the maximum image.

4. Apply contrast limited adaptive histogram equalization (CLAHE)(51) to each image. Set the
contrast limiting value to be 2, and the size of tiles to be 32×32px2.

5. Apply Gaussian smoothing to images using a 3×3px2 kernel. In practice, we apply it four times so
that fragmented spots from the same nuclei are connected.

6. Applymedian filtering with a 5×5px2 kernel. In practice, we apply it 12 times to remove salt-and-
pepper noise from the images.

7. Calculate the Otsu threshold for the images and generate the mask for nuclei.
8. Calculate the distance for pixels within the mask to the mask boundaries. Then select the local

maximum points on the distance maps and label them as the kernel for individuals.
9. Apply the watershed algorithm(52,53) to segment the masks.

10. For nuclei incubated in staurosporine for less than 8 hr, the number of apoptotic cells is much less
than healthy cells. The split nuclei can be easily filtered out manually.

11. For nuclei at 8 hr. Apply individual segmented nucleusmasks to themaximum fluorescent images.
Calculate the standard deviation of the intensity value within each segmented nucleus image. Use
the Otsu thresholding method(54) to separate these nuclei into two groups. The group which has a
higher value of standard deviation corresponds to fragmented nuclei and to intact nuclei. Inspect

Figure 6. Dataset preparation process. (a) Maximum intensity along z-stack of fluorescent images,
(b) threshold andwatershed segmentation output, (c) automatic classification result, (d) manually revised
result, the revised individual in the yellow circle, (e) example of image dataset for training, contains

bright-field images, split fluorescent images, and masks.
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the output of the segmentation process based on standard deviation, and manually correct the
splitting results.

12. Individual masks belonging to the same group are added together and used to generate the masks
for healthy nuclei and apoptotic nuclei.

13. Apply both nuclei masks on the center layer of the z-stack fluorescent images after CLAHE. Each
fluorescent image is divided into two channels. The two-channel fluorescent images are used as
the ground-truth targets for training.

14. For bright-field images, apply min–max normalization for rescaling and concatenation along z-
stack.

4.3. Dataset augmentation

Due to the limited number of images in our dataset, data augmentation was applied for the training of the
model. Random flips and rotations were applied, followed by a random crop of 128×128px2 out of
256×256px2. Random flips and rotations encourage the model to not be restricted by the orientation of
the input images. A random crop of images helps individual nuclei maintain the same sizes and ratios
(width to height) compared to the original images, but the locations of nuclei on images vary at each
iteration. Data augmentation ensures the inputs to the model are different for every epoch and prevents
over-fitting of the model.

4.4. Training details

The code was implemented using Python and PyTorch. This work was carried out using the BlueCrystal
Phase 4 facility of the Advanced Computing Research Centre, University of Bristol (http://www.bristol.
ac.uk/acrc/). The system is equipped with Nvidia P100 GPU with 16 GB of RAM. The optimizer for the
generator and discriminator used here was the Adam optimizer with beta values of 0.5 to 0.999(55), while
the learning rates were 10�5 and 10�4, respectively(56). The batch size for training was 8. The total number
of learning epochs was 4,500. Cross-validation was applied to the training dataset, with the number of
images for training, validation, and testing being 66:12:8. The training and validation datasets were
rearranged every 50 epochs. As mentioned above, the weight for the mask generation loss varies during
each iteration; the initial weight was set to 250 and decayed 10% every 1,500 epochs and no lower
than 2.5.

5. Results

In our model, whose architecture is shown in Figure 3, there are five up-sampling layers. Therefore, there
are four intervals between adjacent up-sampling layers for inserting self-attention modules, so theoret-
ically, there should be 24�1 models to be tested. We used four-digit binary numbers to indicate the
locations of the attention modules. Zhang et al. found the attention level applied at feature maps with
larger sizes received better performance(27). Therefore, in our strategy of choosing the insertion sites, we
filled in lower intervals (where feature maps had larger sizes). As such, we selected three models for
performance evaluation and comparison: 0001 (attention module only appeared at the last interval), 0011
(last two intervals), and 0111 (last three intervals). We also selected two models as references. The first
was the cross-attention cGAN (XAcGAN) model, but with no cross-attention module applied; this was
labeled as 0000. The second was the original image translation model using cGAN, the pixel-to-pixel
image translation model, introduced in Isola et al.’s work(20). The second reference model had six down-
sampling layers and six up-sampling layers with skip connections. This second reference model had no
residual network module or spectral normalization in either the generator or discriminator.

The prediction results for XAcGANmodels are listed in Table 1 together with the pixel-to-pixel model.
As expected, the XAcGANmodels’ performances were significantly better than the pixel-to-pixel model
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Table 1. Performance of cross-attention conditional GAN model.

Cross-attention module inserted locationa

Evaluation metrics Pixel-to-pixel 0000 0001 0011 0111

L1_distance 0.0546 0.0320 0.0332 0.0256 0.0303
PSNR 20.5644 22.0651 21.8404 23.6517 22.2572
SSIM 0.8494 0.9132 0.9145 0.9310 0.9149

Abbreviations: PSNR, peak signal-to-noise ratio; SSIM, structural similarity index measure.
aThe inserted location is presented by a four-digit binary number, the first digit represents the position between the first and second down-sampling
layers and can deduce the rest like this. Digit “1” means an attention-based module is inserted at this position, and vice versa.

Figure 7. Translation results of cross-attention cGAN (XAcGAN) model with attention module location
“0011.” Column (a): middle slices of input bright-field image stacks; column (b): ground truth

fluorescent images, with nuclei false-colored such that magenta represents healthy nuclei and green
represents apoptotic nuclei; column (c): translation results from the model with equivalent false-coloring
applied; column (d): the ground truth classification of nuclei, gray represents healthy nuclei and white
represents apoptotic nuclei; column (e): the semantic segmentation results by XAcGAN 0011 model;

column (f): the MAE error maps between the target and generative fluorescent images.
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in all evaluation metrics. Of the three tested models, model 0011 received the best scores, which are
highlighted in bold. Figure 7 shows the prediction from the XAcGAN 0011 model.

5.1. Contribution of attention-based module

Compared to the pixel-to-pixel model, the attention-based model had higher accuracy in detecting nuclei.
This proves that the attention element contributed to the long-distance dependency analysis when
detecting nuclei from cell images (see Figure 8). Cells took up larger areas on bright-field images than
nuclei in fluorescent images and included latent information on the nuclei’s state of health. However,
without an attention-based mechanism, this information was restricted because of the sizes of convolu-
tional kernels, which failed to transfer them to higher-level feature maps. To promote accuracy in nuclei
detection, the attention-based module from the XAcGAN model played a vital role.

5.2. XAcGAN model for necrotic cell detection

The cross-attentionmodel has advantages in finding necrotic cells which are inconspicuous in bright-field
images and out-of-focus in fluorescent images. Apoptosis is described as an energy-dependent process
which is coordinated by cysteine-aspartic proteases called caspases, while necrosis is referred to as
uncontrolled cell death(57). Necrosis is an energy-independent process and is a consequence of severe and
sudden cellular damage to the extent that the cell is no longer functional. A notable difference in necrosis is
the morphology of the nuclei. Within necrotic cells the nuclei undergo karyolysis when the nuclear
material dissolves in the cytoplasm (broken down by endonucleases)(7,58), which is observed in Figure 9.
In Figure 9, we can see that the reference model failed to recognize the necrotic cells, but the cross-
attention model found it, though the area of the target predicted by the cross-attention cGAN model was
smaller than expected. This is an illustration of the contribution of the mask generation path to image
translation. On the input image stacks, the necrotic cells were easily overlooked as the intensity changes in
this area were not distinct. The mask generation path had better performance in indicating the location of
these blurry items and leading the image generation path to predicting intensity.

5.3. Influence of the number of slices of bright-field image stack

We verified the performance of the XAcGAN model with a different number of input bright-field image
slices. In the work of Christiansen et al.(11), they found if the number of input slices was higher than five,
the performance of the model did not improve too much.We performed a similar test on our model, using
1, 3, 5, and 7 slices. An odd number of slices was used for all tests since this maintained the same middle
layer for each image stack. The input bright-field stack had 13 slices, the space distance of adjacent slices

Figure 8. Detection accuracy comparison. (a) Ground-truth fluorescent image, (b) XAcGAN model
result, (c) pixel-to-pixel model result. Translation result from the XAcGANmodel has a higher accuracy of

nuclei detection than the non-attention model.
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was 0.3 μmand the total depth of the stackwas 3.6 μm. For input imageswith 3, 5, and 7 slices, the test was
applied using two approaches. In the first, inter-slice separations were kept at 0.3 μm, thus yielding stack
depths of 0.6 μm, 1.2 μm, and 1.8 μm, respectively. In the second test, slice separations of 1.8 μm, 0.9 μm,
and 0.6 μmwere used to produce fixed stack depths of 3.6 μm.The results of the tests are shown in Table 2.

From Table 2, we can see that the input image with only one slice had the worst performance.
Undoubtedly, the more slices the bright-field image stack had, the better result obtained. Meanwhile, the
depth of the bright-field image stack had more influence on the translation result. For instance, from
Figure 10, for a stack with three slices, performance for stack depth 3.6 μm and slice-separation 1.8 μm
was significantly better than for stack depth 0.6 μm and slice-separation 0.3 μm. The reason for this could
be the closer slices contained less 3D space information and led to poorer performance. As the number of
slices of the input image stack increased, the improvement of the translation result was limited.

6. Ablation Study

The cross-attention module was inspired by the self-attention module from the SAGAN model(27).
Therefore, we compared the performance of these two modules. As the self-attention module took one
stack of feature maps as input, the self-attention cGAN (SAcGAN) model for fluorescent image
translation contained only one independent generation path. We first applied the SAcGAN model only
for translating fluorescent images without outputting the nuclei state evaluation. In this case, the model
had one output channel and nuclei with different states were presented in one image.We then tried to train
the SAcGAN model with two output channels aimed to test the performance of nuclei classification
without the help of a mask generation path.

For the SAcGANmodelwith one output channel, the architecture of the SAcGANmodel could be seen
as the XAcGAN model without the mask generation path and with the cross-attention modules replaced

Figure 9. Translation result of the necrotic cell. (a) Bright-field image. (b) Ground-truth fluorescent
image. (c) Ground-truth nuclei classification result. (d) Result from the model without cross-attention
module. (e) Result from XAcGAN model. (f) Nuclei segmentation result from XAcGAN model. Yellow

circles indicate the necrotic cell under karyolysis.
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with self-attention modules. The structure for each sub-module and strategies for choosing the inserting
position were the same. The performance of the SAcGAN model is listed in Table 3. From Table 3, we
found the SAcGAN models did significantly better than the pixel-to-pixel model; among SAcGAN
models, model 0011 provided the best performance in all three evaluation metrics. Figure 11 shows the
fluorescent image translation result of the SAcGAN model 0011.

Statistically speaking, compared to the SAcGAN model, the result of the XAcGAN model which
contained mask generation was not overwhelmingly better through the evaluation metrics. However, the
function of predicting the state of cells or nuclei was irreplaceable and this is the main advantage of our
model. To evaluate the accuracy of nuclear detection and classification, the state of nuclei in the ground-
truth fluorescent images was recorded and compared to detections in the translated images generated by
the tested models. For all models, possible translation errors covered unexpected nuclei (false positive)
and undetected nuclei (false negative). While for XAcGAN, it was also possible to evaluate the
misclassification of nuclei (“healthy” or “apoptotic”), for the single output channel models (Pix2Pix
and SAcGAN), this had to be donemanually based on the evaluation of nuclear texture. In practice, nuclei
from single output channel models were frequently difficult to classify in this manner due to ambiguous
textures. As such, the reliability of counts for Pix2Pix and SAcGAN might not be highly accurate in
Table 4 as it is affected by human factors but reflects the consequence of the no-mask-assistance model.

Table 2. Performance of cross-attention cGAN (XAcGAN) model.

Input slice(s) 1 3 5 7

Separation (μm) n/a 0.3 1.8 0.3 0.9 0.3 0.6

L1_distance 0.0455 0.0475 0.0411 0.0355 0.0317 0.0359 0.0326
PSNR 19.3453 19.0231 20.3605 21.2040 22.2555 21.0891 22.0951
SSIM 0.8878 0.8866 0.9037 0.9043 0.9095 0.9102 0.9084

Abbreviations: PSNR, peak signal-to-noise ratio; SSIM, structural similarity index measure.

Figure 10. Performance of different numbers of input slices of bright-field image stacks, the numbers at
the bottom indicate the number of image slices, “s”means slice separation remains unchanged, and “d”

represents total depth unchanged.
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Table 3. Performance of self-attention cGAN (SAcGAN) model.

Self-attention module inserted location

Evaluation metrics Pix2Pix XAcGAN 0000 0001 0011 0111

L1_distance 0.0546 0.0256 0.0470 0.0470 0.0388 0.0492
PSNR 20.5644 23.6517 21.6721 21.4682 22.8019 21.3259
SSIM 0.8494 0.9310 0.8741 0.8726 0.8897 0.8673

Abbreviations: PSNR, peak signal-to-noise ratio; SSIM, structural similarity index measure.

Figure 11. Translation results and comparison of self-attention cGAN (SAcGAN)model. (a)Middle slices
of input bright-filed image stacks. (b) Ground-truth fluorescent images. (c) Results from pixel-to-pixel

model. (d) Results from SAcGAN model (0011). (e) Results from XAcGAN model (0011).
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Table 4 contains the detection and classification result of the XAcGAN 0011 model: the nuclei state
prediction accuracy was 85.68%; the false positive error was 1.27%, the false negative error was 4.78%,
and the state classification error for detected nuclei was 8.27%, which is comprised of a healthy-to-
apoptotic error of 4.01% and apoptotic-to-healthy error of 4.26%. From Table 4, it is evident that the
XAcGAN model performed significantly better. One reason was that our model was trained on the
database with a reliable classification ground truth. This advantage came from the process of dataset pre-
processing, in which we used the whole 13 slices of the fluorescent image stacks for mask generation. For
the models without a predicted mask from the raw inputs, to perform state prediction, additional methods

Table 4. Nuclei classification result.

Figure no. 1 2 3 4 5 6 7 8

Ground truth Healthy 91 19 19 9 37 78 26 34
Apoptotic 6 17 5 7 29 6 4 13

XAcGAN (0011) False positive 0 0 0 1 1 2 0 0
False negative 4 0 1 1 3 1 1 7
Mistakenly Classified H to Aa 4 2 1 0 0 1 0

A to Hb 2 4 0 0 8 2 0
Pix2Pix model False positive 0 1 0 0 3 0 0 0

False negative 1 0 3 1 0 1 5 13
Unsure 12 11 3 2 29 5 3 4

SAcGAN (0011) False positive 0 1 0 0 1 0 0 0
False negative 1 0 1 0 0 3 0 1
Unsure 23 10 2 2 20 13 6 12

a“H to A” represents healthy nuclei predicted to be apoptotic.
b“A to H” represents apoptotic nuclei predicted to be healthy.

Figure 12. Translation results of self-attention cGAN model with two output channels (without mask
generation path). (a,b) Middle slices of bright-field image stacks and corresponding ground-truth

fluorescent images. (c–f) Results from the SAcGAN model which has no mask prediction path. (c) Model
0000 (no attention module applied). (d) Model 0001. (e) Model 0011. (f) Model 0111. Magenta nuclei

indicate healthy nuclei and green nuclei indicate apoptotic nuclei.
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for classification were required. However, the classification was applied to predicted outputs, so it would
be hard to guarantee the accuracy of the classification.

We also tested the performance of SAcGAN with multiple output channels. In this test, each channel
was aimed to present one state of nuclei, healthy or apoptotic. From Figure 12, we found that the model
failed to produce fluorescent images. The results showed that the SAcGAN model tended to translate
nuclei into one channel and ignore the generation in the other channel. For example, in Figure 12, only
potential apoptotic nuclei were translated, and all the healthy nuclei were ignored. On the contrary, other
models only recognized healthy nuclei. The reason the SAcGAN model was unable to process the
classification could be that the loss function of the image generation taskwas tooweak to lead themodel to
promote the classification result. To reduce the losses, the model tended to sacrifice one channel’s output
and get stuck in a local minimum. The mask generation path assisted the model in skipping the local
minimum and guided the image translation path on which channel to translate the nuclei. This task was
used as a comparison of the multi-output-channel model with and without a mask generation path, and to
explore the necessity of information connection between the mask generation and image generation.

7. Conclusion

Our XAcGAN model achieved excellent performance in bright-field to fluorescent image translation
tasks and provided promising health state prediction simultaneously. cGANs are a powerful tool in
supervised image translation. The shortage of datasets didn’t affect the performance of our network.
Attention-based modules applied in our model improved the performance of the image translation. Our
model does not needmultiple spatial extents as input, the attentionmodules encouraged themodel to learn
the long-distance spatial dependencies. Meanwhile, the cross-attention modules combined dependencies
from both generation paths. The segmentation path was a crucial auxiliary for multi-state fluorescent
image translation, as it guided the network onwhich channels the items to be generated should be assigned
to. In addition, the prediction result can be used as a supplementary for healthy state evaluation.

For the biological research of monitoring the health state of cells and nuclei over time, the model is an
alternative to the time and labor-consuming process of fluorescent labeling. It will reduce the work for
microscopy experiments where only bright-field imaging is adequate for nuclei observation. This would
be the most significant contribution of our research to cellular biology studies.
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