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Abstract

Industrial mobile robots as service units will be increasingly used in the future in factories with Industry 4.0
production cells in an island-like manner. The differences between the mobile robots available on the market make
it necessary to help the optimal selection and use of these robots. In this article, we present a concept that focuses on
the mobile robot as a way to investigate the manufacturing system. This approach will help to find the optimal solution
when selecting robots. With the parameters that can be included, the robot can be characterized in the manufacturing
system environment, making it much easier to express and compute capacity, performance, and efficiency charac-
teristics compared to previous models. In this article, we also present a case study based on the outlined method, which
investigates the robot utilization as a function of battery capacity and the number of packages to be transported.

Impact Statement

The number of industrial mobile robots available on the market for manufacturing systems is constantly
increasing. Manufacturing systems are described analytically for the simpler cases, and more typically using
simulation software for the more complex applications. The iteration thus achieved eventually leads to a close to
optimal result. The mobile robot-centric manufacturing system outlined in this article gives the possibility to
formulate the whole task from the mobile robot perspective, so that mainly the properties of these devices need to
be considered for the selection.

1. Introduction

Use of industrial mobile robots is becoming more and more common in modern manufacturing systems,
especially in factories with island production cells that meet Industry 4.0 requirements. The mobile robot
is usually seen as a serving unit, a device for material handling. In this article, we outline an approach
where the mobile robot is the central element and the transport tasks are described in a much simpler way
compared to previous models.

The study is motivated by the increasing trend of mobile robots and the fact that the selection of mobile
robots to be integrated into manufacturing systems is simulation based and very time-consuming. The aim
is to construct a simple model that describes the manufacturing system from the perspective of the mobile
robot and thus can be rapidly calculated and the results obtained quickly. The article describes a theory
concept, enhanced by a practical case study.
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Industrial mobile robots are available from a wide range of manufacturers. Some companies specialize
only in this area, larger players usually include these devices in their product range through acquisitions.
The range varies from smaller or simpler automated guided vehicle (AGV) robots to more complex,
intelligent mobile platforms with higher payloads (Oyekanlu et al., 2020).

An AGYV, also known as an autonomous mobile robot (AMR), is a mobile platform that navigates along
a predetermined path by means of a wire, painted or glued strip, or magnetic tape embedded in the floor
(Hines, 2021). Other solutions are also available using radio waves, lasers, or built-in image recognition
systems for automated path planning. They are widely used in industrial installations and warehouses for
moving heavy loads. Their application almost exploded at the end of the 20th century. Some of them carry
loads that can be anything from raw materials to finished products, while others pull these in cargoes.
These devices are also known by other names: the laser-guided vehicle (LGV), or the cheaper versions:
automated guided carts (AGC). The term AMR is widely used nowadays to refer to vehicles that do not
require external navigation infrastructure (wire in the floor). The short article from Hines also
mentions the possibility of manual or automatic battery exchange as a possible direction for operational
reliability.

AGVs were first introduced in 1955 and since then they have developed massively (Fazlollahtabar and
Saidi-Mehrabad, 2015). Their applications and types have grown and are still growing significantly.
There are both outdoor and indoor applications, including in manufacturing, distribution, package
delivery, wherever patterns can be used to organize the transportation work. According to a 2000
publication (on the research mentioned in the article of Saidi—Mehrabad) 20,000 units AGVs were
used in industry. Adding to the 2015 figure, the increase is significant, as the International Federation of
Robotics report for 2024 shows a 35% increase in the number of transport and logistics robots, with
1,13,000 units in 2023. The differences between the old and the newer types of AGVs concern the number
of AGVs, the number of transport tasks, the degree of utilization of AGVs, the distance travelled, and the
number of pick-up and delivery points. Development of new analytical and simulation models is needed
that can overcome the huge computational time requirements, deadlocks, system latencies, and limited
design horizons due to NP-hard problems (problems that cannot be solved in polynomial time).

There have been many studies on energizing mobile robots, of more than 140 in total by Muhammad
and his coresearchers (Farooq et al., 2023). Looking at several optimization studies, there are several
problems with the solutions offered: first, they are robot specific, applicable only to the robot in use, and
second, they represent a compromise between economy and function, while affecting the cost of the robot
only to a negligible extent. In the article, they suggest further developments to solve the problem of
continuous power supply for autonomous robots, such solutions are energy mining, energy cycling, and
monopropellants. The goal is to provide the next generations of robots with a clean, robust, and long-
lasting energy source.

The toolbox for dynamic simulation of robots has grown in recent years. In their study, Farley et al.
(2022) wrote a quantitative comparative study of a Husky A200 robot under simulated and real
conditions, with objective comparisons. The test environment consisted of three types of terrain profiles,
grass, bumps, and gravel, and the accuracy of speed and acceleration were investigated. Other sensors
such as Lidar were not included in the analysis, this may be the subject of future research. Their results
showed that CoppeliaSim performed best, followed slightly behind by Gazebo.

When using mobile robots, many vehicles and many tasks have to be handled at the same time, which
requires a very complex simulation, as studied by Lopez et al. (2022). When analyzing the control system,
a detailed simulation of each AGV is not necessary. Their achievement is an event simulator built into a
framework that statistically models AGV behavior using a Petri-net-based model.

Chen et al. (2021) present a metamodel-based simulation in their article. The simulation’s input data
are taken from a real environment and the optimization of the number of AGVs for a given set of routes is
performed. The utilization and throughput were also considered in the optimization. The authors’ method
performs the optimization in two steps, the first step is to determine the number of AGVs at the design
level. In the second step, the operational level is optimized which takes into account the charging system
dispatching, positioning, and route selection rules.
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Moving robots is a major issue in mobile robotics. Any related development could be interesting for the
future, depending on the challenge to be met and how it can be optimally solved. Since wheel design is a
typical engineering design task, Huang et al. (2022) in their study a design of a screw-propelled wheel
using the deep generative model (DGM) method was implemented. The designed model was 3D printed
and tested in comparison with a conventional screw-propelled wheel. The measured results showed an
increase in effectiveness of 15%.

Lian et al. investigated scheduling strategies for industrial robots in a spatiotemporally constrained
Industrial Cyber-Physical System (ICPS) framework (Lian et al., 2022), where the robots autonomously
execute a route-finding algorithm. ICPS is an evolved structure based on the 5C (Configuration,
Cognition, Cyber, Conversion, Connection). The article builds on previous research that has made
significant progress in the areas of task efficiency, parking time, deadlocks, congestion mitigation,
routing, collision avoidance, and safety issues. The presented multilevel strategy has significantly
improved scheduling, while autonomous path planning has improved the autonomy of each robot.

In her study, Szalavetz (2022) helps to explain the fading industrial framework due to digitalization by
analyzing two closely related results: first, the diffusion of general-purpose digital technologies into the
resources, products, processes, value chains, and business models of traditional manufacturing industries.
Second, the adaptation of traditional stakeholders to the earlier. By focusing on a specific industry, her
study is intended as a springboard for research in other sectors.

In the relevant literature, we find a wide range of manufacturing system models, usually described and
solved for a specific task (Kang et al., 2020). Artificial intelligence methods have been used in
manufacturing processes for a while, including big data analytics, and more recently machine learning
methods are being used in these areas (Gunasekaran etal., 2018). In a systematic review article, Kang et al.
(2020) present current trends and point to possible future research areas. In the analysis’s articles, machine
learning is exploited in three areas: availability, quality, and performance. Since quality and availability
are measurable, they are mainly investigated, while further research is needed on the field of performance.

Li et al. (2023) have researched deep reinforcement learning (DRL) for facilitating personalized
intelligent manufacturing. In their very comprehensive review article, they identify several application
examples. Among these, they highlight the requirement for industrial robots to collaborate, including
dynamic reconfiguration, ubiquitous sensing, and communication across time constraints. The DRL
enables accurate and fast decisions in complex situations through representation learning. In the article,
which analyzed 261 relevant publications, five main categories of algorithm-driven robotic applications
were identified: manipulation, motion planning, scheduling, cloud robotics, and robot-human inter-
action.

The article by Dahl et al. (2022) presents an interactive framework for new types of automation
systems. The method is called dependence on formal constraints. This system is characterized by its
increasing number of complex resources, such as cooperative and mobile robots. Controlling these
demands, new methods instead of traditional algorithms to keep up with the increase in complexity. The
built framework supports model-based control system management, such as robot positioning based
on 3D geometries, and tool design. Based on the case study presented, the method was tested on a
simulation. Constraint-based descriptive models require a formal model of resources, which is identified
as a bottleneck by the authors of this article. The role of the automation engineer, instead of traditional
programming, will be to write specifications according to the method. In this way, the manufacturing
system can be managed in a more flexible way than previous methods.

Kriiger et al. (2009) investigated how humans can cooperate with robots to achieve flexibility and
divergence. The article identifies future research in various aspects of high-level hybrid assembly, such as
safety engineering, load reduction, and the coordination of the work of multiple operators and multiple
machines.

Jahed and Tavakkoli-Moghaddam (2020) investigated a mathematical model that considers material
handling systems as an intelligent transport system operated by AGVs. In their proposal, failures are also
modeled, that is, several AGVs can fail simultaneously, which is unique in this field of research. They take
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into account the probability of machine and AGV failures and also show the effects of problems. The
objective functions are production time, total delivery cost, and cost minimization due to delay penalty.

Koren et al. (2018) have researched reconfigurable manufacturing systems (RMS), the main goal of
which is to increase the responsiveness of manufacturing systems to unpredictable changes in demand for
their products. The design and operational principles of RMSs are formulated and reviewed, and the
important finding of the article is that the challenges of unpredictable market demand, shorter product life
cycles, greater product variety, lower production costs, and higher environmental standards are all
increasing.

In their review article, Mourtzis (2020) present an overview of the history of simulation of manufac-
turing systems and some future development trends). They also show that developments are moving
toward a more realistic simulation, either in real time or in a digital twin. In comparison, the concept
presented in this article enables fast-running simulation at a much lower level, providing valuable data for
the realization of robotic manufacturing systems.

In their article, Pedrielli et al. (2018) present the Discrete Event Optimization (DEO) method for
modeling simulation—optimization problems and solving of the model. These methods are characterized
by their two parts: an optimization module that selects the best system configuration and a simulation
module that evaluates the system performance. The simulation module acts as a black box and receives as
input the result from the optimization module, and this simulation result is then received as input by the
optimization module.

Chen and Cheng (2021) focus on the optimization of conventional industrial robots due to the number
of uncertainties and product variations in complex assembly processes. They propose a modeling
methodology that builds a relationship between process parameters and system performance. Their
iterative optimization algorithm is validated with two real industrial assembly flows.

Many researchers are focusing on the future of robots and their use in manufacturing systems. In their
study, ElMaraghy et al. (2021). analyzes the changes on four axes: products, technology, business
strategies, and production paradigms. One of their ideas is that, due to some of the problems of robots
(sensor limitations from lighting conditions, real-time object detection, networking problems), the future
of Al in robotics is Al applications enhanced by creative human operators. Another key idea is the use of
arm-mounted effectors on mobile robots to perform certain tasks on production lines, based on sensor
feedback.

Bhatta et al. (2022) observed in their earlier study of flexible production systems that research is
essentially focused on stationarity, while transience is only considered for fixed configurations. In today’s
changing world, demands are changing very rapidly and new modeling techniques are needed. In their
study, they investigate a production system served by mobile robots, in which the metric is a so-called real-
time permanent product loss (PPL), which measures the performance of the production system at a given
moment in time and allows the control system to act immediately. Further research is needed to develop
this kind of control.

One of the crucial points in the application of mobile robots is the distance that can be achieved due to
the capacity of the battery. There is a lot of research going on in this area, as increasing the battery capacity
implies an increase in the robot’s mass, so there is an overall upper limit. In their article, Sperling and
Kiveld (2022) present a system in which both a battery and a supercapacitor are responsible for supplying
power to the robot, called as dual-energy storage system (DESS). The robot’s control system selects the
one to be used depending on the distance between the two storage locations. One result is the implemen-
tation of the concept in a mobile robot, which has been validated, and the other is the state machine model
for the control method.

Houetal. (2018) also discuss the improvement of the robot’s energy efficiency in their article. With an
energy management model they developed, the robot can predict its energy consumption. The model uses
sensor data as well as data from the control and motion system with specified weights. This model has
been tested on a four-wheeled mobile robot and the results show that the model can successfully predict
the consumption during motion and even support energy management efficiently. However, it is
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interesting to note that the model divides the operation into three parts: standby, startup, and running, and
does not take into consideration the parameter that is commonly included: the robot’s path.

In their article, Kim (2017) investigated the path planning and dispatch strategy of several mobile
robots in a localized space for cooperative applications. One of the major challenges is to coordinate the
movements of multiple robots and avoid interfering with human traffics, taking into account either the
minimum distance travelled or the minimum time taken. A two-layered route planning strategy has been
proposed, the first level searches for initial solutions without obstacles, and the second level tones the
paths fine when dynamic obstacles are present. The method has been effectively tested on large-scale
tasks with simulations.

Zhang et al. (2018) summarized the methods that have been used in path planning. They also present
the genetic algorithm (GA), particle swarm optimization algorithm (PSO), artificial potential field (APF),
and ant colony algorithm (ACO) strategies. Finally, recommendations for future research were made.
Since each method is suitable for different applications, there is no universal algorithm that can handle all
the cases discussed. Research is also needed on task organization, communication, and cooperation of
multirobot systems, as well as route planning at high dimension.

As we expect to use mobile robots in a variety of environments, it is also worth taking into account
some practical experience with their application. Such an application is presented in the article by Szrek
etal. (2022), in which a mobile robot unit is used to monitor the state of physical objects, more specifically
the state of a conveyor belt. Sensor data such as RGB image, sound, gas, and so forth, are collected. In the
test, a 60-m predefined path was covered with the robot and it was found that at lower speed the path was
better maintained, but for most of the duration of the experiment, the deviation was no greater than
+0.02 m.

The system presented in Li et al.’s (2021) article analyses RMFS in high-density storage warehouses
where space is limited or expensive. The idea is to combine traditional RMFS and puzzle-based storage
system (RMFS). The results show that the high-density warehouse layout can save about 10% of
warehouse space with the same energy consumption and robot utilization. The article also suggests that
the problem could be solved by applying machine learning techniques.

Tan et al. (2021) investigated an automatic vertical sorting system in their study. They described the
problem using a mixed integer linear programming model, in which they considered destination stations,
destinations, pick-up stations, and AGVs, and the objective function was to minimize the total sorting
time. The applied particle swarm optimization algorithm solved the problem with high efficiency as
demonstrated by numerical experimental results.

Tiacci’s (2020) article presents a novel event-based simulation system that uses an object-oriented
approach. Modeling complex systems in an object-oriented way allows the description of system
dynamics in terms of interactions between objects. The event-based graph formalism is not suitable for
object-oriented and component-based simulations, where the state of the system is divided into compo-
nents that implement their own behavior and interact with each other. Event graphs describe the changes in
state variables as events occur. In the approach discussed in the article, the state variables are associated
with objects, making the model more understandable, which is particularly useful for large complex
systems.

The dynamic flexible manufacturing environment poses many challenges (unexpected pedestrian
traffic, collisions, fast and slow zones, space for robots, and so on) to the movement of mobile robots,
which can lead to delays even when travelling a simple route (Liaqat et al., 2019). In their article, Liaqat
etal. developed and analyzed a new protocol that controls the movement of each robot when encountering
mobile robots to ensure fast and safe passage. They set up a model, refined by a series of experiments with
real mobile robots, making the model even more accurate in describing the real behavior of mobile robots.

Models are basically built using one of two approaches: either by applying some physical laws, or by
self-learning based on data. While in the first case, the internal workings of the model are clear, in the
second case, we are describing a behavior that is black-box like. Retzler et al. (2024) have combined these
two methods in order to complement the errors of the physical parametric model (e.g., incomplete
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description of complex behaviors, noise) with data analysis-based methods. The physical interpretation of
the system structure contributes significantly to improving the accuracy of black-box models.

Robots are used for many tasks in addition to the industrial transport tasks discussed in this article.
Each area is not necessarily closely related to the others, but it may be worth looking at other applications,
as valuable ideas can be transferred. One such area is additive manufacturing, which could play an
important role in the integration of industrial robots into manufacturing systems. An interesting concept is
presented in an article by Safeea et al. (2022). They have developed a collaborative robot 3D printer. The
presented framework covers both hardware and software parts from the CAD model to the finished
product. The implemented inverse kinematics avoids singularities due to the redundancies of the robot
joints. The result is that the resulting printed parts have 25% stronger mechanical properties.

The current fourth industrial revolution is also contributing to the spread of robots, so this area should
also be addressed when discussing industrial robots. One of the highly expected technologies is digital
twins, from which an interesting study has also been highlighted. In their study, Culot et al. (2020) aim ata
better understanding of the whole concept of Industry 4.0, reducing the confusion around the definition,
which is increased by newer and newer names such as the fourth industrial revolution, smart manufac-
turing. In this article, previous articles are grouped according to the various keywords and from this a
system of interpretation is built. They identify four types of key technologies: interfaces between the
physical and digital worlds, networks, data analysis, and digital-physical process technologies.

In the future, one of the keys to control manufacturing systems could be digital twins, as researched
byLiu et al. (2023). They innovated the concept with a decision process based on virtual entities. They
called this the digital-twin-based manufacturing system (DTMS), and decision making by these entities is
akey factor affecting the accuracy of'the system. The decision model must react to the state changes in real
time. Inspired by biology, a mechanism that imitates instinct and learning behaviors was investigated.
Finally, they propose a rule-driven decision mechanism instead of instinct-driven and conclude that
learning decision mechanisms are the next potential research direction.

Balancing is a key factor for efficiency in industrial mobile robotic assembly systems, and it is
therefore necessary to explore the state of the art in this field (Huo and Lee, 2021). In their article, Jiage
et al. analyzed an intelligent automation controlled production line that responds to unexpected events.
Real-time information from the assembly line is used for adaptive decision making, which is controlled by
a fuzzy control system, resulting in improved performance of the assembly process.

Lietal. propose a novel algorithm to maximize the productivity of AGVs (capable of carrying multiple
loads simultaneously) in FMS manufacturing systems (Li and Kuhl, 2017). PDER (pickup-or-delivery-
on-route) is an algorithm that selects a “low-cost” task (that is physically close to the robot) based on its
current position. The algorithm allows robots that are not fully loaded to pick up another product and
move on to their next destination. This is due to the fact that PDER prioritizes the movement of parts ready
for further machining over the transport of finished parts.

The problem with using the ant colony algorithm in mobile robot path planning is that previously
explored paths cannot be fully used. Hence, Hou et al. (2022) have constructed and tested an improved
algorithm in their article. The authors have developed and tested a faster converging version of the ant
colony algorithm, enhanced with a modified roulette method. The modification consisted in making the
value of the probability variable (multiplier) influenceable by another variable. They analyzed deadlock
problems and developed specific strategies to avoid them, which penalize paths that reach deadlock, so
that the path’s pheromone value is volatilized.

Viharos and Németh (2018) used the software Plant Simulation to study a manufacturing system
supported by AGVs using discrete event systems or DES. Four types of products are transported between
stations and buffers by two robots. The analysis of the production system in two different layouts is
supported by a graphical interface. Future directions for improvement are mentioned: extending the unit
load of the robots to multiple loads; handling uncertainties such as downtime with probabilistic variables;
maintenance prediction; and product order prioritization.

For mobile robots, the issue of path planning always arises, and there is a lot of research on this topic
(Abdallaoui et al., 2022). In their article, Abdallaoui et al. review the algorithms used for path planning,
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grouping them into five categories according to their type: sampling algorithms, node optimal algorithms,
mathematical model-based algorithms, bio-inspired algorithms including neural networks, and finally
multisession algorithms. The algorithms include traditional Dijkstra, genetic algorithm, and neural network
learning. The advantages and disadvantages of each algorithm are analyzed in detail and their performance is
compared, leading to the conclusion that the use of a single approach is not sufficient to achieve vehicle
navigation. The best solution is achieved by a fusion method that combines two or more approaches.
Previous research by the authors of this article have already analyzed a novel approach to mobile robot
modeling in manufacturing systems (Boleraczki and Gyurika, 2020). A solution to the mobile robot
transportation problem modeled with Petri nets is presented. In addition to the start and destination
positions, the robot states were characterized by the states of cargo loading, travel, and battery charging.

2. The mobile robot-centric model

The motivation for this article is the authors’ view of the mobile robot-centric manufacturing system
concept published in this article as part of a complex system development. The aim is to simplify
manufacturing systems in such a way that mobile robots are seen as the critical and only functional unit of
the manufacturing system. This is a novelty compared to previous approaches discussed in the literature.
The goal is to create a modeling concept that does not require external software and prescribed simulation
routines. It does not use an external library, nor does it require competence in other simulation systems.
Although very complex systems are available (visual components, plant simulation), they are expensive
and require a high level of expertise, and the results cannot be freely manipulated, except in the structure
used by these systems. The concept presented in this article, in contrast, puts the mobile robot at the center
and looks at the manufacturing system from this perspective. This has its limitations and its potentials,
since a state machine can be turned into a single program, which the programmer can freely shape and
extract any relevant data. For future research, several versions of manufacturing systems can be produced
in a short time based on this system and used as input data for other simulations.

There are many ways to describe production systems, but these are not entirely optimal for a mobile
robot. Therefore, when prescribing the model, the aim should be to obtain a system that is easy to use for
the three main tasks of the mobile robot (task assignment, route planning, traffic control). There are
several possible specifications, the two most common ones are: discrete event system and linear
programming. The presented comprehensive modeling method supports mainly the implementation with
discrete event modeling options. It can handle more complex models than linear programming equation
and provides an optimal solution in a reasonable time. The parts of the method are: mobile robot
description, manufacturing system characteristics modeling, and mobile robot task description.

Consider the set R as the set of robots, with element number i.

Each R; has a possible number j of features, denoted with R;.

This allows the properties of the robots to be named and managed. Some robot properties are:
maximum robot speed, load capacity, dimensions, turning area requirement, battery capacity.

Let the set of production equipment (e.g., machine tools or assembly machines) in the production
system be M, the number of machines is set to k, each property is set to 1, and each property of each
machine is denoted by My;. Some possible properties are: minimum cycle time, number of pieces that can
be produced in a given time, number of tools, size of equipment, number of connection points, position,
and orientation on the floor plan.

There should also be a set of characteristic parameters of the production system, denoted by S, with the
number n of parameters. The parameters listed are, for example, number and location of machines, length,
and width of paths between stations.

The models that can be prescribed: discrete event systems, finite state automata, Petri nets.

The objective functions can be:

— minimize the total cost,
— maximize utilization,
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— optimize the number of robots.
The intermediate objective functions can be:

— minimize downtime due to congestion,
— avoid deadlocks,

— optimize battery capacity,

— increase performance in task execution.

The description of the Figure 1 is the following:

We first analyze the product characteristics, types, number of products, cycle time, and quality
characteristics. Based on these, we will prepare the production system concept for the product. This
includes the process, the machines, the tools, the layout sketch, the material, and the information flow. It
also includes the handling of rejects in addition to raw materials and waste.

Manufacturing system Products Mobile robots database

product types,

manufacturing process quantity, cycle Robot types
machines, tools, layout, time, quality Manufacturers
floorplan Mobile robot load

i Battery capacit
material flow o 2Ty capacity
information flow Physical dimensions
raw material storage Robot properties
waste and reject Stations
handling Distances

System members Mobile robot-centered model System

Cost Robot functions

Time Robot dimensions

Quality Robot parameters
Robot distances
Robot times
Robot numbers

Environment
Changebility
Flexibility

Final state machines
Discrete event systems
Petri-nets

Mobile robot-centeres manufacturing system
properties

Figure 1. The overall picture of the method.
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In terms of creating a model system, in addition to the earlier production system description, a database
of mobile robots is required, including robot types, manufacturer, load capacity, battery capacity, and
physical dimensions. Furthermore, the robot properties, the stations, and their distances are also used to
describe the model system.

The next step is to describe the mobile robot-centric model, which includes the relevant functions,
dimensions, parameters, distances, times, and quantities. Here, all the important features of the model are
defined, the distance between each station is written down (not as a number, but as a parameter), the time
required to cover the distances is calculated from the robot’s speed. The tasks performed by the robot, that
is, the robot functions, must also be taken into account. The appearance of the available space in the model
introduces another practical parameter specific to real problems, namely the consideration of physical
dimensions. The number of robots is a parameter for which various optimal algorithms can be developed.
The current trend is to minimize the number of robots, which may be limited by the robustness of the
system requirements. Once this model is established, the parameters of the system and the system
elements can be defined. Examples of the first one is the relation with the environment, the changeability,
and the flexibility, while the second one is the cost, the time, and the quality.

The model written in this way is intended to be manageable with the following tools (at least one of
them), so that a simulation can be created that is simple enough to handle a large number of cases in a
reasonable amount of time. These tools are: Petri nets, finite state automata, discrete event systems.

Finally, from the solution of the described mobile robot-centric model, the system parameters and
therefore the solutions to the problem can be extracted, from which the optimal solution can be selected
that meets the given criteria.

Considering the earlier figure, and following the steps to complete the mobile robot-centric model
specification, the simulation can be performed using the three methods mentioned before. Then, based on
the evaluation of the results obtained, the process can be moved forward. Accept the results and proceed
with the design based on them. Alternatively, new parameters can be considered and then the model and
solutions can be redesigned. In other words, feedback is possible after the final result has been evaluated.

After describing the model, a case study is presented to illustrate the results achieved by applying the
model.

3. First case study

The main task of industrial mobile robots is to move raw materials, work in progress, and final products
through the production system. Figure 2 shows the different paths that each product has to take in the
manufacturing system to become a finished product. These are marked with different colors. Each product
is transported between the stations by robots.

When the product is finished with one phase, it is ready to be transferred to another processing stage.
Industrial mobile robot technology may provide the optimal solution for this. Individual transport tasks
can be assigned to the robots. The approach of a mobile robot-centric manufacturing system was used to
describe the model, that is, the mobile robot was the central element. This case study is not intended to
solve the routing and scheduling problems.

The robot model that is presented allows the parameters of the robot to be varied by using the example
of a simple transport task. The expectation of this model is that mobile robots can be negotiated and
compared in a uniform way, thus optimizing their selection for the given task. To this end, we first
construct a model that can receive the robot parameters and tasks, simulate them in a discrete-event
system, and use the results to draw inferences between the robot parameters and the manufacturing system
parameters. This will allow us to optimize, among many other things, the optimal battery capacity for a
given number of workpieces and distance (distance between two end points).

From the robot’s point of view, this process can be simplified to implement a transport task from point
A to point B. This was also used in the modeling, where a point A to point B transport task was described in
a well parameterizable and fast simulation form.
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Raw material storage Machine 1

Machine 2 Machine 3

Figure 2. A model production system with colored lines marking the path of the different products.

The mobile robot model contains a point A and a point B. Between these, we can interpret the transport
task. The operation of the model can be summarized as follows: define a given quantity of product
(package) to be transported. The robot starts its operation at point A, if there is a package it picks one
up. Then it moves to point B, covering the specified distance in the specified time. At point B, the robot
unloads the package. It checks the battery capacity if it is enough, it returns to point A (without the
package). If it is not full enough for a return trip (from B to A) and another trip from A to B, it goes to the
charging point and charges the battery. At the end of the charge, it goes to point A where it checks whether
there is any package to pick up. If so, it goes through the already described process again. If there is no
package at point A, the delivery task is completed and the simulation ends.

The parameters of the robot are following

* Battery capacity,

* Battery loss (consumption) during movement over a unit of time,
* Charging time (battery charge time),

+ If there is a package on the robot (Boolean value).

Manufacturing system characteristic:
* Number of packages,
* Distance from point A to point B,

* Distance from point B to point A,
+ Distance the charging point from point B.
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The parameters used to calculate the earlier parameters are as follows:
* Number of packages: “c,”
* Delivery time A - B: “ab,”
¢ Delivery time B > A: “ba,”
+ Charging time: “t,”
* Movement time to the charging station: “tm,”
« Utilization of the mobile robot: “K.”

The task is to maximize the utilization, which can be represented by the equation (1) using the parameters
above.

> c# (ab+ba)
> cx (ab+ba)+tm+t

max K = (1)

A finite-state automation illustrates the foundation of the simulation model for the case study
described. This automation is shown in Figure 3.

The model was adapted in python programing language. For the implementation, an if statement is
embedded in a loop that specifies which event is currently running (Table 1). In the interpretation, this was
supplemented by a time factor. The time is a uniform value, each event is defined with respect to this value.
The length of the paths between each station is also measured in this unit, therefore called the unit of
movement (Table 1).

The results obtained show that the model can be used to test the battery capacity as a function of the
number of pieces and the distance to be transported, as can be seen on Figure 4. As can be seen from
the values for a smaller number of packs, the higher the capacity, the worse the utilization is because the
charging time is too long compared to the number of packs, as can be seen for 100 packs and a capacity of

Point 'B’

Robot | If there is available package Robot put
picks up a down the
package package

B>
charging
point

| Suidieyd moj| st A1aneq ayy | |

charging
point >
A

agesped aJow ou st 313U 4

Robot
charging

End of
process

Charging
location

Figure 3. The final state machine of the described system.
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Table 1. Source code for the final state machine

States:

1: pick up the package

2: put down the package

3. robot moving from A to B

Python code:
while state = 8:
if state == 1:
if A_packages > 0: // if there is available

4: robot moving from B to A package
5: robot moving from B to charging point A _packages -= 1// count down the number
6: robot is charging of the package
7: robot is moving from charging point to A state = 3
8: simulation over robot_all += 1
else:
i = 0// cycle variable, using for time step state = 8
path_length AB = 10 // the length of the if state == 2:
path from A to B B packages += 1
robot_all +=1
path_length BA = 10 // the length of the if charge > 20: //check the battery
path from B to A state = 4
path_length charging = 6 // the length of else:
the path from B to the charging point, state =5
and from charging point to A if state == 3:
if robot i == path_length AB:
actual_state = 1 // starting state state = 2
robot_i= 0
packages = 1000 // how many packages are robot_move += [
ready to move else:
robot i+=1
charge = 100 // this is the capacity of the charge =1
battery robot_move += 1
if state == 4:
robot_charge no = 0 // charging cycle if robot i == path length BA:
number state = 1
robot i=0
robot_move += 1
else:
robot i +=1
charge = 1
robot_move += 1
if state == 5:
if robot i == path_length_charging:
State = 6
robot i =0
else:
robot i+=1
charge =1
if state ==
if charge >= max_charge-5:
State =7
robot i=0
robot_all += 1
robot_charge no += 1
Continued
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Table 1. Continued

else:
robot i+=1
charge +=5
robot_all += 1

if state == 7:

if robot i == path_length_charging:
state = 1
robot i=0

else:
robot i +=1
charge -= 1

increment i // next time step

Robot utilization depending on battery capacity for different numbers
of packages

100,0%

90,0%

80,0%

70,0%
S
2 60,0%
S
= 50,0%
o
o
71 40,0%
o

30,0%

20,0%

10,0%

0,0%

50 100 150 200 250 300 350 400 450 500 = 1000 = 10000

m 100 pcs 61,7% @ 76,0% @ 79,5% @ 79,5% @ 81,2% @ 789%  83,1%  81,3% 79,8% | 782% 79,0%  28,4%
m500 pcs 60,8% | 76,6% @ 802% @ 82,2% @ 82,4% | 83,7% @ 83,2%  84,6%  850% | 83,7% 82,6% 66,5%
W 1000 pcs 60,6% @ 76,4%  80,3% @ 82,2% 83,0%  83,7% 839% 84,6% 84,1%  84,7% 84,4% 79,9%
2000 pcs 60,6% | 76,4%  80,4% @ 82,2%  83,2% | 83,7%  84,3% 84,6% 84,6% | 84,7%  854%  79,9%
M 5000 pcs 60,5% @ 76,4%  80,4%  82,1%  83,2% @ 83,8% 84,3% 84,6% 84,8% | 851% 86,0%  83,3%

M 10 000 pcs 60,5% @ 76,4% @ 80,4% 82,2% 83,2% 83,8% 84,3% 84,6% 849% 852% 86,0% @ 850%
m 20 000 pcs 60,5% @ 76,4% @ 80,4% 822% 832% 83,9% 84,3% 84,6% 84,9% | 851% 86,1% @ 86,0%
50 000 pcs 60,5% @ 76,4% @ 80,4% 82,2% 83,2% 839% 843% 84,7% 849% | 851% 86,0% @ 86,5%
W100000pcs = 60,5% @ 76,4% @ 80,4% @ 82,2%  83,2% @ 83,9%  84,3% 84,7% 84,9% 851% @ 86,1% @ 86,7%
200 000 pcs 60,5% @ 76,4% @ 80,4% 822% 832% 839% 84,3% 84,7% 84,9% | 851% 86,1% @ 86,8%
W 500 000 pcs 60,5% @ 76,4% @ 80,4% 82,2% 83,2% 83,9% @ 84,3% 84,7% 84,9% @ 851% 86,1% @ 86,9%
m1000000pcs 60,5% @ 76,4% @ 80,4% 82,2% 83,2% 839% 843% 84,7% 849% 851% 86,1% @ 86,9%
Battery capacity 50 - 10000 unit of movement

Figure 4. Results of first case study simulation.
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10,000 unit of movement, the value is 28.4%. However, for a higher number of packages, the utilization
reaches a maximum value beyond which it does not increase, 85.1% for 500 packs, 86.1% for 1000 packs,
but even for 10,000 packs, it is only slightly higher: 86.9%. The model outlined is therefore suitable for
comparing robot utilization rates.

3.1. Second case study

In the second case study, the model is extended to a more complex scenario. The number of stations and
the number of products are increased. The concept is the following: the robot starts from a raw material
warehouse to manufacture products. From there it takes the necessary raw materials and then travels to
each station according to the product information. At each station, it spends a specified period of time and
then moves on to the next station. From the last station, the finished product is taken to the finished goods
warehouse. Here, the robot checks the battery capacity. If the battery capacity is below a threshold value,
charging is required and the robot goes to the charging point, from where it returns to the raw material
warehouse after charging. If no charging is required, the robot will go to the raw material warehouse
instead.

In this case, there are four stations and three different products can be produced, named ABCD, ABD,
and CD. At each station there is a specified time for the process to complete, for simplicity this has been set
to 5 units, that is, 25 s. As these are also in separate variables, changing these values is extremely simple.
Production time for each product without delivery: ABCD—100 s, ABD—75 s, CD—50 s. All the states
of the whole process are represented by the state machine in Figure 5, where the states for the ABCD
product range from 101 to 112. The common states for all the three products are states 113 and 114 for
battery charging and states 116 and 115 for the return to the raw material warehouse. The ABD product has
state numbers 201 to 209 and the CD product has state numbers 301 to 307. The longest simulation run
involved the production of more than 5 million pieces, which in production time, if 75 s is applied, is more
than 12 years, and this does not include the time for robotic deliveries. The run time of this program was
less than 9 min.

116

Final product
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Charging
station

Figure 5. The final state machine of the second case study.
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The program can be used to determine the optimal distance between machines based on the required
number of different products to be produced. The optimization criteria defined in terms of the number of
charges of the robot, because its value also characterizes the speed of the whole system. Thus, we want to
minimize this number of charges. The distance between the machines can be placed under an optimal
arrangement, if it is known how many of each part to produce. This has been done in several steps, and the
following graphs on Figure 6 have been prepared by picking out a part of the results. For ease of
visualization, only two distances are considered. These are RS-A (from raw material storage to point A)
and CD (from point C to point D), respectively. Plotting these two distances in two dimensions, in a plane,
gives the bottom plane shown in all the graphs at Figure 6. The vertical axis shows the number of charges.
Three graphs show the manufacture of just one product, these are ABCD, ABD, and CD. From these, it
can be seen that the manufacture of the product CD is not sensitive to changes in the distance RS-A, while
the product ABD varies uniformly and is independent of changes in the distance CD, but is linearly
dependent on the distance RS-A. This is only a simple example, the code implemented on the basis of the
mobile robot-centric manufacturing system theory can be used to explore much more complex relation-
ships, which are more difficult to visualize. It may be suitable, for example, to find an optimal solution for
a large number of path possibilities with a minimum search.

The running times for each number of production pieces, in rounds: 100,020 pieces/23.9 s; 1,000,020
pieces/228.3 s; 20,020 pieces/4.59 s; 504,020 pieces/47.16 s; 5,040,020 pieces/533.54 s. The advantage is
that the program can be easily built on the ground of the state machine, the built program is transparent and
extensible.

The disadvantage is that the developer must be capable of understanding the theory of state machines in
addition to the programming knowledge.

What distinguishes this whole methodology from other commercial systems are the following three
things: First, it approaches the problem analytically and does not require any expensive software available
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Figure 6. Result of the second case study simulation.
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in the industry, only basic programming knowledge. Second, because the program runs very quickly, it
can simulate extremely large numbers of items very quickly, or an extremely large number of cases in a
reasonable amount of time. This requires only a few parameter rewrites, which can be done automatically
even in a more complex program, which automates the search for the optimum. Third, elements that more
closely represent real conditions can be added to the simulation at a later stage. These can be handled by
probabilistic variables, allowing, for example, the probability of breakdown of certain robot types to be
included in the model. Even blockages and operator assistance can be introduced in this way.

4. Discussion

The selection and integration of mobile robots into a manufacturing system opens up many questions and
challenges for engineers. Optimal use of these units can be predicted at the moment of their selection,
based on measurable values and simulations. Such simulations will continue to help production system
designers in the future. It is worth investigating how to write up the manufacturing system from the robot’s
point of view and to assist selection. Further research on this method is needed, and the implementation of
existing algorithms should be investigated. It is worthwhile to complement it with a mobile robot
database, which could be developed into a knowledge base to support selection. An additional idea is
to analyze the simulation results using big data methods.

Based on the method, future research can be performed to investigate the return on investment,
utilization, number of units required, battery capacity required, and more for simple cases of mobile
robots. In addition to the selection of the optimal robot, a number of challenges can also be solved based on
this concept, as demonstrated in the second case study.

5. Conclusions

The presented mobile robot-centric approach is an innovation in the literature. The mobile robot unit is
either considered as part of the manufacturing system or is analyzed in isolation. The approach described
will also be necessary due to the rapid growth of mobile robots and the large variety of choices expected.
The aim is to ensure that the robot selected for a given task is optimal. The case study presented is an
application of this approach and looks for a correlation between the number of packages to be transported
and the battery capacity.

The case study described in this article confirms that the mobile robot-centric manufacturing system
method is a simple way to describe practical cases and can be quickly computed. Hence, this concept
can be an effective tool for modeling mobile robots embedded in the manufacturing systems in the
future.
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