
RATIONAL POINTS ON LINEAR SUBSPACES. 
REPRESENTATION OF AN INTEGER AS A SUM 
OF SQUARES WITH ACCESSORY CONDITIONS 

T. S. MOTZKIN 

1. Introduction. The present study was motivated by an investigation 
of algebraic conjugates in the complex plane (cf. 4 for one of the results) 
where some of its concepts are extended and applied. 

Let F be a flat (linear subspace) in real affine n-space. The points 
z = (f !, . . . , fn) on F for which the least common denominator of the co­
ordinates f v is minimum form a grid G, the main grid of F, studied in § 3. The 
minimum denominator K, and a corresponding numerator i, for a flat given by 
a system of linear equations with integral coefficients, and for a flat F through 
given points with rational co-ordinates, are determined in § 2. This section, 
which contains, in nuce, a geometric theory of systems of linear diophantine 
equations (with rational solutions), is concluded by a remarkable law of 
duality. 

The volume of the fundamental cell of the main grid G depends on the 
denominator K and on the anomaly, that is, the volume of the fundamental 
cell of the main grid of a parallel flat through an integral point. The anomalies 
are equal for orthogonal rational flats of m and n — m dimensions. The 
square w of the anomaly is a sum of squares without a common divisor, of 
integers that are minors of a matrix and therefore connected by bilinear 
relations. For n > 5, co can be any positive integer; for n < 4, there are certain 
restrictions, which are completely determined in § 4. 

2. The numerator and the denominator of a flat 

2T. A flat is multiplied or divided by a number X by multiplying or dividing 
by X every co-ordinate of each of its points. 

A flat is integral if it contains a point with integral co-ordinates. An integral 
flat F is primitive if no F/L is integral for integral i > 1. Let i and K be coprime 
positive integers, and 

F' = (L/K)F. 

The number i is the numerator, K the denominator, and F is the primitive of 
Ff. For a flat through 0 we define i = 0, K = 1. 

If F' consists of a single (rational) point r, then K is the least common 
denominator, and t is the greatest common divisor of the numerators, of the 
co-ordinates of r. 
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T h e subspace pF' with rational p is integral if and only if p = <TK/L with 
integral a. T h e denominator K is the least positive integer for which KF' is 
integral, and the least among the denominators of points of F'. 

W e have K = 1 if and only if F' is integral, and K = i = 1 if and only if 
F' is primitive. 

I t is easily seen t h a t a linear transformation f J — X^xfx with a unimodular 
matr ix (c„x), and no other linear transformation, leaves the numera tor and 
denominator of every flat unchanged. 

2.2. The denominator K of F' divides the denominator K\ of an arbitrary point 

n of Ff. 

Proof. T h e subspace F' contains a point r of denominator K. Let 

K = (TK + <T\Ki 

be the greatest common divisor of K and KI. Then 

r2 = (o-/cr + o-iKiri)/*' 

is a point on the s t raight line through r and ri . T h e denominator *2 of 2̂ 
divides K , hence also K. Since K < /C2, we have K2 = K and K = K . 

2.3. A rational hyperplane H has an equation 

X^„f „ = L/K 

with coprime t > 0 and AC > 1, where f„ are the co-ordinates of a point K of 
H and the o-, are integers with no common divisor. 

The numbers i and K are the numerator and the denominator of H. 

Proof. The case i = 0 is trivial. For i ^ 0, note t h a t the hyperplane 
YL°vlv = 1 is integral and hence obviously primitive. 

2.4. A rational flat R is given by a system of / equations 

Hlv\vÇv = <T\, X = 1, . . . , /, 

with integral a\v and a\. Let aM be the greatest common divisor of the minors 
of order JJL of the matr ix (crx„), and cM the greatest common divisor of all minors 
of order /JL of the matr ix (<r\v, <rv) t h a t are not minors of the matr ix (a\v). Then 
R is integral if and only if aM divides c^ for every ju = 1, . . . , n — m, where 
m is the number of dimensions of R (also, by a theorem of Frobenius, if and 
only if an-.m divides cn-m; cf. 2, p. 84). 

2.5. For every rational R we have : 
The numerator and denominator of R are the numerator and denominator 

of the point r = (ci/ai, . . . , cn-m/an-m) of (n — m)-space. 

Proof. If we multiply R by a prime p, then a\> a\Vl cM, aM, r become in tu rn 
<r\p, v\v, c^p, aM, rp. If we divide R by /?, they become <7X, o"x^, Cv-Pii~li ^nP", 
r/p. Since the condition for integral R and r is the same, it follows tha t R 
and r have the same numerator and denominator . 
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If the flat R is given by another system of equations, the point r may 
change (the numerator and denominator remain, of course, unchanged). For 
example, for the system fi = 3, 3f2 = 3, we have r = (3, 1), while for 3f i = 9, 
3f2 = 3, we have r = (1, 1). 

2.6. For the smallest flat R through I given points 

(frXlAxi • • • > <T\n/(T\)i X = 1, . . . , /, 

with integral <T\V and <T\, again let av be the greatest common divisor of the 
minors of order /z of the matrix (<r\v), and cM the greatest common divisor of 
all other minors of order \i of the matrix (a\vi a\). The point r = (ci/ai, . . . , 
cm+i/am+i) of (m + l)-space (m being again the number of dimensions of R) 
may have its last co-ordinate equal to <» ; in this case we define i{r) = 1, 
K(T) = 0. Then we have: 

The flat R is integral if and only if i (r) = 1. 

Proof. The four kinds of elementary transformations (change of sign of a 
row or column, addition of a row or column to another) that are sufficient 
to bring the matrix (<T\V) into its normal form, together with the corresponding 
changes of the o-\, affect neither the supposition nor the assertion. We may 
therefore assume o-MM = aja^-i (with a 0 = l ) , p = 1, . . . ,rn + 1, and all 
other (TKV = 0. If am+i = 0, cm+i 9^ 0, then R contains O. Otherwise, the 
equations of R are 

YJVHÇH/VM = 1» fm+2 = . . . = fn = 0. 

Integral solutions fM exist if and only if the numerator of (ai/an, . . . , 
(rm+i/(Tm+itm+i) is 1. But a prime p is contained in every crM to a higher power 
than in the corresponding <rMM, if and only if the same is true for the numbers 
cM and aM. This completes the proof. 

2.7. For every rational R we obtain {defining r as in 2.6) : 

t(R) = «(r), K(R) = t(r). 

Proof. This follows from the preceding theorem by observing that if R is 
multiplied by a prime p (or 1/p), then o-x, a\V} cM, aM, r become o-\, o"xv£, ^ M _ 1 » 
^M^M» r / £ (° r respectively o-x ,̂ crXv, c^p, aM, r/^>). 

2.8. By 2.5 and 2.7 we have: 
The duality in which the point pi, . . . , pn corresponds to the hyperplane 

HP"f " = 1 ^ a 5 ^^ ê *ec/ 0/ interchanging the numerator and denominator of 
rational flats. 

Corresponding flats are thus also arithmetrically ''reciprocal." 
Using the last remark of 2.1 it is seen that the same duality law holds for 

every correlation Sp„c„xfx = 1 with a unimodular matrix (cv\), and for no 
other correlation. 
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2.9. The rational part Fr of a flat F is the smallest flat of Fr that contains 
the rational points of F; it is the largest rational flat in F. 

The rational points of F are dense in FT. 

Proof. Let z = ro + ]LfMrM with rational r0» ?V be a general point of Fr. In 
every neighbourhood of z there are points r0 + J^p^r^ with rational pM. 

77££ numerator and denominator are defined for every flat F through a rational 
point. 

Proof. They are the same as for FT. 

3. The main grid 

3.1. The main grid of F is the set of the points of F with minimum deno­
minator K. 

The main grid of F has the same dimension as Fr. 

Proof. Let S0/K + £pMsM with integral s0 and sM and rational pM be a general 
rational point of F. Then there exist points SO/K + o -^p^ , a ^ 0, of denomina­
tor K: choose a so that the o-pM are integers. 

3.2 The relative co-ordinates XM of a point 2 of Fr are defined with regard 
to a basis r0 + rM of the main grid of F, as the coefficients in the representa­
tion 

z = r0 + L V/x-

Rational points r = r0 + Yip»?* have rational relative co-ordinates pM. 

!TAe denominator KI of a rational point r of F equals KK, where K is the denomina­
tor of F and K is the common denominator of the pM. 

Proof. By 2.2, K divides m. Put KI = KK2 with integral K2. The point 

KK2r = KK2r0 + YLKtPn%Krn 

is integral only when the /c2pM are integers. Hence K2 = K . 

3.3. 4̂ system of m integral points z^ forms a basis of the main grid of a flat 

through 0 if and only if the ( ) minors d(vlf . . . , vm), formed by the v\th, . . . , 

/ * \ 
vmth column, 1 < v\ < . . . < vm < nf of the matrix I . . . J, have no common 

divisor (2, p. 84, Frobenius). 

Proof. The flat R through 0 and the points sM has the dimension m if the 
minors d(\i, . . . , \m) are not all 0. The points zM form a basis of the main 
grid of R if and only if the coefficients <rM are integers whenever X^M^M ls 
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integral. If the integral points sM are not a basis, then there exists an integral 
point 5 = X)o-MsM such that the coefficients cM are not all integers, that is, that 
(<n, . . . , am) has a denominator K > 1, and KS = X ^ O ^ M shows that the 
linear congruences 0 = Z)rMsM modulo a prime p dividing K have a solution 

TM such that not all rM = 0; hence all the ( I minors are = 0 and have, 
\m/ 

therefore, the common divisor p. Conversely, if the minors are = 0 modulo a 
prime p} then the congruences 0 = X)rM£M have a solution rM such that not 
all rM = 0, and ^{rll/p)zll is integral while not all rjp are integers. 

\m) 
3.4. The I ) minors d(vi, . . . , vm) fulfil the bilinear relations 

\m/ 

d(vh . . . , vm)d(v'i, . . . , v'm) 

= Z) d(vh • • • ?
 vm~h vl)d{y[, . . . , ^_ i , vnt vl+i, . . . , O » 

(rf(^2, Ï'I» • • •) being defined as —d(vu vi, , . .), etc.), ( J — m(n — m) — 1 

of which are independent, and every ( 1 mumbers fulfilling these relations 

are minors of a matrix with rational elements ( for example, 5, p. 22). 

Every ( 1 integers that have no common divisor and fulfil these bilinear 

relations are minors of a matrix with integral elements. 

Proof. The given integers are minors of a matrix I . . . J with rational 

elements. Let R be the rational flat of dimension m through 0 and the points 
yi» • • • » J mi and let z\y . . . , zm be a basis of the main grid of R. Then 

l y i \ l Z l \ 
Jn — iLCrpZpy and the minors of the two matrices I . . . I and I . . . 1 differ by 

\ym/ \Zm/ 
the constant factor 

1Cn . . . 

The minors of either matrix being integers with no common divisor, we have 
c = dbl. For c — —\ replace %\ by —Z\. 

4. Values of the anomaly 

4.1. The cell size of a flat F through a rational point is the volume of the 
fundamental cell of the main grid of F. If F contains only one rational point, 
the cell size is defined as 1. 
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The anomaly of a flat F is the cell size of a parallel flat F0 through 0. I t s 
square a> is the sum of the squares of the minors d(vi, . . . , vm) of a basis of 
t he main grid of Fo', hence co is an integer. 

The cell size of a flat of denominator K with a rational part of m' dimensions 
is the square root of a rational number o>K~2m' and is greater than or equal to K~m'. 

Proof. The number V ^ is the cell size of KF and equal to Km' t imes the 
cell size of F, and \/a> > 1. 

4.2. The anomalies of any two orthogonal rational flats of m and n — m 
dimensions are equal. 

Proof. Suppose 0 < m < n. Let zi, . . . , zm be a basis of the main grid of a 
rat ional flat R through 0. There exist zm+i, • . . , zn such t h a t Zi, . . . , zn is a 
basis of the main grid of w-space.* Let the matr ix (yu . . . , yn) be the t rans­
pose of the inverse of the matr ix (zi, . . . , zn); then yv is one of the two primi­
t ive points of the line through 0 orthogonal to the flat through 0 and all 
zp with p 7e v. Now every minor of either matr ix equals the complementary 
minor of the other (for example, 1, p . 31). The flat through 0 determined by 
ym+ij • • • » Jn, which is orthogonal to R, has therefore the same anomaly as R. 

In case m = 1, the proposition can also easily be verified as follows. The 
fundamental cell of the main grid of the hyperplane £o-„f„ = 0 (where the 
coefficients av are integers wi thout a common divisor) is a side of a funda­
menta l cell Cof the grid of all integral points. The opposite side is on £o-,f „= 1 
(or —1), so t h a t the distance between these sides is (So-,,2)-*. The volume 
of C being 1, the volume of the side equals (HoV2)% which is the anomaly of 
the s t raight line, orthogonal to the hyperplane, through 0 and (ai, . . . , an). 

4.3. The square œ of the anomaly of a rational flat of a given number m of 
dimensions in n-space can be any positive integer for n > 5. For n < 4 there 
are the following exceptions: 

m n — m Impossible values: 
(or n — m m) integers of the form 

1 1 4& or (4/ -f 3)k 
1 2 4k or 8k + 7 
1 3 8k 
2 2 16k or 16k + 12 or 8k + 7 

By 3.4 this is equivalent to saying t ha t every positive integer, with excep­

tions as s ta ted, is the sum of f J squares of integers wi thout a common 

divisor and connected by the bilinear relations indicated in 3.4. 
By 4.2, the range of co remains the same if m and n — m are interchanged. 

Since the anomaly of a flat of m dimensions in w-space is also the anomaly 

*A special case of this long-known result was reviewed as new in Math. Reviews, 7 (1946), 
242 (the fourth paper). 
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of the same flat in (n + l)-space, the range of co cannot decrease for constant 
m and increasing n — m, hence the same is true for constant n — m and 
increasing m. Our assertions need therefore only be proved for the given 
combinations (w, n — m), and (the absence of exceptions) for (1, 4) and (2, 3), 
that is, in 5-space. 

4.4. Proof for m = 1. There are no bilinear relations. The representation 
of an integer as a sum of n squares without a common divisor has been fre­
quently treated. For n = 3, the numbers without a representation were given 
by Legendre (2, p. 261, footnote 5). For n = 5 one of the squares can be 
assumed to be 1 ; for n = 4, if a representation exists, it can be assumed 
to be 0 or 1. 

Since 1/4 (1/8) of the representations of a positive integer co as a sum of 
2 (4) squares of integers (given, for example, in 3, pp. 103-4 (113)) is a multi­
plicative function /(co), the same is true for the function g(co) whose value 
is 1/4 (1/8) of the number of primitive representations of o). This fellows 
easily from the formula 

g(co) = /(«) - Tj{«/p*) + Zf(<*/W)) - + . . . , 

where p, q, . . . are the different primes whose squares divide co. Therefore we 
have, for co = 11^", 

with / ( l ) = 1, f{p~l) = 0. This gives immediately the value (2, pp. 241, 
242, 288, 303) of g(co) for every co, and the above cases of g(co) = 0. 

4.5. Proof for m = 2. For n — m = 2, let 5 = (o-i, . . . , 0-4), s' = (0-/, . . . , 
oV) be a basis of the main grid of a rational flat through 0. The six minors 
of order 2 are connected by a single bilinear relation. The number co is a sum 
of six squares 

Eat2 + £cV, i = 1,2,3, 

with no common divisor and connected by the relation 

X>i&* = 0, 

whence co = £ ( a * + bi)2. This is impossible for co = 8& + 7. For co = 4&, 
two squares belonging to the same i, say i = 1, are even, the others odd. Then 
a>i2 + bi2, i = 2, 3, is 2 or 10 (mod 16), according as atbi is ± 1 or ± 3 (mod 8). 
Hence if a±2 + bi2 is 0, 4, or 8 (mod 16), with a\bi respectively 0, 0, or 4 
(mod 8), then co is 4, 8, or 4, and never 0 or 12 (mod 16). 

To represent co 9^ 4&, 8& + 7, put all bi = 0 (choosing 0). For 
co = 16& + 4 and co = 16& + 8, express co/4 as a sum X^*2 of three squares 
with no common divisor; supposing, as we may, c2 even and c$ odd, put 

CL\ = 2ci, d<L = #3 = C2 + Cz, bi = 0 , 62 = — bz = Ci — Cz (cr3 = cr4, oV = oY)-

By 3.4, for every solution au bt there exists a matrix 5, s'. 
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For (w, n — m) = (2, 3), co can be any positive integer. Indeed, the num­
bers excepted both for (1, 3) and for (2, 2) are those divisible by 16. But 
Si = (1, 1, 0, 0, 0), 52 = (2, 0, (7i, <r2, cr3) yields co = 2X)o"i2 + 4; and every 
number 8k + 6 is a sum YL^i2 with not all o-* even. 
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