RATIONAL POINTS ON LINEAR SUBSPACES.
REPRESENTATION OF AN INTEGER AS A SUM
OF SQUARES WITH ACCESSORY CONDITIONS

T. S. MOTZKIN

1. Introduction. The present study was motivated by an investigation
of algebraic conjugates in the complex plane (cf. 4 for one of the results)
where some of its concepts are extended and applied.

Let F be a flat (linear subspace) in real affine n-space. The points
z= ({1,..., &) on F for which the least common denominator of the co-
ordinates {, is minimum form a grid G, the main grid of F, studied in § 3. The
minimum dencominator k, and a corresponding numerator ¢, for a flat given by
a system of linear equations with integral coefficients, and for a flat F through
given points with rational co-ordinates, are determined .in § 2. This section,
which contains, in nuce, a geometric theory of systems of linear diophantine
equations (with rational solutions), is concluded by a remarkable law of
duality.

The volume of the fundamental cell of the main grid G depends on the
denominator « and on the anomaly, that is, the volume of the fundamental
cell of the main grid of a parallel flat through an integral point. The anomalies
are equal for orthogonal rational flats of m and n — m dimensions. The
square w of the anomaly is a sum of squares without a common divisor, of
integers that are minors of a matrix and therefore connected by bilinear
relations. For # > 5, w can be any positive integer; for n < 4, there are certain
restrictions, which are completely determined in § 4.

2. The numerator and the denominator of a flat

2.1. A flat is multiplied or divided by a number A by multiplying or dividing
by A every co-ordinate of each of its points.

A flat is integral if it contains a point with integral co-ordinates. An integral
flat F is primitive if no F/u is integral for integral « > 1. Let « and « be coprime
positive integers, and

F' = (/x)F.

The number « is the numerator, k the denominator, and F is the primitive of
F'. For a flat through O we define . = 0, x = 1.

If F’ consists of a single (rational) point 7, then « is the least common
denominator, and . is the greatest common divisor of the numerators, of the
co-ordinates of 7.
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The subspace pF’ with rational p is integral if and only if p = ox/. with
integral o. The denominator « is the least positive integer for which «F’ is
integral, and the least among the denominators of points of F’.

We have « = 1 if and only if F’ is integral, and x = « = 1 if and only if
F' is primitive.

It is easily seen that a linear transformation ¢,’ = Y c.a¢» with a unimodular
matrix (c,), and no other linear transformation, leaves the numerator and
denominator of every flat unchanged.

2.2. The denominator « of F' divides the denominator x, of an arbitrary point
71 of F'.
Proof. The subspace F’ contains a point 7 of denominator . Let

k' = ok + o1k1

be the greatest common divisor of « and x;. Then
Ty = (Ul"’ + ¢71K171)/KI

is a point on the straight line through » and 7;. The denominator «; of 7,
divides «’, hence also . Since « < ks, we have k2 = « and « = «'.

2.3. A rational hyperplane H has an equation
S oy = /K

with coprime ¢ > 0 and « > 1, where {, are the co-ordinates of a point « of
H and the ¢, are integers with no common divisor.
The numbers v and « are the numerator and the denominator of H.

Proof. The case « = 0 is trivial. For ¢ # 0, note that the hyperplane
> o,y = 1 is integral and hence obviously primitive.

2.4. A rational flat R is given by a system of I equations
ZO')\K»:O‘)‘, )\=1,...,l,

with integral oy, and o). Let a, be the greatest common divisor of the minors
of order u of the matrix (oy,), and ¢, the greatest common divisor of all minors
of order u of the matrix (o\,, ¢,) that are not minors of the matrix (o),). Then
R is integral if and only if a, divides ¢, for every u = 1,...,n — m, where
m is the number of dimensions of R (also, by a theorem of Frobenius, if and
only if a,_, divides ¢,_,; cf. 2, p. 84).

2.5. For every rational R we have:
The numerator and denominator of R are the numerator and denominator
of the point r = (¢c1/ay, . . ., Co—m/Anm) of (m — m)-space.

Proof. If we multiply R by a prime p, then oy, oy, ¢4, @y, 7 become in turn
P, oaw, Cup, @, rp. If we divide R by p, they become ay, onp, Cup*™Y, aup*,
r/p. Since the condition for integral R and r is the same, it follows that R
and 7 have the same numerator and denominator.
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If the flat R is given by another system of equations, the point » may
change (the numerator and denominator remain, of course, unchanged). For
example, for the system ¢{; = 3, 3¢2 = 3, we haver = (3, 1), while for 3¢; = 9,
3¢ = 3, we have r = (1, 1).

2.6. For the smallest flat R through I given points
(oa1/0rs « « oy OAn/ 2, A=1,...,1

with integral o), and o), again let @, be the greatest common divisor of the
minors of order u of the matrix (s,), and ¢, the greatest common divisor of
all other minors of order u of the matrix (o»,, o3). The point r = (¢y/ay, . . .,
Cm41/@my1) Of (m + 1)-space (m being again the number of dimensions of R)
may have its last co-ordinate equal to «; in this case we define «(r) = 1,
k(r) = 0. Then we have:

The flat R s integral if and only if (r) = 1.

Proof. The four kinds of elementary transformations (change of sign of a
row or column, addition of a row or column to another) that are sufficient
to bring the matrix (o),) into its normal form, together with the corresponding
changes of the o), affect neither the supposition nor the assertion. We may
therefore assume o, = a,/a,1 (with ao=1), p=1,...,m + 1, and all
other o, = 0. If @py1 = 0, cpy1 % 0, then R contains O. Otherwise, the
equations of R are

Za'ug‘#/a'uu =1, Cmie = ...=Cn = 0.

Integral solutions {, exist if and only if the numerator of (e¢1/om,...,
Om1/Omi1.m+1) is 1. But a prime p is contained in every o, to a higher power
than in the corresponding o,,, if and only if the same is true for the numbers
¢, and a,. This completes the proof.

2.7. For every rational R we obtain (defining r as in 2.6):
(R) = «(r), k(R) = u(r).

Proof. This follows from the preceding theorem by observing that if R is
multiplied by a prime p (or 1/p), then oy, ors, ¢4, @4y 7 become oy, or.p, Cup* 1,
a.p*, r/p (or respectively arp, ory, Cup, Gy, 7/P).

2.8. By 2.5 and 2.7 we have:

The duality in which the point py, ..., p, corresponds to the hyperplane
> oty = 1 has the effect of interchanging the numerator and denominator of
rational flats.

Corresponding flats are thus also arithmetrically ‘‘reciprocal.”

Using the last remark of 2.1 it is seen that the same duality law holds for
every correlation X p,cafn = 1 with a unimodular matrix (¢,), and for no
other correlation.
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2.9. The rational part F, of a flat F is the smallest flat of F, that contains
the rational points of F; it is the largest rational flat in F.

The rational points of F are dense in F,.

Proof. Let z = 7o + D {ur, with rational 7o, 7, be a general point of F,. In
every neighbourhood of z there are points 7o 4+ > pu7, with rational p,.

The numerator and denominator are defined for every flat F through a rational
point.

Proof. They are the same as for F,.

3. The main grid

3.1. The main grid of F is the set of the points of F with minimum deno-
minator «.

The main grid of F has the same dimension as F,.

Proof. Let so/x + >_pus, with integral sy and s, and rational p, be a general
rational point of F. Then there exist points so/k + ¢ puSs, o # 0, of denomina-
tor «: choose o so that the gp, are integers.

3.2 The relative co-ordinates N\, of a point z of F, are defined with regard
to a basis 7o + 7, of the main grid of F, as the coefficients in the representa-
tion

2 =70+ X\l

Rational points 7 = 7o 4+ 2 p.7, have rational relative co-ordinates p,.

The denominator ;1 of a rational point r of F equals xk«', where « is the denomina-
tor of F and «' is the common denominator of the p,.

Proof. By 2.2, k divides ;. Put x; = «kxs with integral «». The point
KKo? = KKo?o + D Kopu' KTy
is integral only when the kqp, are integers. Hence «; = «’.

3.3. A system of m integral points z, forms a basis of the main grid of a flat

through 0 if and only if the <2> minors d(v1, . . . , vm), formed by the vith, . . .,
21

vmth column, 1 <vi < ... <wvyp < n, of the matrix | ... |, have no common
Zn

divisor (2, p. 84, Frobenius).

Proof. The flat R through O and the points z, has the dimension m if the
minors d(Ay, . .., Ay) are not all 0. The points z, form a basis of the main
grid of R if and only if the coefficients ¢, are integers whenever Y 0,3, is
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integral. If the integral points 2, are not a basis, then there exists an integral
point s = 2 0,2, such that the coefficients o, are not all integers, that is, that
(¢1,...,0n) has a denominator « > 1, and «s = 3 (xe,)z, shows that the
linear congruences 0 = 37,2, modulo a prime p dividing « have a solution

7, such that not all 7, = 0; hence all the <:;> minors are =0 and have,

therefore, the common divisor p. Conversely, if the minors are = 0 modulo a
prime p, then the congruences 0 = 3 7,3, have a solution 7, such that not
all 7, = 0, and 3 (r./p)z. is integral while not all r,/p are integers.

3.4. The (Z) minors d(vy, . . ., vn) fulfil the bilinear relations

d(”ly sty V,,Jd(V;, ey Vrln)

J ’ 14 7 ’ !
= Z A1y ooy V1, P)A WLy o ooy Vhoty Yoy Phdy « -« s Vi)
1

(d(vey v1, . . .) being defined as —d(vy, vy, . . .), etc.), (Z) —mn—m) — 1

of which are independent, and every <m> mumbers fulfilling these relations

are minors of a matrix with rational elements ( for example, 5, p. 22).

Every <:Ln> integers that have no common divisor and fulfil these bilinear

relations are minors of a matrix with integral elements.
Y1
Proof. The given integers are minors of a matrix { ... ] with rational
Ym
elements. Let R be the rational flat of dimension # through O and the points
Yiy - -« ¥Ymy and let zi,...,2, be a basis of the main grid of R. Then
Y1 21
Vi = 2 .Cup2, and the minors of the two matrices | ... | and | ... ] differ by

Vm Zm
the constant factor

Cmm
The minors of either matrix being integers with no common divisor, we have
¢ = #x1. For ¢ = —1 repiace z; by —z.
4. Values of the anomaly

4.1. The cell size of a flat F through a rational point is the volume of the
fundamental cell of the main grid of F. If F contains only one rational point,
the cell size is defined as 1.
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The anomaly of a flat F is the cell size of a parallel flat F, through O. Its
square w is the sum of the squares of the minors d(vy, ..., v,) of a basis of
the main grid of Fy; hence w is an integer.

The cell size of a flat of denominator k with a rational part of m' dimensions
1s the square root of a rational number wx=2™ and 1s greater than or equal to k™™ .

Proof. The number +/w is the cell size of xF and equal to «™ times the
cell size of F, and vw > 1.

4.2. The anomalies of any two orthogonal rational flats of m and n —m
dimensions are equal.

Proof. Suppose 0 < m < n. Let 2y, ..., 2, be a basis of the main grid of a
rational flat R through O. There exist 2,41, ..., 2, such that z;,...,2,is a
basis of the main grid of n-space.* Let the matrix (yi, ..., y,) be the trans-
pose of the inverse of the matrix (zy, . .., 2,); then y, is one of the two primi-
tive points of the line through O orthogonal to the flat through O and all
2, with p ## ». Now every minor of either matrix equals the complementary
minor of the other (for example, 1, p. 31). The flat through O determined by
Ym+1y - « - » Yu, Which is orthogonal to R, has therefore the same anomaly as R.

In case m = 1, the proposition can also easily be verified as follows. The
fundamental cell of the main grid of the hyperplane 3 ¢,f, = 0 (where the
coefficients o, are integers without a common divisor) is a side of a funda-
mental cell C of the grid of all integral points. The opposite side ison Y ¢,{,=1
(or —1), so that the distance between these sides is (3 ¢,2)~% The volume
of C being 1, the volume of the side equals (¥ ¢,2)?, which is the anomaly of
the straight line, orthogonal to the hyperplane, through O and (o4, . . ., 0,).

4.3. The square o of the anomaly of a rational flat of a given number m of
dimensions in n-space can be any positive integer for n > 5. For n < 4 there
are the following exceptions:

m n—m Impossible values:
(orn —m m) integers of the form

1 1 4k or (4l + 3)k

1 2 4k or 8k + 7

1 3 8k

2 2 16k or 16k + 12 or 8k + 7

By 3.4 this is equivalent to saying that every positive integer, with excep-
tions as stated, is the sum of <m> squares of integers without a common

divisor and connected by the bilinear relations indicated in 3.4.
By 4.2, the range of w remains the same if m and » — m are interchanged.
Since the anomaly of a flat of m dimensions in #n-space is also the anomaly

*A special case of this long-known result was reviewed as new in Math. Reviews, 7 (1946),
242 (the fourth paper).

https://doi.org/10.4153/CJM-1963-024-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1963-024-3

212 T. S. MOTZKIN

of the same flat in (z + 1)-space, the range of w cannot decrease for constant
m and increasing #» — m, hence the same is true for constant # — m and
increasing m. Our assertions need therefore only be proved for the given
combinations (m, # — m), and (the absence of exceptions) for (1, 4) and (2, 3),
that is, in 5-space.

4.4. Proof for m = 1. There are no bilinear relations. The representation
of an integer as a sum of # squares without a common divisor has been fre-
quently treated. For » = 3, the numbers without a representation were given
by Legendre (2, p. 261, footnote 5). For n = 5 one of the squares can be
assumed to be 1; for » = 4, if a representation exists, it can be assumed
to be 0 or 1.

Since 1/4 (1/8) of the representations of a positive integer w as a sum of
2 (4) squares of integers (given, for example, in 3, pp. 103-4 (113)) is a multi-
plicative function f(w), the same is true for the function g(w) whose value
is 1/4 (1/8) of the number of primitive representations of w. This fcllows
easily from the formula

g(@) = f(w) = Xf(o/p?) + Zf(w/ (%) — + ...,

where p, g, . . . are the different primes whose squares divide w. Therefore we
have, for w = IIp2,

glw) = IFP™ — fFp=),

with f(1) = 1, f(p~1) = 0. This gives immediately the value (2, pp. 241,
242, 288, 303) of g(w) for every w, and the above cases of g(w) = 0.

4.5. Proof for m = 2. Forn —m = 2,let s = (61,...,04), 5 = (o/,...,
o4') be a basis of the main grid of a rational flat through O. The six minors
of order 2 are connected by a single bilinear relation. The number w is a sum
of six squares

Zaiz + Zbi2y 1’ = 1) 2’ 31
with no common divisor and connected by the relation
Zaibi =0,

whence w = > (a; + b,)% This is impossible for v = 8% + 7. For w = 4k,
two squares belonging to the same ¢, say ¢ = 1, are even, the others odd. Then
a?+ b2 1=2,3,is2o0r 10 (mod 16), according as a;b;is &1 or &3 (mod 8).
Hence if a,2 + 8,2 is 0, 4, or 8 (mod 16), with a;b; respectively 0, 0, or 4
(mod 8), then w is 4, 8, or 4, and never 0 or 12 (mod 16).

To represent w 7 4k, 8k + 7, put all b; = 0 (choosing ¢4 = ¢’ = 0). For
w = 16k 4+ 4 and w = 16k + 8, express w/4 as a sum Y c¢;* of three squares
with no common divisor; supposing, as we may, ¢, even and c¢3 odd, put

’
a1=2c, ar=az3=ca+c3, b1=0, bo= —by=c2—c3 (03=04,03=U4')-

By 3.4, for every solution a,, b; there exists a matrix s, s'.
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For (m,n — m) = (2, 3), w can be any positive integer. Indeed, the num-
bers excepted both for (1,3) and for (2,2) are those divisible by 16. But
s1=(1,1,0,0,0), s2= (2,0, 01,02 03 yields w=2Y0.2+ 4; and every
number 8& + 6 is a sum Y. o;2 with not all ¢, even.
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