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Proofs of commutativity theorems for general rings usually
employ the Jacobson structure theory; however, alternative approaches

to the "x = x theorem" {1, 2] suggest that the power of the Jacobson
theory is not required. In this note we prove two commutativity
theorems of Herstein in an elementary way. Both proofs involve
establishing first that the rings under consideration are duo-rings -
rings in which every one-sided ideal is two-sided.

THEOREM 1. Let R be a ring such that for every x, y ¢ R

there is an integer n(x,y)> 1 for which (xy- Yx)n(x,y) = Xy - yX.

Then R is commutative.

THEOREM 2. If n>1 is a fixed positive integer and - x
is central for every element x of the ring R, then R is commutative.

We shall refer to rings satisfying the hypotheses of Theorem 2
as H-rings, and we shall denote the centre of R by Z. An ideal P
will be called completely prime if ab ¢ P implies ae¢ P or be P.

1. Proof of Theorem 1. The proof in the case that R is a
division ring may be found in [3]. Our extension to the general case
is a modification of Herstein's readily-available proof of the

nx™ = x theorem" [2,7], and we note only the necessary changes.
Observe that
n . . n-1 . .
(1) (xy - yx) =xy - yx implies (xy - yx) is idempotent.
(2) R has no non-zero nilpotent commutators.

(3) In any ring without non-zero nilpotent commutators, idempotents
are central, since for e jdempotent and x ¢ R we have

[e(ex) - (ex)e]2 = [e(xe) - (xe)e]Z = 0.

Using these observations we show that R is a duo ring. Let I
be a right ideal and a ¢ I. Then
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u = afar - ra) = alar) - (ar)a e I.

k
Since u is a commutator, there isa k>4 such that u =u and
k-1
u is central; hence

k-1 k-1
ra(ar - ra) = ru = ru u = u rue I.

Since ar ¢ I, we have (ar - ra)2 ¢ I and therefore (ar - ra)n e I
for all n> 2., Thus, ar -rael and rae IL.

Once we know that R 1is a duo ring, the extension from the
division ring case to the general case proceeds as in[2].

2. Theorem 2 for division rings. For the sake of completeness,
we include the proof given in [4]. Suppose the division ring R is an
H-ring and r ¢ Z. Then for any z ¢ Z, we have z™(r® - r)e Z and

n
(zr) - zr ¢ Z, which imply (zn - z)r e Z. This resultis incompatible

with the fact that r ¢ Z unless 2t -z = 0; thus 20 =2z forall z¢ Z
and Z is a finite field.
i
Now let x be an arbitrary element of R. Since xnj - x ekZ for

n n
all i > 1, there exist unequal integers j, k suchthat x =x ,

which implies xn(x) = x. DBut this contradicts the "x' = x theorem'';

hence we must have had R = Z,.

3. Theorem 2 for R without zero-divisors. In this case we use
a well-known device (6) to embed R in a field. Let Z# be the set of

#

non-zero elements of Z; and note that Z" is non-empty, since for a

given a # 0 either a’ - ae Z# or (by (3)) a.n_1 € Z#. If we define

an equivalence relation ~ on RxZ# by making (ri, zi) ~ (rz, zz) if

and only if r the set of equivalence classes [r,z] forms

172 = 2%y
a ring R¥ with addition and multiplication defined by

[a, b] +[c, d] = [ad +bc, bd], [a, b][c, d] = [ac, bd].

The ring R* has an identity element [z, z], and R is embedded in
R* by the mapping ¢(r) = [rz, z]. Moreover, the centre Z¥ of R*
is the set of classes [r, z] where r ¢ Z; and the invertible elements

of R* are the classes [r, z] where r ¢ Z#. We establish Theorem
2 for R without zero-divisors by showing that R* is a division
ring and an H-ring.
Let U* be a non-zero right-ideal of R* and [a, z] a non-zero
2
element of U%. Then [a, z][z", z] = [az, z] ¢ U%; and, depending on

whether a" - a is non-zero or zero, [az, z]n - [az, 2] = [(an— a)zn+1, zn+1]
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or [az, z]n_1 = [an—izn-1’ zn-1] is an invertible element of U,

Hence, R* has no proper right ideals and must be a division ring.
The condition that R%* is an H-ring reduces to the statement that
anz - az” e Z for all ae¢ R and all ze¢ Z. To establish the latter,
n n
we need only note that (an - at)(zn +z) = a2 - az+az-az e Z

and that anzn -aze Z.

4., Theorem 2 for R without non-zero nilpotent elements.
We show that R contains a family {P } of completely prime ideals
o

with zero intersection, in which case R is a subdirect sum of the

rings P_ , each of which is an H-ring without zero-divisors and is

o
thus commutative. The existence of the P 1is explicitly stated in
o

Lemma 1, which is well-known. Our proof has an element of novelty -

a non-standard kind of annihilator ideal.

LEMMA 1. A ring R without non-zero nilpotent elements
contains completely prime ideals, the intersection of all of which is

ZEero.

Proof. Under the hypotheses of Lemma 1, ax =0 implies xa =0
and thus for any r ¢ R, rxa = 0 and arx = 0. Hence if a finite product
of elements of R is zero, the insertion of additional factors in any
position leaves a product of zero. We shall refer to this result as
the insertion-of-factors principle (IFP).

Now consider m*-systems, multiplicative subsemigroups of R

which do not contain 0. Clearly R has m*-systems (e.g. {a, az, a3, -

for any non-zero a ¢ R); and a straightforward application of Zorn's
Lemma shows that every m¥*-system is contained in a maximal
m¥*-system.

Let M be a maximal m*-system and define
A(M) = {xe R|ax=0 for at least one a ¢ M} .

By IFP, A(M) is a two-sided ideal. If x ¢ M, then the multiplicative
subsemigroup generated by M and x must contain 0; and since R
has no non-zero nilpotent elements, some finite product containing x
as at least one factor and having at least one factor from M must be
zero. Repeated application of IFP establishes the existence of an

m ¢ M such that mx is nilpotent and hence 0. Therefore the
set-theoretic complement of A(M) is M, and A(M) is a completely
prime ideal. Clearly every non-zero element of R is excluded from
at least one of the ideals A(M).
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5. H-rings are duo rings. It follows immediately from the
definition of H-ring that nilpotent elements are central, Hence the

. . R .
nilpotent elements of R form anideal N; and N having no non-zero
nilpotent elements, is commutative. Thus all commutators of R are
nilpotent, hence central. This fact enables us to prove

LEMMA 2. If R is an H-ring, then every one-sided ideal of R
is two-sided.

Proof. Let I be a rightideal, ae I, and r ¢ R. Since
commutators are central, we have

r(ra) - (ra)r = r(ra- ar) = (ra - ar)r ¢ Z;

2 2
i.e. rar = ar +z1, where z, ¢ Z. It follows that (ra) e I and

(ra)” ¢ I.

Since R 1is an H-ring, we have ra = (ra)n +z2, where z, is

)1’1

2
central; and thus from (ra) e I follows the result that ra ¢ I and

ra’ ¢ L. Using the fact that a" - ae¢INZ, wehave r(a - a)=
(a.n - a)r ¢ I; hence ra = ra’ - (an - a)r ¢ I.
6. Theorem 2 for subdirectly irreducible rings. This case

completes the proof of Theorem 2 for arbitrary H-rings, since any
H-ring is a subdirect sum of subdirectly irreducible H-rings.

LEMMA 3. [Thierrin, 8]. Let R be a subdirectly irreducible
duo ring and D the set of right zero-divisors. Then D 1is an ideal
of R. If in addition R contains an element which is not a right

zero-divisor, then D isa division ring.

Proof. Let S # 0 be the intersection of the non-zero ideals of
R. Then the set A(S) = {x|Sx = 0}, which is clearly a right ideal,
is a two-sided ideal; and A(S)C D. In addition, if d e D, then
I= {x|xd = 0} 1is a two-sided ideal; hence SC I, d ¢ A(S), and
D = A(S) is an ideal.

To complete the proof, suppose R # D and a ¢ D; and note
that for any non-zero element s ¢ S, we have sR = saR = S. Thus
there exists an element y ¢ R such that s = say; and for any b ¢ D
we have sb = sayb, s(b - ayb) = 0, and therefore b - ayb ¢ D.

R . s .
This implies D isa division ring.

LEMMA 4. If R is a subdirectly irreducible H-ring, then
DC z.
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Proof. Note that the definition of H-ring implies
(4) ab-ba = a'b - ba" for all a, be R.

If a, b are such that (ab - ba)a = a(ab - ba) = 0, then

2
aba = ba2 = a b; and these equalities applied repeatedly to the right
side of (4) yield ab - ba = 0, Similarly, if x(ab - ba)a = 0 for some
x, then x(ab - ba) = 0.

Suppose now that a ¢ D and a ¢ Z. Then there exists an
element b such that (ab - ba)a # 0. Thus (ab - ba)R # 0 and
S C (ab - ba)R; therefore, if s is a non-zero element of S, there
is an x such that s = (ab - ba)x £ 0. But then we are faced with the
result that sa = (ab - ba)xa=x(ab - ba)a = 0 while at the same time
x(ab - ba) # 0 - a contradiction.

COROLLARY. If R 1is a subdirectly irreducible H-ring such

that R # D and [e] is the identity element of %, then e ¢ Z.

R
Moreover, if ¢ ¢ D and cc¢ Z and if [d] is the inverse of [c] inB,

then d ¢ Z.

Proof. For all a¢ R, ae- a and ea- ae D C Z, from which
2 2
it follows on multiplication by a that a e = aea = ea . The argument

at the beginning of the proof of Lemma 4 then shows that ae = ea.

To establish the second part, note that cd - e e D C Z, hence
cd ¢ Z. Thus for any a ¢ R we have c(ad - da) = (ca)d - (cd)a =
(ac)d - a(cd) = 0; cancelling ¢ vyields ad - da = 0.

We now proceed to the proof of Theorem 2 for R subdirectly
irreducible; in view of Lemma 4, we need consider only the case that
R # D. Suppose that such a ring contains an element a ¢ Z, and let
b e Z. We begin by showing that b® - b e D,

Suppose b - b ¢ D for some be Z. By the argument employed
in Section 2, we have (b" - blae Z. If [d] is the inverse of [bn-b]
in % , then by the corollary to Lemma 4, d e Z and hence

d(bn-b)a € Z. But d(bn-b)a -aeDCZ, andthis implies ae Z,

contrary to our assumption.

We have shown that b b e D for all b e Z; therefore, for all

a ¢ R we have (an - a)n - (an - a) e D. Thus, since all elements of
R/D satisfy the same polynomial equation, R/D is a finite field.
Since the multiplicative group of a finite field is cyclig, all non-divisors

379

https://doi.org/10.4153/CMB-1968-042-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1968-042-0

of zero in R can be written in the form x +z where z¢ Z and x

is a fixed element of R. But this is incompatible with the existence

of an element a ¢ Z. Our proof of Theorem 2 is now complete.
Theorem 2 is true if n is not fixed but depends on x (see[>]);

however, the division ring case here requires some specialized

machinery. Most of the arguments we have used apply to the more

general case - in particular, Lemma 2 goes through - and an elementary

proof for the case where R has no zero-divisors would again obviate
the use of the Jacobson structure theory.
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