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Simulation and system
identification of helicopter
dynamics using support vector
regression - ERRATUM

S. Manso
DOI: 10.1017/S0001924000011398, Published online: 27 January 2016

The article by Manso(!) was published online with a number of errors. The errors are shown
below, along with the corrected article.

Throughout the article, ‘eXogenous’ should have been written as exogenous.

On page 1542, under Nomenclature, the second symbol in Lagrangian multipliers was
incorrect. It should have read o, a*. Also, the second symbol in Slack variables should have
read ¢, £*.

On page 1544, Section 2.2, paragraph 6, the incorrect slack variables symbol was used. The
sentence should read: ‘To deal with noisy data, slack-variables ¢i and &i* are introduced...’.

On page 1545, Section 2.3, there was an error in the first sentence. It should read ‘...to be
performed in the input space...’.

On page 1550, the first paragraph should begin ‘The regularisation...’.

Figures 9, 10, 11, 13, 14, 15, 19, 20 and 21 did not include axis labels. These figures are
reproduced correctly in the corrected article which follows.
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ABSTRACT

This paper provides an overview of techniques developed for the application of support vector
regression in the domain of simulation and system identification of helicopter dynamics. A generic
high fidelity FLIGHTLAB helicopter model is used to train and validate a number of pitch response
SVR models. These models are then trained using flight data from a Sikorsky Seahawk helicopter.
The SVR simulation results show significant promise in the ability to represent aspects of a
helicopter’s dynamics at a high fidelity. To achieve this, it is important to provide the SVR kernel
with knowledge of past inputs that encompass the delay characteristics of the helicopter dynamic
system. In this case, the use of nonlinear auto regressive exogenous input network architecture
achieves this goal. Good performance was achieved using input data that encompassed between
300 to 500ms worth of historic response.

NOMENCLATURE

hyperplane constant
regularisation coefficient
individual data points (i, j = 1:N)
SVM kernel function

number of training points
hyperplane normal vector

input vector
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input space, where input vector is defined
XB longitudinal cyclic control input

output value

feature space

Lagrangian multipliers

insensitive factor

slack variables

regression function

non-linear mapping
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ABBREVIATIONS

ADF Australian Defence Force

AMAFTU Aircraft Maintenance and Flight Trials Unit
ART Advanced Rotorcraft Technology

DSTO Defence Science & Technology Organisation
ERM empirical risk minimisation

HMI human machine interface

MISO multiple input single output

MQL mean quadratic loss

NARX nonlinear auto regressive exogenous

QP quadratic programming

RBF radial basis function

SRM structural risk minimisation

SV support vector

SVM support vector machine

SVR support vector regression

TDL tapped delay lines

1.0 INTRODUCTION

This paper provides an overview of techniques developed for the application of support vector
regression (SVR) in the domain of simulation and system identification of helicopter dynamics.
SVR is a machine-learning technique that provides a ‘black box’ approach that may enable a
more simplistic method for simulation whilst retaining acceptable levels of accuracy. SVR is the
regression form of the more widely used support vector machine (SVM) classification method.
In this paper, the term SVM will refer to both the classification and regression methods, whereas
SVR will specifically be used for the regression form.

The basis of the following work originally stemmed from the growing levels of complexity
required from simulators to appropriately represent the rotary wing platforms in use by the
Australian Defence Force (ADF). The ADF is currently acquiring and transitioning into service,
multiple helicopter platforms including the Eurocopter ARH Tiger, NHIndustries MRH-90,
Sikorsky MH-60R, and Boeing CH-47F, all of which require simulation support. The Australian
Defence Science & Technology Organisation (DSTO) provides some of this support. DSTO uses
flight dynamic simulators to perform human machine interface (HMI) studies, and to assist in
accident investigation.
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At present, the traditional technique for the dynamic modelling of helicopters and their systems
involves the collection of flight data and aircraft specifications from which physics based theoretical
equations are generated and validated. It is a time consuming process that requires the availability
of a significant amount of data. The data required is often proprietary or commercial-in-confidence,
leading to a lack of availability, which can result in less than optimal simulations®.

Another modelling approach involves the system identification of helicopter dynamics using
frequency analysis techniques®. This is a parameter estimation method in which measured aircraft
responses are essentially inverted to extract a subset of the system model. This modelling approach
requires flight data for aircraft response to a control input frequency sweep. Such flight data can
be difficult to obtain from non-flight-test aircraft due to the inherent risk of airframe structural
stress when undertaking frequency response manoeuvres.

The implementation of a black box approach using machine-learning techniques may provide an
option for a more simplistic method of simulation. A black box model can be defined as a machine
with known or specified performance characteristics but whose constituents and means of operation
are not necessarily known or specified by the user. For a given set of inputs, an expected set of
outputs can be generated without explicitly knowing the relationship between input and output. A
black box simulation would ideally only require flight data that is readily available to the operator
of the helicopter platform, such as aircraft attitude response to pilot cyclic control inputs. Data
could be captured using either existing aircraft systems, or via retrofitted instrumentation.

Machine learning, using methods such as neural networks and more recently SVMs, are popular
for the implementation of black box modelling. The choice of using SVR for this investigation
rather than other techniques based on neural networks is due to the increased exposure and
promised advantages of SVMs, including being easier to train and having more robust learning.

2.0 SUPPORT VECTOR MACHINES

SVMs arose from the area of statistical learning theory® and were originally proposed by V.N.
Vapnik® in the early 1990s for the application of pattern classification. Since his seminal work,
SVMs have been applied to a multitude of applications and undergone various transformations.
Although the primary use of SVMs remains predominantly in the domain of classification, of
particular interest is their use for regression in the form of SVR.

2.1 A comparison with other machine learning techniques

Since their inception, SVMs have been quite successful in solving real life problems and increasing
the interest in statistical learning theory. Applications vary from face recognition® and text catego-
risation® to predicting stock market indices” and modelling acrodynamic data®.

Scholkopf et al® provided one of the original comparisons for classification between an SVM
with Gaussian kernel, a support vector (SV) method hybrid with back-propagation, and a classical
radial basis function (RBF) machine. The results show that the SVM reached highest accuracy in
the application of handwritten digits recognition. Another early SVR comparison was conducted
by Mukherjee et al'%. Various approximation techniques including neural networks and RBFs
were applied to a chaotic time series. The SVM algorithm showed excellent performance here as
well, outperforming other functions in most cases.

SVMs have performed favourably when compared to neural networks. One of the more relevant
comparisons for this investigation is that of Fan et a/® who compare the generalisation ability of
SVMs and neural networks in the field of modelling aecrodynamic data.
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The key performance differences between SVMs and neural networks relate to the minimisation
principles"? on which they are based. SVMs are founded on structural risk minimisation (SRM)
that minimises an upper bound of the generalisation error, whereas neural networks are based on
empirical risk minimisation (ERM) that minimises the error on the training data. ERM can lead to
local minima and over-fitting issues that need to be addressed by elaborate learning techniques. In
contrast SRM generates a unique solution. This makes the application of SVMs in the real world
a much easier prospect by removing the complexity associated with neural network training for
good general performance.

2.2 Support vector regression

A brief overview of SVR theory is presented below. A more thorough derivation is available
from Vapnik’s original work™!D, as well as tutorials, examples and overviews available in the
references®!1%19,

Conceptually, SVM inputs are mapped to a higher dimensional, so-called feature space in which
a decision surface lies. The support vectors themselves exist in the feature space of the SVM
process and dictate the geometry of the decision surface. It is this decision surface that classifies
each of the inputs in relation to the corresponding output, and it is the ability of the system to
correctly classify previously unseen data, otherwise known as its ability to generalise, that dictates
its usefulness. SVR differs from classification by approximating a function for the continuous
output rather than that of a discrete response.

Given a set of N training points, where each example consists of an input vector, x,, and a label,
v, such that both are real:

X, CR (D

Y, SR ...

The object is to find a regression function &)(X) =y that can approximate any new examples with
the same underlying probability distribution P(x, y).

To allow for nonlinear regression functions, the training points are mapped from the current
input space X to a n}\uch higher dimensional feature space Z using a nonlinear mapping ¢. The
regression function @is defined to have at most & deviation from the obtained targets y, for all the
training data, where the constant ¢ is chosen by the user. In other words, all the training points
must lie within € > 0 of the following linear hyperplane in feature space:

D(x)=w-(x)+b ...03)
where w is the normal vector of the hyperplane, and the constant b is the bias.

To deal with noisy data, slack-variables {, and {; are introduced to penalise points outside the
¢ region. This corresponds to dealing with an e-insensitive loss function defined by:

0 if | <
1<), ={ e @)

[¢|-€ otherwise

The SVR solution can then be found by solving the primal quadratic programming problem (QP):
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N
min,, , |:%"W"2 + CZ(C,. +C )} , subject to
i=l

yi_W'(p(Xi)_b < 8+§i (5)
w-o(x,)+b—y, < e+(;
C[’C: 2 0

Conceptually, the first term achieves maximal margin for the hyperplane such that there is
maximum distance between each of the points. The second term penalises the presence of any
points outside the € region. The constant C defines the trade-off between the two terms. The
problem above represents a convex function with a unique minimum constrained to liec within a
cube, although this solution occurs in the higher dimensional feature space due to the vector w.

Another formulation known as the dual QP problem is defined to constrain the solution to the
input space, which is much simpler to compute. Suppose that the kernel k(x,, x) is chosen such
that the dot product in the feature space is equivalent to the kernel function in input space:

k(x,,xj)z(p(x,.)-(p(xj) ... (6)

Using Lagrangian multipliers o, and o with the kernel definition above, the dual formulation is
defined:

N

L3 (o) o~ ()

max n . (7

* N * N *
—eZ(oci —oc,.)+2y,.(oci —ocl.)
i=1 i=1

N
subject to 0 < {ozi,ocj} <(C,and 2(0(,- —0‘:) =0
i=1
Conceptually, the optimisation problem above corresponds to ﬁ/r\lding the flattest function in the
feature space. Solving for o, and o, the regression function for @ is given by:

(D(x):Z(oci—a:)k(x,x[ﬁb ...(8)

2.3 Kernel functions

The constraint on the choice of kernel function in the SVM is to enable operations to be performed
in the input space rather than the potentially high dimensional feature space. Specifically, the
kernel k(x,, x/.) chosen must satisfy the property such that the dot product in the feature space is
equivalent to the kernel function in input space (Equation (6)). This provides a way of addressing
the curse of dimensionality'” which states that the difficulty of an estimation problem increases
drastically with the dimension of the feature space.

Smola and Scholkopf®® describe the theorems and relevant corollaries used to characterise such
kernels. Several well-known functions that can be used as kernels are provided in Table 1. Other
possible kernel types include Splines, closed form B Splines, additive summing of kernels and
Tensor products. For the results presented herein, a linear kernel is used for its computational
performance and simplicity.
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Table 1
List of commonly used SVM kernels

Kernel Function Comments

Polynomial (x,x,+ l)d Becomes a linear kernel when d = 1

Radial basis "X, .X/_"Z Commonly referred to as the Gaussian function
(Gaussian) €xp Y=

Radial basis "X,- X ," Commonly referred to as the radial

(Exponential) P 262 basis function (RBF)

Multi layer Tanh (p ( X, X, ) + ,3) This is representative of the neural network equivalent
perceptron

Sin(N+%)(xl~xj)

Sin(%(x,»xj ))

Fourier Series

Defined on the interval {_E’E}
2°2

3.0 MODELLING OF HELICOPTER FLIGHT DYNAMICS

To provide a complete mathematical simulation of a helicopter’s flight dynamics, one needs to
represent the aerodynamic, structural and internal dynamic effects that once combined are influ-
enced by the pilot controls and by external atmospheric disturbances'®. Helicopter behaviour is
dominated by the rotor system, but limited by local effects that grow in influence at the limits of the
flight envelope. These include, but are not limited to, blade stall, power limits, and control limits.

The method of modelling or extracting helicopter system dynamics or characteristics from flight
test data is known as system identification. Machine learning techniques are a form of system
identification when applied in this context.

There is little available in the literature on the use of SVMs for the system identification of a
helicopter. Of most relevance is the recent work done by Bhandari et a/'® where an RBF kernel
is investigated for the function estimation of a small scale helicopter. A few non-coupled models
are developed to predict the longitudinal, lateral and tail rotor control inputs needed to achieve a
desired flight trajectory, i.e. the inverse of a flight model. Flight data was initially post-processed
through a Butterworth filter to reduce noise. Three data sets of 120Hz resolution were constructed
for training, validation and test purposes. These data sets relate control input directly to the appro-
priate angular rate of the aircraft. The initial SVR results look promising, although the extent of
how well the model generalises is unclear.

Bhandari also developed a SVR model to predict pitch rate directly from longitudinal cyclic
control, similar to the aims of this investigation. The testing and validation mean square errors
are much higher than for the inverse problem above, yet the results show the correct trends. It is
again unclear how well the model generalises or how the SVM was trained. It appears that input
history was not implemented into their SVM model, likely resulting in the phase shifting of their
results, and hence not suitable for dynamic modelling.
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Figure 1. The NARX architecture to modelling system dynamics.

More progress with machine learning techniques is evident with the use of neural networks for
helicopter system identification, particularly with the work of Mudigere, Kumar et a/?*?Y. The
predicted response of various models to control inputs have been satisfactory, though of most
interest to the application of SVMs is that of the network architecture used to provide the dynamic
system. The models are based on the nonlinear auto regressive exogenous input (NARX) network
architecture for the identification and control of dynamical systems, first proposed by Narendra
et al®. The NARX architecture introduces dynamics to an otherwise static network model using
tapped-delay-lines (TDL) to feed past outputs and past inputs as inputs to the current model. Figure
1 depicts the architecture of a NARX network that is capable of modelling dynamics when trained
using back propagation. The number of past values, n, (equivalent to TDLs) that are fed back
into a NARX network model is defined by the user and depends on an understanding of the order
and degree of the system being identified. A NARX network model is defined mathematically
by Equation 9, where the function, f, is also user defined (in this paper, a SVR model is used).

y(t+1)=f(p@), y(t=1),..., y(t —n),u(t),u(t-1),...,u(t—n)) ...(9

Previous work by the author® investigated the use of SVMs to model the longitudinal pitch
dynamics of a helicopter using flight data. A simple NARX-like model structure was implemented,
where pitch rate was predicted based on historical pitch rate, pitch angle, and control input measure-
ments. The model was trained using 180Hz resolution data from a high fidelity flight dynamic
model, as well as the use of real flight test data. A range of RBF and linear kernels were tested,
with the results showing good accuracy and potential for further application with real flight data.
It was stated that to achieve good results it is important to provide the machine with knowledge
of past inputs that encompass the delay characteristics of the helicopter dynamic system. Also,
in the absence of knowing the mechanics of a system, the relationship between the significant
variables that represent the dynamic system must be well understood.

The SVR technique proposed herein follows on from the author’s previous work above and uses
a NARX network model and linear kernel to demonstrate the potential for system identification
and modelling of helicopter responses.
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Figure 2. SVR model architectures implemented for simulation of helicopter pitch response.

4.0 SUPPORT VECTOR REGRESSION OF HELICOPTER
PITCH DYNAMICS

A simulation of the pitch dynamics for a helicopter is presented to demonstrate application of
the proposed SVR modelling technique. Using a NARX network and SVR with linear kernel,
a non-linear helicopter flight dynamic model is used to provide training data. Results from two
models (Fig. 2) are presented in this paper. Each model predicts the pitch angle, 6, in response
to a longitudinal cyclic control input, XB. The first model is trained using control response data
at 30kt airspeed. The second model is trained using control response data ranging from hover to
40kt airspeed. The second model also includes airspeed as an additional training input.

The MathWorks MATLAB software environment is chosen to implement and develop the SVR
models. This is achieved using the Spider SVM toolbox®® with LIBSVM as the primary code for
the regression algorithms.

4.1 Flight data: FLIGHTLAB helicopter model

FLIGHTLAB is the current helicopter-modelling environment used by DSTO. It is a commercial
tool developed by Advanced Rotorcraft Technology Inc (ART), for rotorcraft modelling and
analysis. FLIGHTLAB is based on the Scope environment, which is an interpretive language
that uses MATLAB-like syntax together with new language constructs for building and solving
non-linear dynamic models. FLIGHTLAB provides a large range of aerospace and dynamics
related components, which are used to develop flight models using object oriented design.
FLIGHTLAB uses multi-body dynamics to simulate real-time models. Generic modelling
components are assigned aircraft specific values and parameters. Each component is a self-contained
dynamic entity that is interconnected to all other components through a child and parent structure.
Solution components then take care of the kinematic and force interactions throughout the model.

https://doi.org/10.1017/aer.2016.69 Published online by Cambridge University Press


https://doi.org/10.1017/aer.2016.69

MANSO  SIMULATION AND SYSTEM IDENTIFICATION OF HELICOPTER DYNAMICS USING ... 1549

Table 2
FLIGHTLAB helicopter parameters

Rotor parameters Main rotor Tail rotor
Radius (ft) 267 52
Chord (ft) 2-1 Unknown
No. of blades 4 4
Rotor speed (rpm) 256 1,232
Rotor twist (deg) -12 -14
Aerofoil type NACA 23012 Unknown
Weight 20,4001b

Engine type 2 x turboshaft

Engine power 2,800SHP

Control system Rate based, with attitude stabilisation

Longitudinal cyclic range 0 to 100%

(+’ve nose up)

‘-._._75

Figure 3. Representative conventional helicopter.

A conventional medium sized twin-engine helicopter (refer to Fig. 3), with counter clockwise
rotating rotor, was developed in the FLIGHTLAB environment. This non-linear, six degree-of-
freedom, rigid body model was used previously for Human-in-the-Loop Simulator Fidelity trials
at DSTO®@, It uses a blade element model for the main rotor, and a disk rotor model for the tail
rotor. The model provides a source of noiseless data, which is highly amenable to the development
of SVR modelling techniques. Table 2 provides a brief list of the major model parameters. The
FLIGHTLAB model provides data at 180Hz, which is then reduced to 10Hz when training the
SVR model.

4.2 Method: SVR training and validation

The training data is scaled so that its mean and standard deviation are equal to one. Although
not necessarily required, the normalisation of training data avoids certain inputs having more
influence than others. This is particularly important when input variables have vastly different
ranges, such as angles in radians and velocity in knots. It also allows some consistency in the
choice of hyper-parameters € and C when using different datasets, which would otherwise require
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Figure 4. Training dataset. Model 1 performance is shown against its training dataset for TDL values of 1
and 5.¢£=0-01and C=0-1.

more specific choices.

X—X

x.vca/ed =

... (10)

X

The regularisation coefficient, C, controls the trade off between training error and model complexity.
A small value will increase the training errors, while a large value will lead to minimal training
errors and a stronger correlation with the training data at the expense of generalisation (referred
to from hereon as hard margin behaviour). It is noted from the literature®® that the value of C
seems to have negligible effect when the insensitivity factor, €, is well chosen. Values of C in this
paper are varied from 0-01 to 1,000.

The insensitivity parameter, €, determines the level of training accuracy for the SVM by
controlling the width of the e-insensitive zone. If ¢ is larger than the range of the target values, then
fewer support vectors are chosen. If € is set to zero, hard margin behaviour is expected. Generally,
the value of € should increase when greater noise levels are present in the data. A good initial
selection is to set € to the accuracy desired. This is generally a trial and error approach dependent
on the noise and range of the data values. Values of € in this paper are varied from 0-0001 to 1,
which is a typically useable range with normalised data.

Quantitative validation is conducted by measuring the mean quadratic loss (MQL) with
comparison to the FLIGHTLAB output. A validation data set is then used as a method of both
kernel parameter selection and performance testing.

, 1Y 2 (11
Mean quadratic loss = - DY actiat, = Y reciced (1n

i=1

The training data set is chosen such that the model is taught aspects of positive and negative pitch
response over a range of pitch angles and frequencies. A successive positive and negative impulse
response and a pulse frequency sweep from 0 to 2Hz are used for this paper as shown in Fig. 4.

Validation is performed using the training dataset as well as a specific validation dataset. The
validation datasets include responses that have not been previously seen by the SVM. Three (3)
validation datasets are chosen such that the generalisation capability of the SVR Plant is tested. In
this case a higher amplitude sinusoidal doublet and frequency pulse are chosen to test responses
to unseen pitch dynamics for Model 1 (see Figs 5 and 6). These datasets are chosen such that
minimal airspeed change occurs during the pitch manoeuvre. A step input response, involving
significant airspeed change, is used for Model 2 (Fig. 7).
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Figure 5. Validation dataset 1. Model 1 performance Figure 6. Validation dataset 2. Model 1 performance
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Figure 7. Validation dataset 3. Performance of Model 2 is shown against unseen data for a TDL value of 5.
For comparison, Model 1 results are also presented. ¢ = 0-01 and C = 0-1.

For the validation process, the initial conditions and input profile are chosen to begin the
simulation. The initial conditions are used to begin the SVR prediction process where every
subsequent time step builds upon the previous prediction of the SVR model. The predictions are
then compared using MQL to the dynamic response of the FLIGHTLAB model that also began
with the same initial conditions and input profile.
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Figure 8. Model 1 MQL predictive error against the ~ Figure 9. Model 1 MQL predictive error against the
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£¢=0:01 and C = 0-1. Validation dataset 1 & 2 are 0-01:1000, TDL = 5.
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Figure 10. Model 1 MQL predictive error against Figure 11. Model 1 Number of support vectors
the validation datasets 1 and 2. Variation in ¢ = produced after training. Variation in ¢ = 0-0001:1
0-0001:1 and C = 0-01:1000, TDL = 5. and C =0-01:1000, TDL = 5.

5.0 RESULTS

5.1 SVR Model 1: Pitch response

An SVR model was developed to predict pitch angle response to a longitudinal control input at
an airspeed of 30kt. The model was trained using data at 10Hz resolution. A linear kernel with
a NARX network was developed as shown for Model 1 in Fig. 2. One training dataset (Fig. 4),
and two validation datasets (Figs 5 and 6) were used. This model required three variables to be
defined. These included the SVM related insensitivity factor, ¢, the regularisation coefficient, C,
and the NARX related number of TDLs.

The MQL predictive error and pitch angle prediction (Fig. 8 and Fig. 4 respectively) demon-
strate the effect in choice of TDL on the performance of the SVR when compared to both the
original training data and the validation datasets. Good performance can be achieved provided that
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knowledge of past inputs is available. These inputs need to encompass the delay characteristics
of the helicopter dynamic system. In this case, performance is deemed to become adequate with
a TDL value of 3 or above. Because the model performs at the same rate as the training data, in
this case 10Hz, a TDL value of 3 represents the last 300ms of data.

Using a TDL value of 5, the insensitivity factor and regularisation coefficients are then varied to
determine the model’s performance characteristics. When tested against its training dataset, Fig. 9
shows that a well chosen ¢ has greater influence than C. In this case, a low value of ¢ is guaranteed
a low MQL error. The same trend is seen when tested against the unseen validation datasets (see
Fig. 10). The training data and validation data error surfaces have very similar shapes with a local
minimum located at € = 0-1 and C = 0-1. No hard margin behaviour is apparent, most likely due
to the noise free flight data used from the FLIGHTLAB model.

Interestingly, the value of € does not have as much influence on the number of support vectors
used when compared with the choice in regularisation coefficient, C (see Fig. 11). A value of C
that is greater than 0-1 requires significantly fewer support vectors, yet provides for similarly good
performance when compared to lower values of C. A lower number of support vectors would
allow faster computational performance and a quicker training time. A large number of support
vectors is a sign of either bad generalisation or hard margin behaviour by the SVM (depicted as
a red region in Fig. 11).

5.2 SVR model 2: Pitch response

The second SVR model was developed to predict pitch angle response to a longitudinal control
input at various airspeed values. This model was also trained using data at 10Hz resolution.
Similarly, a linear kernel with a NARX network was developed as shown for Model 2 in Fig. 2.
One training dataset, similar to Model 1 but for speeds from hover to 40kt in 5-knot increments,
and one validation dataset (Fig. 7) were used. For this model, the validation dataset involved a
sustained step input whose pitch response varied the airspeed of the helicopter. Similar to Model
1, the insensitivity factor, €, the regularisation coefficient, C, and the NARX related number of
TDLs needed to be defined.

Again, the importance of the NARX network in allowing a length of past inputs to capture the
delay characteristics of the helicopter response can be seen from the results in Fig. 12. For this
case, a TDL of 5 (500ms of data) provides best performance against the training and validation
datasets. Larger values of TDL lead to a flattening out of predictive performance, suggesting that
only up to 500ms of data is required to capture the helicopter’s pitch response dynamics.

Of interest is the degradation in performance against the training data when higher values of
TDL are used. This degradation may be caused by the conflict of using a linear kernel within a
non-linear NARX network model. The kernel is attempting to model a linear relationship between
airspeed, control input, and attitude over a longer timeframe (500ms and above) for a non-linear
helicopter response. It is possible that the use of a non-linear kernel, such as an RBF, may provide
better results, and warrants further investigation.

The MQL error surface is shown for a TDL value of 5 and variation in € and C for testing against
the training (Fig. 13) and validation (Fig. 14) datasets. Similar surfaces are seen for both data
sets, and again the influence of € on model performance is most evident, similar to Model 1. As
was also seen with Model 1, the value of C has the greatest influence on the number of support
vectors used (Fig. 15). Hard margin behaviour is evident by the red region depicted in Fig. 15.

In comparison to Model 1, Model 2 is inherently better able to generalise when larger pitch
angles are achieved, particularly when such pitch angles involve significant variation in airspeed.
This can be seen in Fig. 7 where the time response of both models is shown against the third
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Figure 12. Model 2 MQL predictive error against the  Figure 13. Model 2 MQL predictive error against the
training and validation datasets with variation in TDL. training dataset. Variation in ¢ = 0-0001:1 and
¢=0-01 and C = 0-1. Validation dataset 3 is used. C=0-01:1000, TDL = 5.
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Figure 14. Model 2 MQL predictive error against Figure 15. Model 2 number of support vectors
validation dataset 3. Variation in € = 0-0001:1 and produced after training. Variation in &€ = 0-0001:1
C =0-01:1000, TDL = 5. and C =0-01:1000, TDL = 5.

validation data set. Here, Model 2 is better able to predict the reduction in pitch angle over time,
although not to the same level as the validation data.

6.0 APPLICATION WITH FLIGHT TEST DATA

A small selection of flight test data recorded at 20Hz from a Sikorsky Seahawk helicopter is
provided for training and testing of the SVR model. The data was recorded during the 1994 ADF
airborne trials of the S-70B2 helicopter and is provided courtesy of the Aircraft Maintenance and
Flight Trials Unit (AMAFTU). The training (Fig. 16) and validation (Fig. 17) datasets show pitch
response to longitudinal cyclic input at hover conditions. Although the datasets are very small,
this data provides an opportunity to train an SVR model using noisy data. Because only hover
pitch response data was provided without airspeed, the Model 1 NARX architecture was used.
Best performance against the validation dataset represents a TDL of 8, corresponding to 400ms
of historic data. In this case, increasing level of TDL does not aid in performance against the
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Figure 16. Training dataset. Model 1 Performance is  Figure 17. Validation dataset. Model 1 Performance
shown against Seahawk helicopter training data for is shown against unseen Seahawk helicopter data for
TDL values of 1 and 10. £ =0-01 and C = 0-1. a TDL value of 10. ¢ =0-01 and C = 0-1.
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Figure 18. Model 1 MQL predictive error against Figure 19. Model 1 MQL predictive error against the
Seahawk training and validation datasets with Seahawk training dataset. Variation in ¢ = 0-0001:1
variation in TDL. ¢ = 0-01 and C = 0-1. and C =0-01:1000, TDL = 10.

unseen validation data (see Fig. 18). To aid in comparison with previous results, a TDL value of
10 (500ms) is used for simulation here. Note that higher values of TDL with the training dataset
do not lead to a levelling out of performance. This may be a sign of limited number of training
data points with which to achieve good generalisation, because levelling of performance is clearly
seen with the validation dataset.

The MQL predictive error surface against the training dataset (Fig.19) is very similar to the
previous models taught with noiseless FLIGHTLAB data. In this case, a low value for € and C
provide the best performance against the validation data (Fig. 20), even though the number of support
vectors required show hard margin behaviour (depicted as the red region in Fig. 21). Better results
may have been achieved with the availability of airspeed data or a larger number of data points.
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Seahawk validation dataset. Variation in ¢ = 0-0001:1 produced after training. Variation in ¢ = 0-0001:1 and
and C = 0-01:1000, TDL = 10. C=0-01:1000, TDL = 10.
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Figure 22. FLIGHTLAB longitudinal cyclic doublet to pitch angle response at 30kt.
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Figure 23. FLIGHTLAB longitudinal cyclic sweep (0-1 to 2Hz) to pitch angle response at 30kt.
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Figure 24. Composite Hanning frequency analysis for FLIGHTLAB (doublet and sweep) and SVR (sweep)
pitch attitude to longitudinal cyclic response at 30kt.

7.0 APPLICATION TO FREQUENCY RESPONSE

An example of the application of SVR modelling is in the domain of filtering and augmentation
of flight data for traditional system identification and analysis. Take an example where a control
frequency response is required in the region of 0-1 to 2Hz (representing typical pilot control), but
due to operational limitations only a doublet control response is achieved. For this example, the
FLIGHTLAB helicopter model is used as the aircraft to be analysed.

Figure 22 depicts the control response achieved with a doublet at 30kt airspeed. Compare this
to the desired control sweep response in Fig. 23. Undertaking a frequency response analysis of
the doublet using a composite Hanning windowing technique®, the gain, phase and coherence
is shown in Fig. 24. This doublet response was used as a training data set for a Model 1 based
SVR model with 30Hz resolution, TDL of 15 (500ms), € of 0-01, and C of 100. Subsequently,
the SVR model was used to simulate the response to the longitudinal cyclic frequency sweep
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shown in Fig. 23, and then the response was analysed using the same composite windowing
technique to determine gain, phase and coherence. The results of the SVR frequency response
were then compared to the desired results obtained from doing a frequency sweep with the actual
FLIGHTLAB helicopter model (Fig. 24).

Figure 24 demonstrates the generalisation capability of the SVR model in simulating frequency
response results similar to the desired control sweep case. Where only limited information could
be gained from analysing the doublet with traditional techniques, the SVR model provided an
adequate estimation over the desired frequency range. This is a simple example where the use of
an SVR model can enhance and support traditional system identification methods.

8.0 DISCUSSION

For the cases considered, the SVR results presented here show good generalisation capability
when presented with unseen data. The choice in insensitivity factor, €, has greater influence than
the regularisation coefficient, C, to achieve low MQL. But in all cases, it is important to provide
the plant with knowledge of past inputs that encompass the delay characteristics of the helicopter
dynamic system. The use of NARX network architecture achieves this goal. Good performance
requires a number of TDL that encompass between 300 to 500ms worth of historic data.

It is also evident from the presented SVR results that the resolution frequency of the training
data has an influence on the accuracy of the model’s generalisation capability. The training
resolution needs to be high enough to encompass not only the delay characteristics, but also
capture the highest frequency response required of the results. Tischler® provides good guidance
on the method of selecting frequency resolution from the perspective of system identification.
The models presented here incorporate sampling frequencies that range between 10 to 30Hz for
a 2Hz frequency response.

The amount of Seahawk flight data available for training and validation was too limited to draw
any major conclusions with comparison to the other SVR models. Although the other models were
presented with noise free FLIGHTLAB data, the training performance was found to be similar to
the model derived from Seahawk flight data.

SVR exhibits one major disadvantage in comparison to traditional modelling and other machine
learning techniques such as neural networks. In its current form, a single SVR model is at best only
a multiple input single output (MISO) system. A complete non-linear helicopter flight dynamic
model will require many individually trained SVRs linked together as sub systems to provide the
outputs that define a flight path.

It is likely that the most efficient method of developing a high fidelity flight model will be one that
is a combination of both SVR and traditional modelling techniques. An SVR model may be used
to provide methods in which to reshape or reduce noise in flight response data. As demonstrated in
the previous example, a pure sinusoidal control response could be simulated from a limited flight
data set, such that system identification can then be achieved using frequency analysis techniques.

The application of SVR models would lend themselves to applications in the control system
domain. This may include online system identification and over the horizon control, similar to
many neural network applications that are popular for use in unmanned aerial vehicles today.

Unlike neural networks, the use of SVR may lead to easier certification for use in manned aircraft
or within commercial airspace. Risk mitigation would be easier due to the mathematical basis of
the SRM and statistical learning principles on which SVMs are founded on.

https://doi.org/10.1017/aer.2016.69 Published online by Cambridge University Press


https://doi.org/10.1017/aer.2016.69

ManNso SIMULATION AND SYSTEM IDENTIFICATION OF HELICOPTER DYNAMICS USING ... 1559

9.0 CONCLUSIONS AND FURTHER WORK

The SVR model results show significant promise in the ability to represent aspects of a helicop-
ter’s attitude response at a high fidelity. To achieve this, it is important to provide the model with
knowledge of past inputs that encompass the delay characteristics of the helicopter dynamic system.
In this case, the use of NARX network architecture achieves this goal. For the cases considered,
good performance requires a number of tapped delay lines (TDL) that encompass between 300
to 500ms worth of historic data.

The SVR models presented here have only modelled the response in the primary axis, therefore
further work may be beneficial in the area of off-axis response. Further work is also recommended
to investigate the SVR generalisation capability under varying data sampling frequencies, and
when appreciable noise is evident in the flight data.
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