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Simulation and system
identification of helicopter
dynamics using support vector
regression - ERRATUM
S. Manso
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The article by Manso(1) was published online with a number of errors. The errors are shown
below, along with the corrected article.

Throughout the article, ‘eXogenous’ should have been written as exogenous.

On page 1542, under Nomenclature, the second symbol in Lagrangian multipliers was
incorrect. It should have read α, α*. Also, the second symbol in Slack variables should have
read ζ , ξ*.

On page 1544, Section 2.2, paragraph 6, the incorrect slack variables symbol was used. The
sentence should read: ‘To deal with noisy data, slack-variables ζ i and ξi* are introduced…’.

On page 1545, Section 2.3, there was an error in the first sentence. It should read ‘…to be
performed in the input space…’.

On page 1550, the first paragraph should begin ‘The regularisation…’.

Figures 9, 10, 11, 13, 14, 15, 19, 20 and 21 did not include axis labels. These figures are
reproduced correctly in the corrected article which follows.
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C, controls the trade off between training error and model complexity. 
A small value will increase the training errors, while a large value will lead to minimal training 
errors and a stronger correlation with the training data at the expense of generalisation (referred 
to from hereon as hard margin behaviour). It is noted from the literature(26) that the value of C 
seems to have negligible effect when the insensitivity factor, ε, is well chosen. Values of C in this 
paper are varied from 0.01 to 1,000.

The insensitivity parameter, ε, determines the level of training accuracy for the SVM by 
controlling the width of the ε-insensitive zone. If ε is larger than the range of the target values, then 
fewer support vectors are chosen. If ε is set to zero, hard margin behaviour is expected. Generally, 
the value of ε should increase when greater noise levels are present in the data. A good initial 
selection is to set ε to the accuracy desired. This is generally a trial and error approach dependent 
on the noise and range of the data values. Values of ε in this paper are varied from 0.0001 to 1, 
which is a typically useable range with normalised data.

Quantitative validation is conducted by measuring the mean quadratic loss (MQL) with 
comparison to the FLIGHTLAB output. A validation data set is then used as a method of both 
kernel parameter selection and performance testing.

                   . . . (11)

The training data set is chosen such that the model is taught aspects of positive and negative pitch 
response over a range of pitch angles and frequencies. A successive positive and negative impulse 
response and a pulse frequency sweep from 0 to 2Hz are used for this paper as shown in Fig. 4.

validation datasets include responses that have not been previously seen by the SVM. Three (3) 
validation datasets are chosen such that the generalisation capability of the SVR Plant is tested. In 
this case a higher amplitude sinusoidal doublet and frequency pulse are chosen to test responses 
to unseen pitch dynamics for Model 1 (see Figs 5 and 6). These datasets are chosen such that 
minimal airspeed change occurs during the pitch manoeuvre. A step input response, involving 

0 2 4 6 8 10 12 14
20

40

60

80
INPUT

Lo
ng

itu
di

na
l C

yc
lic

 (
%

)

 

 

0 2 4 6 8 10 12 14
1

2

3

4

5

6

7
OUTPUT

P
itc

h 
A

ng
le

 (
de

g)

Time (sec)

 

 Training Dataset

Model 1 − TDL 1

Model 1 − TDL 5

Figure 4. Training dataset. Model 1 performance is shown against its training dataset for TDL values of 1 
and 5. ε = 0.01 and C = 0.1.
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unseen validation data (see Fig. 18). To aid in comparison with previous results, a TDL value of 
10 (500ms) is used for simulation here. Note that higher values of TDL with the training dataset 
do not lead to a levelling out of performance. This may be a sign of limited number of training 
data points with which to achieve good generalisation, because levelling of performance is clearly 
seen with the validation dataset.

The MQL predictive error surface against the training dataset (Fig.19) is very similar to the 
previous models taught with noiseless FLIGHTLAB data. In this case, a low value for ε and C 
provide the best performance against the validation data (Fig. 20), even though the number of support 
vectors required show hard margin behaviour (depicted as the red region in Fig. 21). Better results 
may have been achieved with the availability of airspeed data or a larger number of data points.
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Figure 16. Training dataset. Model 1 Performance is 
shown against Seahawk helicopter training data for 

TDL values of 1 and 10. ε = 0.01 and C = 0.1.

Figure 17. Validation dataset. Model 1 Performance 
is shown against unseen Seahawk helicopter data for 

a TDL value of 10. ε = 0.01 and C = 0.1.
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Figure 18. Model 1 MQL predictive error against 
Seahawk training and validation datasets with 

variation in TDL. ε = 0.01 and C = 0.1.

Figure 19. Model 1 MQL predictive error against the 
Seahawk training dataset. Variation in ε = 0.0001:1 

and C = 0.01:1000, TDL = 10.
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