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ABSTRACT. In this study we compare the anisotropic flow relations for polycrystalline ice of Azuma
and Goto-Azuma (1996), Thorsteinsson (2002), Placidi and others (2010) and Budd and others (2013).
Observations from the Dome Summit South (DSS) ice-coring site at Law Dome, East Antarctica, are
used to model the vertical distribution of deviatoric stress components at the borehole site. The flow
relations in which the anisotropic rheology is parameterized by a scalar function, so that the strain-rate
and deviatoric stress tensor components are collinear, provide simple shear and vertical compression
deviatoric stress profiles that are most consistent with laboratory observations of tertiary creep in
combined stress configurations. Those flow relations where (1) the anisotropy is derived from the
magnitude of applied stresses resolved onto the basal planes of individual grains and (2) the
macroscopic deformation is obtained via homogenization of individual grain responses provide stress
estimates less consistent with laboratory observations. This is most evident in combined simple shear
and vertical compression flow regimes where shear is dominant. Our results highlight the difficulties
associated with developing flow relations which incorporate a physically based description of
microdeformation processes. In particular, this requires that all relevant microdeformation,
recrystallization and recovery processes are adequately parameterized.
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LIST OF SYMBOLS

�S Single-crystal flow parameter (MPa� n s� 1)
_� Strain-rate tensor (a� 1)
_�ðgÞ Individual grain strain-rate tensor (a� 1)
_�e Effective shear strain rate (a� 1)
� Flow configuration parameter
� Ratio of horizontal strain-rate components (� ¼ �

ð1� �Þ )
� Firn or ice density (kgm� 3)
�ice Density of glacial ice (917 kg m� 3)
� Macroscopic applied stress tensor (MPa)
�ðgÞ Individual grain applied stress tensor (MPa)
� Normalized second-order orientation tensor
�e Effective shear stress (MPa)
�ðgÞ AGA basal plane resolved shear stress (MPa)
�o Octahedral shear stress (MPa)
 ðzÞ Horizontal velocity shape function
ai Eigenvalues (i ¼1, 2, 3) of the second-order orien-

tation tensor, �
AðTÞ Temperature-dependent flow parameter (MPa–n s–1)
A0 Flow relation constant (MPa–n s–1)
bs Burgers vector (rad)
B TNNI flow relation scaling parameter
B Single crystal flow relation constant (MPa–n s–1)
c Crystallographic c-axis vector (rad)
C0 TNNI reference grain interaction parameter
Cn TNNI neighbour grain interaction parameter
D CAFFE polycrystalline deformability
DðcÞ CAFFE individual grain deformability

EðDÞ CAFFE scalar anisotropic enhancement function
EðgÞ TNNI grain softness parameter
Es; Ec B2013 shear and compression component enhance-

ment factors
GðgÞ AGA geometric factor tensor
eG Symmetrized AGA geometric factor tensor
I Annual snow accumulation rate, ice equivalent (m a–1)
L TNNI velocity gradient tensor (a–1)
m AGA grain basal glide direction (rad)
N Number of c-axis orientation vectors
NT Total number of c-axes in a polycrystalline aggregate
n Creep power law stress exponent
Q Polycrystalline creep activation energy (J mol� 1)
Qs Single crystal creep activation energy (J mol� 1)
Rs Schmid tensor
R Universal gas constant (8.314 Jmol� 1 K� 1)
R Borehole strain-rate ratio, _�xz= _�zz
rs Stress configuration shear parameter
S Second-order deviatoric stress tensor (MPa)
St CAFFE resolved basal deviatoric stress (MPa)
T Temperature (K)
To B2013 weighted mean shear stress (MPa)
T TNNI basal plane resolved shear stress (MPa)
T 0 TNNI reference grain resolved shear stress (MPa)
T n TNNI neighbour grain resolved shear stress (MPa)
u Depth-averaged horizontal velocity (m a–1)
uðzÞ Horizontal velocity depth profile (m a–1)
z Ice equivalent depth (m)
zT Ice equivalent total depth (m)
Z Actual ice-sheet total depth (m)
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INTRODUCTION
Current estimates of global mean sea-level rise by 2100 span
an order of magnitude from 0.2 to 2:0 m (e.g. Willis and
Church, 2012), and the greatest source of uncertainty in
these predictions is the contribution from the Antarctic and
Greenland ice sheets (e.g. Gregory and others, 2013). The
poor constraints on ice-sheet mass loss exist due to
(1) inadequate numerical descriptions within models of ice
dynamic processes including deformation, fracture and
sliding, and (2) uncertainty in ice-sheet boundary conditions
including bedrock topography and lithological heterogen-
eity, grounding line location and geothermal flux (e.g. Alley
and Joughin, 2012; Gregory and others, 2013; Vaughan and
others, 2013; Carson and others, 2014). The recent
development of high- or variable-resolution ice-sheet
models that solve the full system of Stokes equations
describing the three-dimensional state of stress within an
ice mass, or higher-order approximations to the full-Stokes
equations, has led to an improved capability to simulate the
dynamics of ice streams, ice shelves and outlet glaciers (e.g.
Pattyn and others, 2008; Morlighem and others, 2010;
Gillet-Chaulet and others, 2012; Seddik and others, 2012;
Gagliardini and others, 2013).

In addition to the numerical scheme used to determine
stress distribution within an ice mass, a crucial component
of an ice-sheet model is the description of ice flow
properties, which relates the flow rates to the stresses
driving ice deformation. The flow relation most commonly
used to describe the rheology of polycrystalline ice is the
creep power law of Glen (1958),

_� ¼ AðTÞ�n� 1
e S, ð1Þ

where _� and S are the second-order strain-rate and
deviatoric stress tensors respectively, and AðTÞ is a tempera-
ture-dependent flow parameter. The effective shear stress,

�e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 SijSij

q

(we use Einstein’s summation convention
unless explicitly stated otherwise), is a function of the scalar
second invariant of S (Nye, 1957), and the stress exponent is
typically taken as n ¼ 3 (Budd and Jacka, 1989; Cuffey and
Paterson, 2010).

Equation (1) was empirically derived from secondary
(minimum) creep rates (Glen, 1955) on polycrystalline
samples with an initially random distribution of c-axis
orientations. Under conditions of constant stress and
temperature, secondary creep occurs transiently at strains
of �0.5–2%. At this point no significant changes to crystal
size and orientation have occurred, and the bulk properties
of samples with initially random c-axis orientations, in-
cluding their rheology, remain isotropic (Budd and Jacka,
1989). Consequently, the Glen (1958) flow relation is
isotropic and does not adequately describe the anisotropic
rheology typical of the high-strain creep deformation that
predominates within polar ice masses.

Terrestrial ice occurs in the low-pressure hexagonal Ih
phase, and single crystals exhibit a high level of viscoplas-
tic anisotropy due to the considerably lower resistance to
slip on crystallographic basal planes compared with non-
basal slip systems (e.g. Kamb, 1961; Duval and others,
1983; Trickett and others, 2000a). Turning to polycrystal-
line ice deformation, numerous laboratory and field obser-
vations indicate how microstructure evolves as a function
of strain (e.g. Gow and Williamson, 1976; Russell-Head
and Budd, 1979; Gao and Jacka, 1987; Pimienta and

others, 1987; Budd and Jacka, 1989; Tison and others,
1994; Durand and others, 2007; Gow and Meese, 2007;
Montagnat and others, 2014a). A conspicuous feature of
this evolution is the development of patterns of preferred
c-axis orientations (fabrics), which through the anisotropy
of single crystals engender a flow-induced polycrystalline
anisotropy that influences large-scale ice-sheet dynamics.
Laboratory ice-deformation experiments indicate how the
polycrystalline anisotropy observed during tertiary creep (at
strains �10%) is associated with enhanced flow rates
relative to the secondary (minimum) creep rates. Further-
more, the strain rates, fabric and distribution of grain sizes
(texture) are influenced by the flow configuration, stress
magnitude and temperature (e.g. Lile, 1978; Budd and
Jacka, 1989). Tertiary creep rates for unconfined compres-
sion are about three times greater than Glen (1958)
estimates determined for isotropic ice under similar
conditions of stress magnitude and temperature, while
simple shear tertiary creep rates are a factor of about three
times greater still (e.g. Treverrow and others, 2012; Budd
and others, 2013).

A flow relation for ice-sheet modelling should provide a
realistic description of anisotropic rheology while limiting
the introduction of complexity that reduces computational
efficiency and potentially restricts model resolution. Despite
not adequately describing the observed anisotropic rheology
of polycrystalline ice, the Glen (1958) flow relation remains
widely used in large-scale simulations due to its simplicity
and a lack of suitable alternatives. A common means of
incorporating a simple representation of flow enhancement
into models using the Glen (1958) relation is through a
constant multiplying factor (e.g. Calov and others, 2010),
sometimes referred to as a flow enhancement factor. Since
the observed magnitude of flow enhancement varies
according to the stress configuration, values ranging from
�3 to 12 may be used depending on the chosen reference
(e.g. Budd and Jacka, 1989; Cuffey and Paterson, 2010, ch.
3.4.7). Simulations of Antarctic ice-sheet evolution by
Golledge and others (2012) demonstrate the sensitivity of
predicted ice-sheet geometries to the value of the Glen
(1958) flow relation enhancement factor.

Various anisotropic flow relations for polycrystalline ice
have been proposed over recent decades and two broad
approaches to their development can be identified. In the
first, the flow is derived from consideration of grain-scale
deformation (and possibly recrystallization and recovery)
processes. The approaches taken vary in complexity due to
the deformation processes considered and the manner in
which the applied stresses are distributed onto individual
grains (e.g. Lile, 1978; Van der Veen and Whillans, 1994;
Svendsen and Hutter, 1996; Morland and Staroszczyk,
2003; Gillet-Chaulet and others, 2005; Faria, 2006; Placidi
and others, 2010). Where the deformation of individual
grains is explicitly derived from their crystallographic
orientation relative to the applied stresses, the bulk
(polycrystalline) response is obtained via integration (or
homogenization) of the individual grain responses (e.g.
Azuma and Goto-Azuma, 1996; Thorsteinsson, 2002). For
such relations, forward modelling requires a fabric evolution
scheme, which adds numerical complexity that precludes
their use in continental-scale ice-sheet models.

The second, more pragmatic, approach is to base the
description of anisotropy on a parameterization of key
rheological variables, such as the stress configuration or
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crystal c-axis orientation effects (e.g. Wang and Warner,
1999; Wang and others, 2002; Pettit and Waddington,
2003; Budd and others, 2013). Various perspectives and
additional detail on anisotropic flow relation development
can be found in reviews by Marshall (2005), Placidi and
others (2006), Gagliardini and others (2009) and Montagnat
and others (2014b).

In this work we compare the predictions of four aniso-
tropic flow relations using data from the Dome Summit
South (DSS) ice-coring site at Law Dome, East Antarctica.
Using a combination of ice-core, borehole and surface
measurements the vertical distribution of stresses driving
flow at the coring site is predicted. For brevity, acronyms are
used to identify the flow relations investigated in the
following, and usage of their associated citations is implied
in each case. For the Azuma and Goto-Azuma (1996) flow
relation we use AGA. The flow relation of Thorsteinsson
(2002) incorporates a parameterization of nearest-neighbour
grain interactions, so we adopt the acronym TNNI. Placidi
and others (2010) describe a Continuum mechanical
Anisotropic Flow model based on an anisotropic Flow
Enhancement factor and we adopt their acronym, CAFFE.
For the Budd and others (2013) flow relation we use B2013.

METHODS
Ice-core and borehole site input data
Temporally sequential measurements of borehole inclin-
ation, from which the vertical profile of the horizontal
velocity is obtained, are a valuable adjunct to the ice-core
and borehole data streams routinely obtained during deep

drilling of ice cores for palaeoclimate records. The
combined datasets are ideally suited to evaluating the
dynamics of ice masses. Here we use data from the DSS ice
core, drilled 4:7 km south-southwest of the Law Dome
summit in East Antarctica (Fig. 1), to evaluate the AGA,
TNNI, CAFFE and B2013 flow relations. For each relation
we calculate depth profiles of the shear stress, aligned
parallel to the surface flow direction, and the vertical
compression deviatoric stress. Input data include strain rates
derived from the borehole inclination; ice-core c-axis
orientation fabrics; borehole temperatures; and surface
measurements of the drill-site ice flow direction, velocity
and strain rate (Fig. 2; Table 1). To assist assessment of the
DSS-site stress estimates we use strain-rate and fabric data
from laboratory ice deformation experiments (Budd and
others, 2013) to calculate the corresponding applied
stresses; unlike the stresses in an ice sheet, the applied
stresses in laboratory experiments are known.

In the following we present ice-core and borehole data as
a function of ice equivalent depth,

z ¼
Z Z

0

�ð�Þ

�ice
d�, ð2Þ

where �ð�Þ is the firn/ice density at actual depth �,
�ice ¼ 917 kg m� 3 is the ice density and Z is the total ice-
sheet thickness. Below the firn–ice transition at �40m the
ice equivalent depth has a constant offset of –21.5 m relative
to the actual depth (Van Ommen and others, 2004; Roberts
and others, 2015).

Borehole and surface measurements
Figure 2a shows how ice temperature at DSS increases from a
mean annual surface value of � 21:8�C to � 6:9�C at the
bottom of the borehole. The DSS core was drilled to near
bedrock, and small fragments of rock were recovered from
the lowest core section. Comparison of the borehole depth
ð1195:6m) and estimates of the total ice thickness based on
radio-echo sounding (RES; 1220� 20 m (Morgan and others,
1997)) suggest bedrock was <45m below the bottom of the
borehole. From this it may reasonably be assumed that the
basal ice temperature is less than the in situ pressure-melting
point, despite the relatively high geothermal flux of
72mW m� 2 at the DSS site (Van Ommen and others, 1999).

Figure 2b (grey line) shows the shear strain-rate profile
derived from the borehole inclination projected onto a
plane parallel to the ice surface velocity vector of

Table 1.DSS borehole site and ice-core information (Morgan and
others, 1997, 1998)

Latitude 66.770° S
Longitude 112.807° E
Surface elevation 1370m
Ice thickness (RES) 1220� 20 m
Borehole depth 1195:6m
Borehole ice equivalent depth 1174:07m
Mean annual surface temperature � 21:8�C
Bottom-of-borehole temperature � 6:9�C
Annual ice accumulation, I 0:69 ma� 1

Ice surface velocity and bearing 2:04� 0:11 m a� 1

Surface strain rate (parallel to surface
flow direction)

ð3:22� 0:016Þ � 10� 4 a� 1

Surface strain rate (transverse to surface
flow direction)

ð4:50� 0:027Þ � 10� 4 a� 1

Fig. 1. Location of the Dome Summit South (DSS) ice-core site
(yellow star) at an elevation of 1370 m on Law Dome, East
Antarctica (see inset). The red box indicates a 25 km� 25 km
region surrounding the Law Dome summit. Within this region the
blue line is a portion of the flowline which extends from the dome
summit through the DSS ice-coring site and downstream towards
Vanderford Glacier. The background image is from the Landsat
Image Mosaic of Antarctica (Bindschadler and others, 2008); 100m
elevation contours are from Bamber and others (2009).
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2:04� 0:11 m a� 1 at 225� 3�, determined from 4 months of
GPS measurements during the 1995/96 austral summer
(Morgan and others, 1998). The small-scale fluctuations and
negative values of the shear strain rate at depths above
300m are a consequence of noise in the inclination data
where deformation rates are low (Morgan and others, 1998).
The borehole movement and hence shear strain rate in the
direction transverse to the surface flow (not shown) has a
similar magnitude to the total measurement error and is
considered negligible (Morgan and others,1998). The sur-
face strain-rate components are ð3:22� 0:016Þ � 10� 4 a� 1

in the line of flow and ð4:50� 0:027Þ � 10� 4 a� 1 transverse
to the surface flow direction (Morgan and others, 1998). We
specify a coordinate system at the DSS site where z is the
vertical (upward) direction with x and y, respectively,
parallel and transverse to the surface flow direction.

The shear strain rate does not increase monotonically to
the bed; a broad maximum occurs at �1000 m depth, or
�180 m above bedrock (Fig. 2b). The transition to lower
shear strain rates below �1000 m is not accompanied by
any corresponding large-scale changes in ice chemistry or
soluble-impurity content, rather it is associated with stress
relaxation towards the bed due to flow over undulating
bedrock topography at Law Dome (e.g. Budd and Jacka,
1989; Morgan and others, 1997). Similar maxima in the
shear strain rate �130 m above the bed have been observed
in the BHF, BHC-1 and BHC-2 boreholes drilled at near-
coastal sites along a flowline from Law Dome summit

towards Cape Folger (Russell-Head and Budd, 1979;
Etheridge, 1989), where the ice thickness is �300–385 m.
Modelling indicates that these peak shear strain rates are
associated with a corresponding maximum in the shear
stress and that the onset of a transition to lower shear strain
rates (and stresses) with depth is related to the magnitude of
the bedrock undulations.

Superimposed on the decreasing shear strain rate at
depths below 1000m is a narrow band between 1110 and
1124m where the shear rate is about five times greater than
that in ice immediately above and below (Fig. 2b). The ice-
core d18O record indicates this ice was deposited during
the Last Glacial Maximum (LGM) and compared with the
overlying Holocene ice has (1) significantly smaller mean
grain area, (2) a strong vertical single-maximum crystal
orientation fabric and (3) particle concentrations two orders
of magnitude higher (Morgan and others, 1998). Li and
others (1998) have shown that the higher insoluble impurity
concentrations associated with this layer are sufficient to
retard rates of microstructural evolution. Unlike the ice
immediately above and below, this allows the vertical
single-maximum pattern of c-axis orientations, which
originated upstream of the DSS site, to persist within this
narrow band of ice. This high level of polycrystalline
anisotropy, combined with higher temperatures closer to
the bed, results in a discrete band from 1100 to 1124m
with the highest shear strain rates within the DSS borehole
(Fig. 2b).

Fig. 2. DSS ice-core and borehole data as a function of ice equivalent depth. Bedrock is estimated to occur at an ice equivalent depth of
1198:5� 20 m. (a) Borehole temperature (Morgan and others, 1998). (b) Shear strain rate, derived from borehole inclination measurements
projected onto the direction parallel to the drill-site surface flow direction (Morgan and others, 1998). The smoothed shear strain-rate profile
(bold black line) is a five-point running mean. The vertical strain rate is derived from the horizontal velocity profile and surface
accumulation rate using Eqn (3). (c) Orientation tensor eigenvalues, ai, were determined from the c-axis vector distributions measured for
each of 185 thin sections obtained from the DSS ice core (Li, 1995; Morgan and others, 1997). The triplets of points at each depth are the
eigenvalues, ai, of the second-order orientation tensor, where a1 > a2 > a3. The bold lines represent eigenvalues determined from five-
member composite fabrics, typically containing N � 500 individual c-axes.
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Vertical strain rates
The vertical strain-rate profile, _�zz (Fig. 2b), was not
determined by direct measurement and is obtained from
Eqn (3) assuming steady-state conditions and ice incom-
pressibility (e.g. Reeh, 1988):

_�zz ¼ �
I

zT
 ðzÞ þ

u
zT
� ðzÞ �

@ ðzÞ
@x

u, ð3Þ

where I is the annual accumulation rate, u is the mean of
the horizontal velocity depth profile, uðzÞ, zT is the ice
thickness, and the horizontal velocity shape function  ðzÞ
relates uðzÞ to u as described below. Assuming that  ðzÞ
only varies gradually along the line of flow,

 ðzÞ ¼
uðzÞ
u
¼

uðzÞ
1
zT

Z zT

0
uðzÞ dz

, ð4Þ

and the last term in Eqn (3) can be neglected. As the surface
slope at the DSS site is low (� � 0:0051), the second term in
Eqn (3) is also negligible since I is about two orders of
magnitude greater than u� (Table 1). The assumption that
Law Dome is in steady state and has a stable geometry is
reasonable since the DSS ice-core isotope and chemistry
records indicate a stable annual accumulation rate over the
past �6.8 ka (Van Ommen and others, 2004). It follows that
the vertical strain rate can be estimated from the first term in
Eqn (3).

The near-surface (75:6 m actual depth) vertical strain rate
of _�zz ¼ � 7:61� 10� 4 a� 1, which was derived from the bore-
hole inclination data, agrees favourably with the independ-
ently determined surface GPS value of _�zz ¼ � ð _�xx þ _�yyÞ ¼

� 7:72� 10� 4 a� 1 (Table 1; Morgan and others, 1998).

Ice-core measurements
The DSS ice-core fabric data used in this study include
c-axis orientations from 185 thin sections obtained at �6m
intervals between 117m depth and the bottom of the ice
core (Fig. 2c; Li, 1995; Morgan and others, 1998). All fabrics
were measured manually at the time of drilling using a
Rigsby stage, with each fabric typically restricted toN � 100
individual c-axis orientations due to the laborious nature of
the measurement procedure (Morgan and others, 1997). For
certain sections, mainly at depths below �1040m, the
number of grains within an individual fabric was <100 due
to the combined effects of higher temperatures and stress
relaxation on grain growth, leading to higher mean grain
sizes and a reduction in the total number of grains within a
single thin section.

Following Woodcock (1977), the eigenvalues ai
ði ¼ 1, 2, 3Þ of the normalized second-order c-axis orien-
tation tensor,

� ¼

XN

i¼1
ci � ci

N
, ð5Þ

are used to illustrate fabric evolution with depth at DSS
(Fig. 2c).

The eigenvalues of � are related as a1 þ a2 þ a3 ¼ 1,
where by convention 0 � a3 � a2 � a1 � 1: Because the
eigenvalues describe the degree of clustering of c-axis
orientations about their respective eigenvectors they are
related to the fabric shape. The eigenvector, be1, of the
maximum eigenvalue, a1, is the direction about which
the distribution of orientations is minimized, whilst be3 is the

direction about which the distribution is largest. As a1 ! 1,
the distribution of orientations becomes smaller, i.e. fabrics
become stronger or more concentrated. It follows for an
isotropic (random) distribution of orientations that
a1 ¼ a2 ¼ a3 ¼

1
3 . The area of individual grains was not

determined during orientation measurements (Li, 1995), so
volume weighting of the orientation data (e.g. Durand and
others, 2006) was not possible and all orientations con-
tribute equally to � (Fig. 2c).

Several general comments can be made regarding the
DSS ice core c-axis distribution:

1. Near-surface fabrics are not isotropic because a1 � a2 �

a3. Non-random patterns of orientations near the firn-to-
ice transition are most likely influenced by a range of
factors related to accumulation, grain growth and
deformation processes.

2. All fabrics down to �1000 m are vertically clustered,
with be1 approximately parallel to the long axis of the
core. The strength of the single-maximum fabrics in-
creases with depth from 550m to 1000m. These fabrics
are consistent with the increasingly high shear strain
rates over the same depth range. Small-scale fluctuations
in fabric strength (Fig. 2c) are closely coupled to changes
in the grain size, with smaller grain sizes associated with
stronger fabrics (Morgan and others, 1997).

3. Down to �1000 m, fabrics are approximately transver-
sely isotropic. Based on the surface flow divergence,
indicated by _�yy= _�xx ¼ 1:4 (Table 1), the consistent
difference of �0.04 between a2 and a3 may be related
to some transverse spreading of the fabrics; however, the
azimuthal orientation of thin sections is not available to
confirm this.

4. Below �1040 m multiple-maxima fabrics are observed.
These are consistent with topographically induced stress
relaxation and increasing ice temperatures at depth
resulting in recrystallization, including significant grain
growth (Li, 1995; Morgan and others, 1997). Multiple-
maxima fabrics are not well described by the orientation
tensor eigenvalues; however, a reduction in a1 and an
increase in the difference between a2 and a3 below
�1040 m are indicative of a transition from the single-
maximum fabrics associated with the overlying high
shear zone.

Background to the flow relations
The AGA, TNNI and CAFFE flow relations have been
selected for comparison with the B2013 flow relation
because each differs in the degree to which physically
based interpretations of grain-scale deformation and re-
covery processes are incorporated into the formulation.
These flow relations may be broadly classified as homo-
genization schemes since the strain-rate response of a
polycrystalline aggregate is based on consideration of the
orientation relationship between individual grains (repre-
sented by crystallographic c-axis vectors) and the macro-
scopic deviatoric stress tensor. Both the AGA and TNNI
relations define the stress acting on an individual grain in
terms of its c-axis orientation relative to the applied stress in
conjunction with a consideration of neighbour grain orien-
tation effects. The CAFFE flow relation is a generalization of
the Glen (1958) flow relation using grain orientations in
conjunction with the deviatoric stress tensor to specify a
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scalar anisotropic enhancement factor. The B2013 relation
is an empirical parameterization based on deformation
experiments conducted in a range of stress configurations
using laboratory-made ice.

Several other anisotropic flow relations could have been
considered for inclusion in this study (e.g. Lile, 1984; Van
der Veen and Whillans, 1994; Svendsen and Hutter, 1996;
Gagliardini and Meyssonnier, 2000; Gödert, 2003; Starosz-
czyk, 2003; Gillet-Chaulet and others, 2005; Pettit and
others, 2011; Martín and others, 2014). In many anisotropic
flow relations, fabrics are represented by a c-axis orientation
distribution function (ODF). For some flow relations (such as
CAFFE) it is possible to also work directly with discrete
c-axis vectors instead of an ODF. For other flow relations it
is not straightforward to make the translation to a vector
description of the c-axis distribution. For reasons of
simplicity, a constrained form of ODF, where the anisotropy
is described by a limited number of variables, is often
specified. This can introduce symmetry limitations on the
ODF (e.g. a restriction to only transversely isotropic orien-
tation patterns), with the result that naturally occurring
fabrics that do not satisfy these criteria are not adequately
described. Since a specific aim of this study is to compare
the empirical B2013 relation to microscale flow relations
using the DSS ice-core crystal orientation fabric data, we
have restricted our analysis to a subset of candidate flow
relations where the deforming polycrystalline aggregate can
be described by a discrete distribution of c-axis orientation
vectors.

AGA flow relation
In the AGA flow relation individual grains are assumed to
deform only by glide on crystallographic basal planes,
normal to the c-axis. The outer product of the basal glide
direction, m, and the crystallographic c-axis vectors, c,
define a geometrical factor tensor GðgÞ for a grain,

GðgÞij ¼ m� c ¼ micj: ð6Þ

GðgÞ is the origin of anisotropy in the AGA relation and
describes the geometric connection between the applied
stress tensor on a grain, �ðgÞ, and the scalar magnitude of the
resolved shear stress, �ðgÞ, on the basal plane of a grain:

�ðgÞ ¼ �ðgÞ:GðgÞ, ð7Þ

where X :Y denotes the generalized inner product XijYji.
Because grains are assumed to deform by basal glide alone,
the temperature-dependent flow parameter, �S, for easy
glide of single crystals is used in the definition of the strain-
rate tensor for a grain (Azuma and Goto-Azuma, 1996):

_�ðgÞ ¼ �SeGðgÞð�ðgÞ:GðgÞÞ
n, ð8Þ

where eG is the symmetrization of G and

�S ¼ B exp �
Qs

RT

� �

: ð9Þ

Here B is a material-dependent parameter, specific to
single-crystal deformation, which is several orders of
magnitude higher than corresponding values for polycrystal-
line ice deformation (e.g. Cuffey and Paterson, 2010, ch.
3.4). B is largely determined by the concentration of soluble
and insoluble impurities (e.g. Jones and Glen, 1969; Trickett
and others, 2000b), Qs is a single-crystal creep activation
energy and R is the universal gas constant. Equation (8)
includes the single-crystal creep power-law stress exponent,

n, and from the derivation of Azuma and Goto-Azuma
(1996) this value should apply in Eqn (8) and later in
Eqn (11). Based on Weertman (1983), Azuma and Goto-
Azuma (1996) assume n ¼ 3 for single crystal deformation.
Analyses of single-crystal deformation by Duval and others
(1983) and Treverrow (2009) demonstrate that a stress
exponent of n ¼ 2 is appropriate for easy glide of single
crystals, suggesting that this value should have featured in
the AGA relation. For consistency with the flow relation
presented by Azuma and Goto-Azuma (1996), and the other
relations considered in this study, we use the more widely
accepted value of n ¼ 3 for polycrystalline deformation.

Azuma and Goto-Azuma (1996) proposed an empirical
relationship for �ðgÞ as a function of the macroscopic stress
tensor, �, and the c-axis orientation of the grain and its
nearest neighbours, based on experimental observations of
polycrystalline ice deformation (Azuma, 1995). This rela-
tionship, along with the assumptions

G ¼
1
NT

XNT

k¼1

GðgÞk and � ¼ � :G, ð10Þ

where NT is the number of grains in a polycrystalline
aggregate, defines the macroscopic strain rate,

_� ¼ �SeG�n: ð11Þ

Thus the macroscopic anisotropy of the AGA relation is
determined by the arithmetic mean of GðgÞ for each grain.
The assumptions leading to Eqn (10) are significant since they
enable expressions for the redistribution of the applied stress
on each grain, based on neighbour grain c-axis orientations,
to be eliminated from the calculation of _�. This greatly
simplifies numerical implementation of the AGA flow
relation as c-axis data only enter into the calculation of G.

TNNI flow relation
Similar to the AGA flow relation, in the TNNI flow relation
individual grains are assumed to deform only by glide on
basal planes and the polycrystalline strain rate is determined
from the homogenization of individual grain deformations.
Of the flow relations considered in this study, the TNNI
relation incorporates the most physically motivated de-
scription of grain-scale deformation processes. The deform-
ation of individual grains is based on the slip rate for each
crystallographic basal slip system and includes a parameter-
ization of c-axis dependent nearest-neighbour grain inter-
actions.

The anisotropy of the TNNI flow relation is derived from
the Schmid tensor, Rs, for each basal slip system within a
grain,

Rs ¼ bs � c ¼ bsi cj, ð12Þ

where c is the crystallographic c-axis vector, bs is the
Burgers vector, parallel to the crystallographic slip direction,
and the index s = 1, 2, 3 denotes quantities associated with
each a-axis slip system within a grain. The Schmid tensor
links the macroscopic stress, �, to the shear stress, T ,
resolved onto the basal plane of each grain,

T ¼
X

s
ðRs :�Þbs

�
�
�
�
�

�
�
�
�
�
: ð13Þ

The quantity, T , is analogous to �ðgÞ in the AGA flow
relation, Eqn (7). Thorsteinsson (2002) defined a parameter-
ization of grain interaction that influences the magnitude of
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anisotropic flow enhancement in the TNNI flow relation.
The softness parameter for a grain,

EðgÞ ¼
1

C0 þ 6Cn
C0 þ Cn

X6

i¼1

T i

T 0

 !

, ð14Þ

is a function of the resolved shear stresses on a reference
grain, T 0, and each of its six nearest neighbours, T i. The
grain interaction parameters for the reference grain, C0, and
each of its nearest neighbours, Cn, define the extent to
which neighbour grain interactions influence the redistribu-
tion of applied stresses onto each grain. Thorsteinsson
(2002) specifies three levels of nearest-neighbour grain
interaction (NNI):

1. No NNI. C0 ¼ 1 and Cn ¼ 0. No neighbour grain
interaction, EðgÞ ¼ 1, corresponding to a homogeneous
stress condition.

2. Intermediate NNI. C0 ¼ 6 and Cn ¼ 1. The relative
contribution of the reference grain to EðgÞ is equivalent
to that of all the neighbour grains combined.

3. Full NNI. C0 ¼ 1 and Cn ¼ 1. The relative contribution
of all grains to EðgÞ is equivalent.

Full NNI produces the highest levels of anisotropic flow
enhancement and is used in the following analyses.

The velocity gradient tensor, LðgÞ, of a single crystal is the
sum of the velocity gradient tensor for each slip system,

LðgÞ ¼
X

s
BAðTÞRsEðgÞ Rs :�ð Þ

n, ð15Þ

where the temperature dependent term,

AðTÞ ¼ A0 exp �
Q
RT

� �

, ð16Þ

is that specified in the Glen (1958) flow relation, Eqn (1). Q
is an activation energy for the creep of polycrystalline ice
and R and T are as previously defined. The pre-exponential
term A0 can be determined empirically from the secondary
creep of isotropic polycrystalline ice and is assumed to be
dependent upon material-specific factors including ice
density and the size and concentration of soluble and
insoluble impurities (e.g. Budd and Jacka, 1989; Cuffey and
Paterson, 2010). The constant B (Eqn (15)) is an arbitrary
tuning parameter that ensures the flow relation reproduces
physically-accurate strain rates (Thorsteinsson, 2001). The
macroscopic velocity gradient, L, for a polycrystalline
aggregate of NT grains is the arithmetic mean of the
individual grain velocity gradients (Thorsteinsson, 2002):

L ¼
1
NT

XNT

c¼1
LðgÞ, ð17Þ

and the polycrystalline strain rate is

_� ¼
1
2

Lþ LT
� �

: ð18Þ

CAFFE flow relation
In the CAFFE flow relation, individual grains are also
assumed to deform by basal glide; however, unlike the
AGA and TNNI flow relations the polycrystalline strain rate
is not derived from a homogenization of individual grain
deformations. The magnitude of the applied deviatoric stress
S resolved on the basal plane of a grain is used to define a
deformability index, DðcÞ, for each grain, which quantifies

the proportion of the applied stress able to drive deformation
of a grain specified by its c-axis vector, c.

DðcÞ ¼
5
2
S2
t ðcÞ
�2
e
¼ 5
ðS � cÞ2 � ðc � S � cÞ2

trðS2Þ
, ð19Þ

where St is the magnitude of the resolved basal deviatoric
stress component. An array of c-axis vectors can be described
by an orientation distribution function (ODF) that quantifies
the volume fraction of c-axis orientations. By integrating the
single crystal deformability,DðcÞ, weighted by the ODF over
the unit sphere, S2, the polycrystalline deformability D is
obtained (Seddik and others, 2008; Placidi and others, 2010).
By expressing integrals as summations over theNT individual
crystals in a polycrystalline aggregate, the macroscopic
deformability, D, can also be determined directly,

D ¼
5
NT

XNT

g¼1

ðS � cÞ2 � ðc � S � cÞ2

trðS2Þ
: ð20Þ

The macroscopic deformability is used to determine a
nonlinear, scalar enhancement function, EðDÞ, for the Glen
(1958) flow relation in Eqn (1). EðDÞ is defined over the
interval 0 � D � 5

2 ,

EðDÞ ¼
Emin þ ð1 � EminÞDt, t ¼ 8

21
Emax � 1
1� Emin

0 � D � 1
4D2ðEmax � 1Þþ25� 4Emax

21 1 � D � 5
2

(

ð21Þ

where Emin and Emax are user-defined limits of enhancement,
such that EðDÞ has the following fixed points:

1. D ¼ 0, Eð0Þ ¼ Emin. The minimum enhancement value is
returned when there is no resolved shear stress on the
basal planes of grains. To avoid numerical issues Placidi
and others (2010) recommend selecting 0 < Emin < 0:1.

2. D ¼ 1, Eð1Þ ¼ 1. The factor of 5
2 in Eqn (19) ensures that

D ¼ 1 for an isotropic c-axis distribution, resulting in an
enhancement of E ¼ 1. In this situation the CAFFE flow
relation, Eqn (22), reduces to the Glen (1958) flow
relation.

3. D ¼ 5
2 , Eð52Þ ¼ Emax. The maximum deformability returns

the theoretical maximum enhancement, Emax, when the
applied stress is entirely resolved onto the basal planes of
all grains. This corresponds to an idealized scenario
where all grains in a polycrystalline aggregate have
identical c-axis orientations that are normal to an applied
simple shear stress.

Placidi and others (2010) suggest Emax � 10, based on
experiments by Pimienta and others (1987) on samples from
the Vostok (East Antarctica) ice core with a strong single-
maximum crystal orientation fabric. Other field and labora-
tory observations of simple shear strain-rate enhancement
suggest potential Emax values ranging from �4 to 12 (e.g.
Russell-Head and Budd, 1979; Duval, 1981; Azuma and
Higashi, 1984; Lile, 1984; Dahl-Jensen and Gundestrup,
1987; Pimienta and others, 1987; Li and others, 1996;
Morgan and others, 1998; Thorsteinsson and others, 1999).
Here we specify a mid-range value of Emax ¼ 8 based on the
compilation of Treverrow and others (2012). This value is
consistent with selection of Es ¼ 8, for the conceptually
similar Es parameter in the B2013 flow relation.

Faria (2008) has demonstrated how the polycrystalline
deformability, D (Eqn (20)), provides the anisotropic
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foundation of the scalar enhancement factor, EðDÞ. The
polycrystalline strain rate is

_� ¼ EðDÞAðTÞ�n� 1
e S, ð22Þ

where the temperature-dependent flow parameter AðTÞ is as
defined previously and the stress exponent n ¼ 3. Due to the
collinear relationship between components of _� and S, the
CAFFE flow relation, Eqn (22), can readily be inverted to
express S as a function of _�,

S ¼ EðDÞ� 1=nAðTÞ� 1=n
_�� ð1� 1=nÞ
e _�: ð23Þ

Here _�e ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1
2 _�ij _�ij

q

is the effective shear strain rate (Nye,
1957). Equation (23) requires the deformability, D, to be
redefined as a function of _� and c (Placidi and others, 2010).
Following Eqn (20),

D ¼
5
NT

XNT

g¼1

ð _� � cÞ2 � ðc � _� � cÞ2

trð _�2Þ
: ð24Þ

In the present study the instantaneous state of stress is
calculated from strain-rate and fabric data via Eqns (23) and
(24), which does not require the time (or strain)-dependent
description of fabric evolution. Consequently, those aspects
of CAFFE associated with the description of fabric evolution
through the parameterization of recrystallization processes,
including rigid body rotation, local grain rotation, poly-
gonization and grain boundary migration, are not con-
sidered.

B2013 flow relation
The B2013 flow relation is based on an empirical par-
ameterization of tertiary creep rates from laboratory ice-
deformation experiments conducted in a range of combined
stress configurations, incorporating various proportions of
simple shear and compression components (Budd and
others, 2013). In these experiments the compression axis
was normal to the planes on which the forces generating the
simple shear act. The flow relation is based on the
observation that during tertiary creep the various statistically
steady-state fabric patterns that develop correspond to the
particular stress configuration (termed ‘compatible’ fabrics;
Budd and others, 2013). This allows anisotropic flow to be
parameterized directly from the relative proportions of the
deviatoric stress components. Therefore, unlike the AGA,
TNNI and CAFFE flow relations, specification of visco-
plastic anisotropy in the B2013 does not require consider-
ation of the magnitude of stresses resolved onto the basal
planes of individual grains, i.e. fabric patterns are not
required as an input to determine the flow.

The B2013 flow relation describes simple shear alone,
compression alone or combined shear and compression
stress configurations. The observation of similar levels of
tertiary creep strain-rate enhancement for unconfined and
confined compression (Budd and others, 2013) enables a
flow relation where the relative proportions of the normal
stress components in the directions parallel and transverse
to the flow can be varied. This flow configuration is
described as

_�ij ¼

ð� � 1Þ _�zz 0 _�xz
0 � � _�zz 0
_�xz 0 _�zz

0

@

1

A, ð25Þ

where the parameter � describes the proportions of the
normal components, _�xx ¼ ð1 � �Þ _�zz and _�yy ¼ � _�zz, where

0 � � � 1. We specify a coordinate system (corresponding
to that chosen earlier for description of the DSS flow) where
x is the horizontal flow direction within the non-rotating
shear plane, z is the vertical and y the transverse direction.
Values of � ¼ 0 and � ¼ 1 correspond to vertical compres-
sion with confinement in the y and x directions respectively,
and � ¼ 0:5 corresponds to unconfined compression where
_�xx ¼ _�yy.

In the B2013 flow relation the components of _� (Eqn (25))
are

_� ¼ AðTÞT2
oS: ð26Þ

Anisotropy enters the flow relation through the weighted
mean shear stress, To (Budd and others, 2013):

To ¼

ffiffiffiffi
2
3

r

EsS2
xz þ EcS2

zzð1þ �ð� � 1ÞÞ
� � 1

2 : ð27Þ

In providing the nonlinearity of the flow relation To is
analogous to the octahedral shear stress, �o, which is the root-
mean-square average of the principal stress deviators (or �e in
the Glen (1958) and CAFFE flow relations). Es ¼ 8 and Ec ¼ 3
are experimentally determined shear and compression com-
ponent enhancement factors. The asymmetry of To, through
the different values for Es and Ec in Eqn (27), parameterizes
the experimentally observed anisotropy of tertiary creep
strain-rate enhancement. Owing to the collinear relationship
between the _� and S tensor components, Eqn (26) can be
inverted to allow the components of S to be calculated from
_�. Unlike the AGA, CAFFE and TNNI flow relations, the
particular form of the B2013 flow relation used here is not
generalized to describe arbitrary flow configurations. It only
applies to combinations of simple shear and compression
represented by Eqn (25). As described in the following
subsections, the large-scale flow regime at DSS is also
described by Eqn (25), so the B2013 flow relation is suited to
the examination of ice dynamics at this site.

The requirements for implementation of the B2013 flow
relation are greatly simplified in comparison with the AGA,
TNNI and CAFFE flow relations, since the anisotropy is
determined from the stress configuration without reference
to patterns of c-axis orientations. Implementation of B2013
in large-scale ice-sheet models, as outlined by Budd and
others (2013), requires a generalization of the flow relation,
from the particular situation of combined stresses studied in
the laboratory experiments, to one applicable to arbitrary
states of stress.

Calibration of the flow relations
All the flow relations considered here were calibrated using
values of the temperature-dependent flow parameter, AðTÞ
in Eqn (16), determined from the comprehensive Budd and
Jacka (1989) compilation of secondary (minimum) creep
octahedral shear strain rates determined for stresses from
0.025 to 0.40 MPa and temperatures from –50°C to –0.05°C.
These AðTÞ values (Fig. 3) are substituted directly into the
CAFFE and B2013 flow relations. For a statistically isotropic
distribution of c-axis vectors, the CAFFE enhancement,
EðDÞ ¼ 1 (Eqn (21)). In this situation CAFFE reverts to the
Glen (1958) relation and returns strain rates consistent with
the Budd and Jacka (1989) compilation.

The AðTÞ values of Cuffey and Paterson (2010) are
presented in Figure 3 for comparison with the values derived
from the Budd and Jacka (1989) data. Over the temperature
range in the DSS borehole of –21.8°C to –6.9°C the Budd
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and Jacka (1989) values are largely similar to those of Cuffey
and Paterson (2010); however, above –15°C the Budd and
Jacka (1989) derived values are more sensitive to increasing
temperature, leading to higher values, particularly above
–10°C.

In addition to AðTÞ values determined using the Budd and
Jacka (1989) data, the TNNI flow relation, Eqn (18), is
calibrated using the dimensionless parameter, B, to provide
physically reasonable strain-rate (or stress) estimates
(Eqns (15) and (16)). For strain rates calculated using a
statistically isotropic distribution of NT � 8:5� 104 c-axes,
the value of B required for strain rates to match the Budd and
Jacka (1989) secondary (minimum) creep values varies
according to the specified level of neighbour grain inter-
action, i.e. with the grain interaction parameters, C0 and Cn.
Thorsteinsson (2001) provides an analytically derived value
of B ¼ 630 for homogeneous stress conditions with no
neighbour grain interactions (e.g. C0 ¼ 1 and Cn ¼ 0), whilst
for the case of full neighbour grain interaction, (C0 ¼ 1;
Cn ¼ 1), we find B ¼ 565.

In the derivation of the AGA flow relation, Azuma and
Goto-Azuma (1996) used the temperature-dependent flow
parameter, �S, specific to single-crystal deformation
(Eqn (10)). For an isotropic distribution of c-axes this leads
to strain rates three to four orders of magnitude higher than
observed polycrystalline strain rates under similar condi-
tions of temperature and stress (Treverrow, 2009). To correct
this discrepancy we calibrate the AGA relation using a
procedure similar to that for the TNNI relation. Using the
same statistically isotropic distribution of NT � 8:5� 104

c-axes and the Budd and Jacka (1989) AðTÞ, a scaling
parameter is determined so that the isotropic strain rates
match the Budd and Jacka (1989) secondary creep rates.

Calculation of stress profiles

Sensitivity of flow relations to fabric data array size
The parameterization of crystal orientation fabrics using an
ODF may not adequately describe distributions where the

number of c-axis orientations is <100. When implementing
the flow relations to determine borehole stress profiles, we
solve AGA, TNNI and CAFFE numerically, with discrete
summations over the measured c-axis orientation data. This
avoids any loss of fabric detail through conversion to a
restrictive form of ODF.

Figure 4 illustrates how uncertainty in AGA, TNNI and
CAFFE strain-rate predictions varies with the number of
c-axis vectors in an isotropic fabric created by random
selection from a simulated isotropic distribution of 8:5� 104

axes. Normalized strain rates were calculated for simple
shear on isotropic fabrics with N ¼ 50 to 1:0� 104 c-axes.

Fig. 4. Variability in normalized octahedral shear strain rates as a
function of N, the number of c-axes in simulated isotropic crystal
orientation fabrics. Strain rates are for the (a) AGA, (b) TNNI and
(c) CAFFE flow relations. For each value of N the mean and
standard deviation of the octahedral shear strain rate were
calculated for 50 simulated fabrics randomly selected from the
same isotropic distribution of 8:5� 104 axes. Strain rates calculated
for each flow relation were normalized against rates determined
using the reference isotropic fabric of 8:5� 104 axes. Results for the
TNNI flow relation were calculated with full neighbour grain
interaction and CAFFE rates were calculated using Emax ¼ 8.

Fig. 3. Comparison of the Budd and Jacka (1989) and Cuffey and
Paterson (2010) values of the temperature-dependent flow par-
ameter, AðTÞ (Eqns (1) and (16)).
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For each N, 50 simulated fabrics were randomly selected
from the original distribution and their normalized strain
rates calculated. In each case the reference strain rates for
normalization were calculated using the same isotropic
distribution of 8:5� 104 axes. These rates are equivalent to
the analytically derived rates for an ideal isotropic distri-
bution. For fabrics described by an array of c-axis vectors it
is possible for the AGA and TNNI flow relations to predict _�ij

components where there is no corresponding Sij com-
ponent. To incorporate the influence of this effect on the
overall deformation, all normalized strain rates (Fig. 4) are
calculated using octahedral shear strain rates.

The uncertainty in strain rates predicted using the AGA,
CAFFE and TNNI flow relations is highest for low-N fabrics
due to the greater potential for individual grains, with a high
degree of misorientation relative to the mean orientation, to
influence the bulk strain rates. The values presented for
isotropic fabrics (Fig. 4) represent an upper limit of c-axis
orientation-based uncertainty in strain rates for each N. As
fabrics become increasingly anisotropic the mean misorien-
tation of c-axes decreases, reducing the potential for any
individual grains to strongly influence the bulk strain rates.
In this study we use fabric data measurements that predate
modern automated ice crystal fabric analysers, so individual
fabrics are restricted to N � 100 orientations due to the
arduous nature of conducting multiple Rigsby stage
analyses (Fig. 2c). For anisotropic fabrics, measurement of
N � 80–100 c-axes is adequate to describe the distribution
(e.g. Durand and others, 2006; Gow and Meese, 2007);
however, this value increases as fabrics become increas-
ingly isotropic.

To minimize uncertainty in the flow relation stress
estimates based on fabrics with N< 100, composite fabrics
have been created by combining five sequential fabrics,
resulting in N � 500. This smooths the fabric data over an
interval of �25–40m (bold lines in Fig. 2c). The depth
assigned to each of the 185 composites is the moving mean
of the five contributing fabric depths. With this technique the
number of individual fabrics contributing to the composites
is lower for the uppermost and lowermost two cases, which
are derived from three and four members respectively.

Flow configuration at DSS
From surface and borehole strain-rate observations (Morgan
and others, 1998) the flow configuration at the DSS site is
assumed to be horizontal simple shear parallel to the surface
flow direction, combined with extension both parallel and
transverse to the flow direction. This flow configuration
corresponds to that specified for the B2013 flow relation in
Eqn (25). The � parameter describing the relative proportions
of the normal flow components can be determined from the
ratio of the GPS-determined surface strain-rate components,
i.e. _�yy � 1:4 _�xx (Table 1), leading to � � 7

12 and

_�ij ¼

� 5
12 _�zz 0 _�xz
0 � 7

12 _�zz 0
_�xz 0 _�zz

0

@

1

A, ð28Þ

so that vertical profiles of _�xx and _�yy can be obtained from the
_�zz profile. The agreement between the surface value of the
vertical strain-rate profile, _�zz ¼ � 7:9� 10� 4 a� 1 (Eqns (3)
and (4)) and the GPS-determined _�zz ¼ � ð _�xx þ _�yyÞ ¼

� ð7:72� 0:043Þ � 10� 4 a� 1 (Morgan and others, 1998)
provides validation of the borehole inclination derived
_�zz profile.

Procedures for estimating stress profiles
The procedures used to estimate Sxz and Szz profiles using
the available strain-rate, temperature and crystal orientation
data vary for each flow relation. We calculate the vertical
deviator, Szz, since _�zz links more directly to the calculated
_�xz profile (Eqn (3)). In all cases a stress configuration of the
form

Sij ¼
ð� � 1ÞSzz 0 Sxz

0 � �Szz 0
Sxz 0 Szz

0

@

1

A ð29Þ

is assumed where � ¼ 7
12 is used. The borehole strain-rate

( _�xz, _�zz) and temperature data (Fig. 2) are available at higher
spatial resolution than the fabric data, so values corres-
ponding to the composite fabric depths were determined by
interpolation.

Owing to the collinear relationship between _� and S
components in the B2013 flow relation, at each depth
interval _�xz= _�zz ¼ Sxz=Szz ¼ R. From the depth profile of R,
substitution of Szz ¼ Sxz=R into Eqns (26) and (27) gives

Sxz ¼
3 _�xz

2AðTÞ

� � 1
3

Es þ
ð1þ �ð� � 1ÞÞEc

R2

� �� 1
3

, ð30Þ

from which Szz is easily obtained.
For the CAFFE flow relation Sxz and Szz are calculated

using the composite fabric data appropriate to each depth
(Eqns (21) and (23)).

For the AGA and TNNI flow relations a tensor relation-
ship exists between _� and S, necessitating indirect calcula-
tion of stress profiles via a more complex two-step process.
Firstly, temperature-independent _� values were calculated
for each fabric using S (Eqn (29)), where the proportions of
Sxz and Szz were varied iteratively for values of a shear stress
parameter (Warner and others, 1999),

rs ¼
2
�

arctan
Sxz
Szz

� �

, ð31Þ

where 0 � rs � 1. The shear parameter rs ¼ 0 when Sxz ¼ 0,
and rs ¼ 1 when Szz ¼ 0. When Sxz ¼ Szz (equal deviators)
rs ¼ 0:5. For each composite fabric the rs value that
produces the strain-rate ratio, R ¼ _�xz= _�zz, which matches
the borehole-derived value for that depth was determined.
In this step, only the relative proportions of Sxz and Szz are
required since R is a function of the fabric and rs, i.e. their
magnitudes and the temperature dependence are unim-
portant, only their relative proportion matters. Secondly, _�

was recalculated for each composite fabric using the
appropriate AðTÞ value (Eqn (16)), for the corresponding
depth. For each fabric the magnitudes of Sxz and Szz were
varied iteratively, according to the proportions described by
the corresponding rs value, until the correct borehole _�xz and
_�zz values were reproduced.

RESULTS
The calculated vertical profiles of Sxz, Szz and �o for the
AGA, TNNI, CAFFE and B2013 flow relations are presented
in Figure 5a, b and c respectively. The octahedral shear
stress, �o, provides a comparison of generalized stress
magnitude for each flow relation. As a reference, Sxz, Szz
and �o profiles have also been calculated for the Glen (1958)
flow relation, Eqn (1), using the borehole deformation and
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temperature data. The Glen Sxz profile is given by

Sxz ¼
3 _�xz

2AðTÞ
R2

1þ �ð� � 1Þ þ R2

� �� � 1
3

, ð32Þ

where R and � are as defined previously. The collinear
relationship between _� and S in Eqn (1) allows the vertical
deviatoric stress component to be determined from
Szz ¼ Sxz=R.

Fig. 6. Vertical profiles of the simple-shear and vertical-compression strain-rate enhancement factors for the each of the anisotropic flow
relations. The enhancements, Eij, are the ratio of the borehole strain rates to the corresponding values calculated with the Glen (1958) flow
relation using borehole temperature data and the stress estimates from each of the anisotropic flow relations (Fig. 5a and b). For the collinear
CAFFE and B2013 flow relations (a), the same enhancement ratio applies for both the shear (Exz) and compression (Ezz) components. In the
(b) AGA and (c) TNNI flow relations, the _� and S components are related by a tensor-viscosity term, resulting in separate Exz and Ezz profiles.

Fig. 5. Stress profiles as a function of ice equivalent depth at the DSS borehole site (Law Dome), calculated using the AGA, CAFFE, TNNI and
B2013 flow relations. (a) Shear stress, Sxz; (b) compression deviatoric stress, Szz; and (c) octahedral shear stress, �o. Note the different
horizontal scales. Estimates of the one standard deviation (�) uncertainty intervals for Sxz, Szz and �o are based on the variability in the
borehole strain rate (Fig. 2b) and c-axis orientation fabric (Fig. 2c) datasets.
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In addition to the Sxz, Szz and �o profiles (Fig. 5),
differences between the flow relations are illustrated through
the calculation of the profiles for strain-rate-based flow
enhancement ratios, Exz and Ezz (Fig. 6). Exz and Ezz were
determined from the ratio of the DSS borehole strain-rate
components, _�xz and _�zz, to the corresponding strain rates
calculated using the Glen (1958) flow relation (Eqn (1)), and
the Sxz and Szz profiles determined for each anisotropic flow
relation (Fig. 5a and b). Here the Glen (1958) flow relation is
used without any modification to account for flow
enhancement effects. This provides a quantitative basis for
comparison of the anisotropic flow relations with one
another, and an assessment of the enhancement factors
used with the isotropic Glen (1958) flow relation in ice-
sheet models (e.g. Calov and others, 2010) that are typically
independent of the flow configuration and may vary from
E � 3 to E � 12, depending on the chosen reference value.

The small-scale fluctuations in the Sxz, Szz and �o profiles
over intervals of �10–20 m (Fig. 5) are a direct consequence
of measurement-related variability of the fabric and strain-
rate data and are not expected to reflect the existence of
corresponding noise in the in situ stress profiles. The
magnitude of the small-scale fluctuations varies with the
flow relations and is related to the manner in which fabric
and strain-rate (or stress) data are incorporated into the flow
predictions. The AGA and TNNI flow relations are most
susceptible to this induced variability as the bulk deform-
ation is based on the homogenization of individual grain
responses. The enhancement factor profiles (Fig. 6) indicate
how the small-scale variability in the AGA and TNNI stress
predictions – in particular that due to fabric – is amplified for
the minor flow component, i.e. when _�xz � _�zz or vice versa.
This is clearly demonstrated in the Exz profiles above
�300 m where _�zz � (5–10) _�xz and below �800 m where
_�xz > 2 _�zz. For the CAFFE flow relation the potential for
individual grain c-axis orientations, or groups of grains, to
introduce noise into the stress profile is reduced since
homogenization occurs through the scalar anisotropic
enhancement factor. As c-axis orientation data are not a
required input for the B2013 flow relation, the predicted Sxz
and Szz profiles are only influenced by noise in _�xz and _�zz,
which are derived from the borehole inclination data.

DISCUSSION
The shear stress profiles are similar for all anisotropic flow
relations (Fig. 5a). This result is not surprising since all the
flow relations, despite their differing formulations, are
optimized to predict enhanced shear deformation rates
where the flow is shear-dominated. The CAFFE, AGA and
TNNI flow relations derive their representation of poly-
crystalline anisotropy from the distribution of crystal c-axis
orientations and their relationship to the applied stresses.
Consequently predictions of enhanced shear deformation
are to be expected at the DSS site where the flow is shear-
dominated (at depths greater than �600m) and the crystal
orientation fabrics tend towards a strong vertical single
maximum which is compatible with the flow regime. For all
flow relations the predicted anisotropic flow enhancement
reduces the magnitude of Sxz required to drive the observed
_�xz in comparison with the isotropic Glen (1958) flow
relation. The magnitudes of the LGM shear strain rates at
�1120 m are nearly double the rates associated with the
broad maximum in shear rates at �1000 m (Fig. 2c).

However, due to the effects of higher ice temperatures at
depth on increasing the ice fluidity, the Sxz values in these
two zones are similar for all flow relations.

In combined stress configurations it is important that the
magnitudes of all predicted stress components are con-
sidered simultaneously. While the Sxz profiles are similar for
each flow relation, significant differences exist in their Szz
profiles due to their varying representations of polycrystalline
anisotropy, particularly in complex stress configurations.

The Szz estimates for the B2013 flow relation are
consistently lower than those for the other relations
considered. This is a consequence of the underlying
phenomenological basis of the flow relation using experi-
mental tertiary creep rates. The effective enhancement
(Fig. 6a) varies from a minimum of E � 3 near the surface
where _�zz � _�xz, to E � 8 below �800 m where _�xz � _�zz.

In the compression-dominated zone from the surface
down to �550 m, where _�zz > _�xz (Figs 2b and 5b), the
depth-averaged compression enhancement for the B2013
flow relation is Ezz ¼ 3:38. This value is similar to obser-
vations of tertiary creep from compression alone or
compression-dominated flow regimes. Over this same zone,
the corresponding crystal c-axis fabrics are weakly clus-
tered, displaying a broad single maximum. For the AGA,
TNNI and CAFFE relations – where the description of
anisotropy is at least partly based on the magnitude of
applied stresses resolved onto the basal planes of individual
grains – the resulting Ezz values are lower. For both CAFFE
and AGA, Ezz ¼ 1:44 and Ezz ¼ 1:27 for TNNI. These values
are significantly lower than expectations from laboratory
experiments in tertiary creep where _�zz > _�xz. Data from
both combined- and single-stress component experiments
clearly demonstrate that during tertiary creep, all strain-rate
components are enhanced relative to the expectations from
the Glen (1958) flow relation (Li and others, 1996;
Treverrow and others, 2012; Budd and others, 2013).

Between �550 m and �1000 m, where the flow is
increasingly shear-dominated and fabrics tend towards a
single maximum, the CAFFE Szz rapidly decreases towards
values approaching those of B2013. This reduction is driven
by an increase in the macroscopic enhancement from E � 2
to E � 7 and the collinearity of the _� and S components.

In contrast to the collinear CAFFE and B2013 flow
relations, the full tensor viscosities prescribed by the AGA
and TNNI relations allow the component enhancements to
differ. Consequently, the high levels of shear enhancement
that evolve below �550 m do not contribute to a reduction
in Szz. This leads to Szz predictions that are considerably
higher than the B2013 and CAFFE values, particularly at
depths below the upper compression-dominated region
(�550m) at the DSS site.

Within the shear-dominated zone from �550 m to
1000m the AGA and TNNI Szz predictions even exceed
the estimates for the isotropic Glen (1958) flow relation,
corresponding to component enhancements of Ezz < 1
(Fig. 6b and c). Because the high-strain deformation associ-
ated with tertiary creep processes prevails at Law Dome
(Russell-Head and Budd, 1979; Budd and Jacka, 1989;
Etheridge, 1989; Morgan and others, 1998), the AGA and
TNNI predictions of Ezz < 1 are indicative of physically
unrealistic descriptions of anisotropic ice rheology in
complex flow regimes. In particular, their predictions of a
resistance to vertical compression – that exceeds the
expectations for the isotropic Glen (1958) flow relation –
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is contrary to observations of tertiary creep in combined
simple shear and confined vertical compression experiments
(Li and others, 1996; Budd and others, 2013). These effects
are investigated further in the following subsection.

Comparison with observations from laboratory ice-
deformation experiments
While prediction of Sxz and Szz profiles using ice-core and
borehole data allows differentiation of the flow relations
based on their description of anisotropic rheology, such a
comparison does not provide an assessment of whether or
not the relative proportions of the stress tensor components
are physically realistic. In the following we use data from
laboratory ice deformation experiments to support our
analysis of the AGA, TNNI, CAFFE and B2013 flow relations.

In experiments on laboratory-made ice conducted in
combined simple shear and confined vertical compression
stress configurations, with different proportions of Sxz and
Szz, Li and others (1996) and Budd and others (2013)
demonstrated that during tertiary creep all strain-rate com-
ponents were enhanced relative to the expectations from the
Glen (1958) flow relation. In particular the compression

rates were enhanced, even as the shear stress proportion
increased and became dominant. Furthermore, this en-
hancement occurs despite the development of compatible
fabric patterns that might be considered to contain a high
proportion of hard-glide c-axis orientations with respect to
the compressive deviatoric stress component. The general
similarity of the DSS-site flow configuration and that of the
experiments of Li and others (1996) and Budd and others
(2013) allows for a comparison of DSS- and experimentally
based flow relation predictions.

Strain-rate and c-axis orientation data from two experi-
ments in the series of Budd and others (2013), and another
conducted using the same apparatus and experimental
techniques as Budd and others (2013), were used to
calculate the ratio of the simple shear and confined
compression deviatoric stresses, Sxz=Szz. In Table 2 these
values are compared to the applied experimental stresses.
We examine cases where the applied ratios of deviatoric
stresses were Sxz=Szz ¼ 0:5, 1:0 and 2:0. The corresponding
strain-rate ratios for these experiments were _�xz= _�zz ¼ 0:58,
1:05 and 1:59, respectively (Table 2). These values are
generally consistent with a collinear relationship between

Table 2. The ratio of simple shear and vertical compression deviatoric stress tensor components calculated using experimental tertiary creep
rate and c-axis orientation fabric data. The initially isotropic polycrystalline ice samples were deformed in combined stress configurations
incorporating various proportions of simple shear and confined vertical compression. All experiments were conducted at –2°C.
Experimental data for (b) and (c) are from Budd and others (2013) (table 1, experiments 22 and 24, respectively). The data for (a) were
obtained using the same apparatus and experimental techniques as Budd and others (2013). (a) Compression-dominated with
Sxz=Szz ¼ 0:50, Sxz ¼ 0:219 MPa and �o ¼ 0:40 MPa. (b) Equal shear and compression deviators, Sxz=Szz ¼ 1:0, Sxz ¼ 0:49 MPa and
�o ¼ 0:57MPa. (c) Shear-dominated with with Sxz=Szz ¼ 2:0, Sxz ¼ 0:49 MPa and �o ¼ 0:45 MPa. The experimental stress configuration is
defined by a Cartesian coordinate system where the x-axis is the shear direction and the z-axis is normal to the plane of the page. The crystal
orientation data are presented in lower-hemisphere Schmidt plots aligned with the xy-plane

Experimental applied stress ratio (a) Sxz=Szz ¼ 0:5
Compression-dominated

(b) Sxz=Szz ¼ 1:0
Equal deviators

(c) Sxz=Szz ¼ 2:0
Shear-dominated

Experimental tertiary creep rate ratio _�xz= _�zz ¼ 0:58 _�xz= _�zz ¼ 1:05 _�xz= _�zz ¼ 1:59

Crystal orientation fabric,
number of c-axes, N

3071 253 242

Total accumulated strain, _�o 0.43 0.28 0.29

Modelled stress ratio: Sxz=Szz

CAFFE and B2013 0.58 1.05 1.59
AGA 0.61 0.47 0.63
TNNI 0.62 0.51 0.71

DSS borehole depth (m) where _�xz= _�zz is
equivalent to the experimental value

544.7 ð _�xz= _�zz ¼ 0:58Þ 619.5 ð _�xz= _�zz ¼ 1:05Þ 737.6 ð _�xz= _�zz ¼ 1:59Þ

Corresponding DSS borehole stress ratios,
Sxz=Szz (Fig. 5a and b)

CAFFE and B2013 0.58 1.05 1.59
AGA 0.37 0.41 0.45
TNNI 0.37 0.47 0.64
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the components of _� and S: the �20% difference between
the stress and strain-rate component ratios is within the 95%
confidence interval for the variability between replicate
experiments (Treverrow and others, 2012).

Due to the collinearity of the B2013 and CAFFE flow
relations the stress ratios calculated for the experiments are
precisely the strain-rate component ratios. Thus, for the
experiments where Sxz=Szz ¼ 1:0 and 2:0 the B2013 and
CAFFE relations return Sxz=Szz ¼ 1:05 and 1:59 (cf. the
corresponding strain-rate ratios of _�xz= _�zz ¼ 1:05 and 1:59,
respectively, in Table 2). In contrast the AGA and TNNI
relations predict significantly lower Sxz=Szz ratios that are
only 40–49% of the B2013/CAFFE values. These low AGA
and TNNI Sxz=Szz values in flow configurations where
Sxz � Szz are consistent with the presented DSS borehole
analysis. Figure 5 demonstrates how the four anisotropic
flow relations predict similar Sxz values using the DSS
borehole and ice-core data: it is the marked variability in
their Szz predictions that drives differences in the Sxz=Szz
ratio. Therefore, the Sxz=Szz values predicted by the AGA
and TNNI relations are inconsistent with tertiary creep
observations from combined simple shear and confined
vertical compression experiments where _�xz � _�zz.

For the compression-dominated experiment, where
Sxz=Szz ¼ 0:5 (Table 2), the predictions of the AGA and
TNNI flow relations correspond more closely to the
experimental observations and the B2013 and CAFFE
relations. This improved performance is related to the
generally decreasing strength of the c-axis fabrics in these
flow configurations. The weakly clustered fabric for the
experiment where Sxz=Szz ¼ 0:5 exhibits a low level of
compatibility with both the simple shear and confined
compression components. For the AGA and TNNI flow
relations this results in moderate enhancement of both
strain-rate components and predicted stress ratios that
agrees well with the expected value of Sxz=Szz ¼ 0:5.

As the experiments become increasingly shear-domin-
ated, i.e. where Sxz � Szz, the fabrics evolve towards
distributions containing a higher proportion of near-vertical
c-axes. The very low vertical compressive stress components
resolved on the basal planes of grains with near-vertical
c-axes drive the high Szz values that are necessary to
reproduce the experimental observations.

This assessment of the flow relations using experimental
data is consistent with the analysis based on DSS borehole
and ice-core data. For each experiment in Table 2, we
identify the DSS borehole depths where the derived strain-
rate ratios, _�xz= _�zz, are equivalent to the experimental values.
As was found for the stress ratios calculated using
experimental data, the DSS borehole Sxz=Szz values, at the
specific depths corresponding to the experiment-based
simulations, indicate how the AGA and TNNI flow relations
consistently overestimate Szz, particularly where _�xz= _�zz � 1.

While data from the combined stress experiments
necessary to investigate the collinearity of flow relations
are currently sparse (e.g. Li and others, 1996; Budd and
others, 2013), we are not aware of any data that support the
low Sxz=Szz values predicted by the AGA and TNNI flow
relations in complex stress configurations where the flow is
shear-dominated. Further laboratory studies to investigate
these combined-stress configuration effects are ongoing.
More generally, this study demonstrates the difficulties
associated with the development of flow relations based
on a grain-scale description of deformation and recovery

processes: unless all processes important to the flow are
adequately described, the prescribed rheology will be
incomplete and potentially unrealistic.

General comments on anisotropic flow relation
formulation and polycrystalline ice deformation
Numerous field and laboratory observations indicate how
polycrystalline ice rheology is influenced by a range of
factors including the large-scale flow pattern, stress, tem-
perature and microstructural evolution (e.g. Russell-Head
and Budd, 1979; Dahl-Jensen and Gundestrup, 1987; Wang
and Warner, 1999; Wang and others, 2002; Durand and
others, 2007). However, the conspicuous nature of fabric
evolution, and its association with anisotropic deformation
has led to the development of flow relations such as AGA,
TNNI and CAFFE where the pattern of c-axis orientations
and their relationship to the stress configuration is the
principal control on the anisotropic flow.

The analyses presented here illustrate that anisotropic
effects are more complex than may be explained by flow
relations based (largely) on the magnitude of stresses
resolved onto the basal planes of individual grains. More
fundamentally, looking beyond anisotropy, it is demon-
strated that fabric is not the dominant process in controlling
the magnitude of polycrystalline strain rates.

The importance of micro-dynamic processes occurring at
grain boundaries can be understood through a comparison
of single and polycrystalline ice deformation rates. Under
conditions of similar temperature and stress the secondary
(minimum) creep rates for polycrystalline ice with randomly
oriented grains are about three orders of magnitude less than
those for single crystals oriented for easy glide on basal
planes (Duval and others, 1983; Treverrow, 2009). During
tertiary creep the microstructure (fabric and grain size)
evolves in response to the stress configuration and
magnitude (e.g. Lile, 1978), leading to higher strain rates
and the development of polycrystalline anisotropy. Despite
these microstructural changes, tertiary creep rates (e.g. Gao
and Jacka, 1987; Budd and Jacka, 1989; Treverrow and
others, 2012; Budd and others, 2013) remain about two
orders of magnitude below the corresponding easy-glide
single crystal rates. This disparity illustrates the dissipative
effect of grain-boundary processes and their proportionally
greater influence on the magnitude of polycrystalline strain
rates compared with the development of anisotropy.
Discussion of the relative contribution of the various
micro-deformation, recovery and recrystallization processes
important to polycrystalline ice rheology is beyond the
scope of this work (see, e.g., Piazolo and others, 2013; Faria
and others, 2014; Montagnat and others, 2014b; Wilson and
others, 2014). However, it is clear that if grain boundary
processes were not important, polycrystalline deformation
rates would more closely approach the corresponding single
crystal values in tertiary creep situations, where strongly
oriented fabrics result in a high proportion of c-axes in easy-
glide orientations, relative to the applied stress.

The above considerations are important to the assessment
of the AGA and TNNI flow relations, both of which
incorporate grain orientation and nearest-neighbour grain
interactions into their rheological description. The necessity
for arbitrary scaling, using an additional term that is separate
from the temperature-dependent flow parameter, to ensure
that predictions for a random c-axis distribution match
reference values for secondary (isotropic minimum) creep
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rates is indicative of an incomplete description of poly-
crystalline behaviour (e.g. the scaling parameter B in Eqn (15)
for TNNI, and the requirement to discard �s in Eqn (9) for the
AGA relation). This highlights the difficulty of developing a
physically based flow relation which incorporates the
description of micro-dynamic processes. Achieving a real-
istic rheology requires the identification of all relevant
processes, and their incorporation via either explicit model-
ling or through parameterization of their effects.

While the CAFFE flow relation is similar to AGA and
TNNI in that intracrystalline slip on basal planes is assumed
to be the dominant deformation mechanism, and the source
of polycrystalline anisotropy, it differs from these relations as
orientation relationships between the fabric and applied
stresses define a scalar anisotropic enhancement factor,
rather than determining the strain rate of an individual grain.
Owing to the experimentally observed complementary
enhancement effect between simple shear and compression
components during tertiary creep (Budd and others, 2013)
the B2013 and CAFFE flow relations, where the _�ij and Sij
components are related by a scalar anisotropic function, are
better suited to the description of polar ice dynamics.

Future flow relation developments
A primary consideration in the development of flow relations
for ice-sheet modelling is to minimize the computational
cost while improving the representation of anisotropic rheo-
logy. The CAFFE and B2013 flow relations are based on
parameterizations of key rheological variables with resultant
low computational overhead and, particularly for B2013,
have relatively straightforward requirements for implemen-
tation within ice-sheet models. Of the flow relations investi-
gated here, the CAFFE and B2013 flow relations provide the
most physically realistic predictions of deviatoric stresses at
the DSS site, despite their relative simplicity.

While the CAFFE flow relation has been implemented in
the 3-D FEM full-Stokes ice-sheet model Elmer/Ice (Gagliar-
dini and others, 2013), to investigate regional ice-sheet
dynamics around deep ice-core drilling sites (Seddik and
others, 2008) the computational cost and complexity of a
scheme describing the spatial and temporal evolution of
crystal orientation fabrics so far prohibit its application in
long-term continental-scale simulations.

The anisotropy of the B2013 flow relation (Eqn (27)) is
determined from the relative proportions of the deviatoric
stress (or strain-rate) components, eliminating the require-
ment to simulate fabric evolution in forward modelling. The
B2013 flow relation is based on data from laboratory
deformation experiments conducted in stress configurations
incorporating specific combinations of simple shear and
vertical compression. While these stress configurations are
relevant to describing the flow regime at DSS, a generalized
form of the B2013 flow relation, as described by Budd and
others (2013), is required for large-scale dynamic simulations
where a wider range of stress configurations is encountered.

The physically motivated descriptions of intra- and
intercrystalline deformation and recovery processes in the
AGA and TNNI flow relations lead to complex rheologies
with tensor descriptions of viscosity. Whilst some full-Stokes
models provide the necessary framework to support aniso-
tropic tensor viscosities, the additional complexity of the
AGA and TNNI flow relations, including the requirement to
simulate fabric evolution, precludes their application in
continental-scale ice-sheet models. Application of the TNNI

relation is further restricted by the explicit inclusion of
nearest-neighbour grain interactions. Rather than being
directly applied in ice-sheet models the future benefit of
such physically motivated flow relations lies in their value as
tools to improve understanding of intra- and intercrystalline
deformation and recrystallization processes (e.g. Llorens and
others, 2014; Montagnat and others, 2014b). The identifica-
tion of commonalities in the microstructure and deformation
processes observed in laboratory and ice-core samples, in
conjunction with microstructure modelling, will support the
development of phenomenological flow relations for ice-
sheet modelling, and their extrapolation to a broader range
of temperature and stress conditions than can be readily
achieved in laboratory studies.

The continued development of anisotropic flow relations
for ice-sheet modelling relies on the availability of labora-
tory, field and remotely sensed observations of ice dynam-
ics. In general, reliable experimental data for flow relation
development are sparse, with tertiary creep observations
even more limited. Additional statistically robust strain-rate
data and microstructural observations are required to extend
the range of stress configurations, magnitudes and tempera-
tures over which an improved anisotropic flow relation can
be reliably specified. For example, a creep power law stress
exponent of n ¼ 3 in Eqn (1) is well established for
secondary (isotropic minimum) strain rates. Analysis by
Treverrow and others (2012) of the limited available tertiary
creep data from shear alone and compression alone
experiments suggests a stress exponent of n ¼ 3:5 may be
appropriate for describing tertiary creep, at least for some
stress configurations (and possibly stress magnitudes; e.g.
Pettit and others (2011) discuss the transition to a flow
regime with n ¼ 1 at low stresses). In the context of a Glen-
type flow relation, a stress exponent of n ¼ 3:5 may be
paramaterized by a stress-dependent enhancement factor,
E /

ffiffiffiffiffi
�o
p

, where

_�ij ¼ Eð
ffiffiffiffiffi
�o
p
ÞAðTÞ�n� 1

o Sij: ð33Þ

Further experimental data are required to validate this effect
over a wider range of stress configurations and tempera-
tures. Prescription of a stress-dependent enhancement term
to accommodate a flow relation where n ¼ 3:5 would be
straightforward for the CAFFE and B2013 flow relations, and
others with an experimentally derived scalar enhancement
term (e.g. Pettit and others, 2007).

SUMMARY AND CONCLUSIONS
Deep ice cores for which there are corresponding borehole
temperature and strain-rate data are an extraordinarily
valuable resource for evaluating polycrystalline ice flow
relations. In this study the anisotropic CAFFE (Placidi and
others, 2010), AGA (Azuma and Goto-Azuma, 1996), TNNI
(Thorsteinsson, 2002) and B2013 (Budd and others, 2013)
flow relations were compared using data from the DSS ice
core and borehole at Law Dome to calculate depth profiles
of the stresses required to drive the observed ice flow.

The B2013 flow relation is an empirical parameterization
of experimental tertiary creep rates where the magnitude of
anisotropic effects is controlled by the relative proportion of
strain rate (or stress components). This eliminates the
requirement for a numerical fabric evolution scheme and
simplifies the requirements for its implementation in an ice-
sheet model.
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The anisotropy of the AGA, TNNI and CAFFE flow
relations is predominantly derived from the way applied
stresses are resolved onto the basal planes of individual
grains and the homogenization method used to determine
the macroscopic strain rates. Despite differences in their
rheological descriptions, the conceptual similarity of these
relations results in the maximum levels of flow enhance-
ment being predicted where the resolved stresses on the
basal planes are highest (e.g. where vertical single-max-
imum fabrics coexist with a flow regime dominated by
approximately bed-parallel shear). Such conditions occur at
depths from �550 m to �1100 m at the DSS site, and the
shear stress profiles, Sxz, for each of the anisotropic flow
relations are similar. In each case the predicted Sxz values
were lower than those for the isotropic Glen flow relation.

In complex flow regimes the relative magnitude of all
stress components must be considered simultaneously, so
while the Sxz profiles are similar for the anisotropic flow
relations considered significant here, differences in the Szz
profiles allow the flow relations to be distinguished. The
lowest-magnitude Szz values are predicted by the B2013 and
then CAFFE flow relations. Through the collinearity of the _�

and S components in these relations, the high levels of shear
flow enhancement in the zone from �550 m to �1100 m,
where shear strain rates are highest, contribute directly to
reducing the magnitude of Szz necessary to drive the
observed _�zz. Based on a comparison of the anisotropic
flow relations using data from laboratory ice deformation
experiments conducted in combined simple shear and
confined vertical compression, the B2013 and then CAFFE
flow relations provided the most realistic stress estimates. In
the CAFFE flow relation, grains less favourably aligned for
basal shear decrease the macroscopic deformability, leading
to a corresponding reduction in the scalar enhancement
factor, which increases the magnitude of Szz, compared with
the B2013 estimates.

Throughout the shear-dominated zone at the DSS site,
values of the Sxz=Szz ratio for the AGA and TNNI relations are
significantly lower than the B2013, CAFFE and Glen (1958)
values. These low Sxz=Szz values are indicative of incomplete
rheological descriptions, that lead to overestimates of Szz in
combined stress configurations where shear is dominant.
This view is supported by an analysis of the flow relations
using data from combined stress experiments.

The results for the AGA and TNNI flow relations
demonstrate that while orientation relationships between
crystal c-axes and the applied stresses are important to
polycrystalline ice rheology, other processes, particularly
those occurring at grain boundaries, play a role in deter-
mining the anisotropy and magnitude of deformation rates.
These results indicate that in descriptions of polycrystalline
rheology based on the description of grain-scale processes,
all relevant micro-deformation, recrystallization and re-
covery mechanisms must be adequately described or
paramaterized to produce realistic flow predictions.

The greater emphasis on the parameterization of key
rheological variables in the B2013 and CAFFE relations
leads to less complex flow descriptions that may be more
easily incorporated into ice-sheet models. In particular, the
direct relationship between anisotropy and the tertiary-creep
flow regime in the B2013 flow relation eliminates the
requirement for explicit consideration of crystal c-axis
orientations. This greatly simplifies its requirements for
implementation in numerical ice-sheet models.
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