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Abstract
While driver telematics has gained attention for risk classification in auto insurance, scarcity of observations with
telematics features has been problematic, which could be owing to either privacy concerns or favorable selection
compared to the data points with traditional features.

To handle this issue, we apply a data integration technique based on calibration weights for usage-based insurance
with multiple sources of data. It is shown that the proposed framework can efficiently integrate traditional data and
telematics data and can also deal with possible favorable selection issues related to telematics data availability. Our
findings are supported by a simulation study and empirical analysis in a synthetic telematics dataset.

1. Introduction
Telematics generates data related to many variables characterized for each driver, including total miles
driven, the number of sudden brakes or accelerations, and at what time they are driving. With techno-
logical advancements in the automobile industry with driver telematics, the insurance industry can add
new features to the databases along with the traditional features that will be used in claim predictions
and risk classifications in a unified frame. In this regard, it is required to consider a framework to deal
with multiple data sources that contain traditional and/or telematics features for insurance ratemaking,
which is one of the main contributions of this paper.

The usage-based insurance (UBI) is an innovative product in the insurance industry based on tech-
nological advances to assess the risk profile of a driver. Past studies elaborate on the additional value
of telematics-derived information to provide improved claims predictions, risk classification, and pre-
mium assessments. Ayuso et al. (2014) compare driving behaviors of novice and experienced young
drivers with pay-as-you-drive policies using few telematics variables as well as traditional variables.
Furthermore, Ayuso et al. (2016) examine gender discrimination in the risk of accidents using the same
dataset. Baecke and Bocca (2017) illustrate the use of telematics variables to decide the risk premium
and state that at least three months of data are enough to obtain efficient risk estimates. Verbelen et al.
(2018) depict the importance of telematics variables, which are based on driving habits, in predicting
the frequency of claims. Gao et al. (2019) show the predictive power of telematics covariates extracted
from speed-acceleration heat maps in the modeling of claim frequency and support the use of telematics
features for insurance pricing.

Moreover, insurance companies have access to large datasets related to policyholders that contain
traditional characteristics, as driver demographics and vehicle characteristics. However, a telematics
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dataset can have fewer data points than a traditional dataset, as the number of telematics related policy-
holders is low. Guillen et al. (2021) use a modeling approach for insurance ratemaking using traditional
and telematics data but is limited to a small number of features, as available data are limited. Ma et al.
(2018) mention that the lack of availability of telematics data is a challenge in identifying the factors
of policyholder behavior in ratemaking. While providing a compact description of the insurability of
risk using telematics data, Eling and Kraft (2020) highlight some actions that can increase the num-
ber of telematics-based policyholders. Hence, there is a scarcity of telematics data when compared to
traditional data.

In this regard, it is natural to expect that insurers need to deal with two types of datasets: traditional
datasets with fewer features and more observations from non-UBI insureds and telematics datasets with
more features and fewer observations from UBI insureds. One could argue that insurers could potentially
treat UBI and non-UBI insureds as separate groups and it suffices to analyze two types of datasets sep-
arately, as more and more people with low risk would move to UBI over time and form a natural market
segmentation due to asymmetric information (Rothschild and Stiglitz, 1978). According to Holzapfel et
al., 2023), however, the market share of UBI contracts remains relatively low and stands around at about
5%, whereas UBI contracts have been accessible to policyholders for over twenty years (NAIC, 2015;
MarketsandMarkets, 2021). At the very least, the situation where there are far fewer UBI subscribers
than non-subscribers can last longer than expected, and therefore the data integration framework that we
propose could be valid for a considerable period of time in the future. Further, it is natural to expect that
a policyholder may move back and forth between a UBI and a non-UBI contract upon renewal (Śliwiński
and Kuryłowicz, 2021). Therefore, it is worthwhile to investigate the available datasets jointly to bet-
ter understand the characteristics of the population, compared to a separate analysis of the traditional
and telematics datasets that implicitly assume time-invariant business mix between UBI and non-UBI
contracts of an auto insurance company.

Data integration techniques enable combining information from a few data sources into one.
According to Yang and Kim (2020), it leads to the incorporation of information from different samples
to achieve efficiency in estimations under finite population inference while handling potential selection
biases. And Husnjak et al. (2015) recognize that the integration of telematics data with traditional data
can help to realize the full potential of telematics data. Thus, Ayuso et al. (2019) and Gao et al. (2022)
propose two-step approaches that use telematic characteristics to improve a regression model that only
incorporates traditional ratemaking factors.

Although these approaches are straightforward and readily available, they might be problematic when
the availability of telematics features depends on the riskiness of the policyholders due to possible
favorable selection. For example, Denuit et al. (2019) state that low-risk drivers would favor telematics
insurance products. And Duval et al. (2023) mention that the attraction of safer drivers is beneficial for
the insurer as it could lower the claim cost. However, this situation may result in missing some insights
about more risky drivers in terms of an analytical point of view. According to Cohen and Siegelman
(2010), one can expect that the information asymmetry between insurers and policyholders may lead
to favorable selection in the sampling mechanism of observations with telematics features as less risky
drivers are more likely to provide telematics data for possible premium discounts.

Indeed, consideration and collection of telematics data are relatively recent, and there are still ongoing
concerns about privacy issues, which make many policyholders reluctant to agree on the provision of
their telematics data to insurers. In this regard, Dewri et al. (2013) state privacy concerns that can arise
when using telematics data for driving habits. Also Duri et al. (2002) mention that there is a tendency
to observe a decrease in the amount of telematics data due to privacy concerns, which is a similar
trend among web users with privacy concerns. In a similar way, Milanović et al. (2020) imply that
policyholders who are willing to provide telematics data tend to have less concern about privacy issues.
Thus, we can observe a selection bias in the telematics dataset due to privacy issues as well as the
favorable selection.

https://doi.org/10.1017/asb.2024.6 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2024.6


ASTIN Bulletin 265

Figure 1. Pictorial visualization of S0, S1, xiτ , and xiT .

In summary, the following objectives of the proposed research are recognized. First, we propose
a framework based on the estimation of the propensity score to combine information from multiple
datasets in insurance ratemaking considering the scarcity of telematics data and possible favorable
selection regarding the availability of telematics data. Then we introduce an algorithm to integrate a
traditional insurance claim dataset and a telematics dataset based on a calibration equation approach
in detail. Finally, we test the validity and applicability of the proposed framework through a simu-
lation study and empirical analysis of a synthetic telematics dataset. Consequently, we hope that the
proposed method can help insurance companies effectively use multiple sources of data for better risk
classification.

The rest of this article is organized as follows. Section 2 provides a detailed description of the problem
and the corresponding data structure with the missing mechanism. In Section 3, the proposed framework
for data integration is developed based on a calibration equation approach with information projection to
model the claim count data. Section 4 provides a simulation study to assess the effects of the proposed
approach compared to four preexisting approaches. Section 5 conducts an empirical analysis with a
synthetic telematics data portfolio that is emulated from real data, to assess the applicability of the
proposed approach in practice. Section 6 concludes the paper with some constructive remarks.

2. Data structure and problem description
This study focuses on two data sources as discussed in Section 1. S0, a small dataset with M0 observa-
tions that contains both telematics and traditional features. And S1, a large dataset with M1 number of
observations that contains only traditional features. We also assume that the finite population S consists
of both S0 and S1 and that the total number of observations in S is M = M0 + M1.

We denote traditional features of a policyholder i as xiτ , (available both in S0 and S1) and telematics
features of a policyholder i as xiT , which is only available in S0. Using these features, all the correspond-
ing features of the study can be denoted as a vector, xi = (xiτ , xiT). A summary of the description of the
data is given in Figure 1.

Note that the observability of xiT could depend on the risk profile of a policyholder i, which could
make the sampling mechanism of S0 from the population subject to selection biases. As mentioned in the
previous section, there have been possible concerns about providing telematics records, such as privacy
and security issues; hence, it is natural to expect that a policyholder might not be willing to provide their
telematics records to the insurer unless the expected benefits from the provision outweigh the possible
concerns. Therefore, we can think of the following conjectures:

• Those who are younger tend to agree to provide their telematics records more, as they could be
less reluctant to technology or the compensation for disclosing privacy to get a UBI policy is
lower according to Derikx et al. (2016). It implies that the probability of observing a data point
in S0 could be negatively correlated with the driver’s age.
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• Those who are less risky1 tend to agree to provide their telematics records or the UBI policy-
holders tend to be less risky drivers according to Reimers and Shiller (2019) and Cather (2020),
so that the accessibility of xT is prone to favorable selection. It implies that the probability of
observing a data point in S0 could be negatively correlated with the number of claims (ni).

• Those who drive less frequently tend to agree to provide their telematics records more since
the premium is low in UBI products as in Boucher et al. (2013). It implies that the probability
of observing a data point in S0 could be negatively correlated with the self-perceived mileage.

While our main task is neither to detect possible selection biases in the availability of telematics
features nor prove such conjectures, we consider the situations where such conjectures could hold
and discuss the benefits of the proposed framework compared to preexisting benchmarks in various
situations.

3. Methodology
The general framework that we follow to estimate the model parameters using the proposed method is
briefly described in this section. We are interested in estimating β = (β1, β2) in the regression model
E(Ni | xi) = m(xiβ) = m(xiτβ1 + xiTβ2), where m(·) is a known function and β is an unknown parameter
while Ni is the observed number of claims for a policyholder i with i = 1, . . . , M. We assume that Ni are
independently distributed with a Poisson distribution with mean μi.2 Using the canonical link function
as it is given in Agresti (2003), we can express m(·) = exp(·). Let ti be an exposure variable associated
with ith claim count like the duration of a policy. Then, ηi is the average number of claims per the ith
duration. Now we can redefine the regression model in terms of ηi as

log(ηi) =
∑

j

βjxij = xiβ,

where xij is the jth feature of the policyholder i and xi0 = 1. Thus, we can reform this model using the
definition μi = tiηi

3 as

log(μi) = log(ti) +
∑

j

βjxij = log(ti) + xiβ. (3.1)

Now, using model (3.1), the census estimating equation for β can be written as
M∑

i=1

U(β; xi, ni) = 0, (3.2)

where U(β; x, n) = {n − t exp(xβ)}x is the estimating function for β with a Poisson distribution.
However, as mentioned in Section 2, xiT (which corresponds to the telematics features of a policyholder
i) is subject to missingness and only observable in S0. In this regard, one can consider the following
equation to estimate β1 and β2 simultaneously:∑

i∈S0

ωiU(β; xi, ni) = 0, (3.3)

where ωi is a propensity weight to handle possible selection biases.

1Note that riskier drivers can be attracted to UBI policies provided there is a upfront discount for choosing a UBI contract, and
they can continue to adjust their driving behaviors to maintain such an incentive, as mentioned in Duval et al. (2023). However,
we do not assume presence of a upfront discount for choosing a UBI policy in our article.

2While the proposed method is independent of the distribution of Ni as it is based on general calibration and estimating equations,
here we use a Poisson distribution assumption to focus on the impact of the proposed data integration approach.

3Note that E(Ni | xi) = μi.
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To incorporate the partial information in S1 where we only observe xiτ and ni, we wish to construct
the propensity weight ωi = ω(xiτ , ni) in S0 such that

∑
i∈S0

ωiU(β; xi, ni) =
M∑

i=1

[
δiU(β; xi, ni) + (1 − δi)Ū(β; xiτ , ni)

]
, (3.4)

where δi = I(i ∈ S0) and Ū(β; xiτ , ni) = E{U(β; xi, ni) | xiτ , ni}. The propensity score (PS) is defined as
ωi = 1/Pr(δi = 1|xi, ni). The property of the propensity score estimating equation in (3.4) is called
self-efficiency, as it leads to an efficient estimation of β as long as the conditional expectation in
E{U(β; xi, ni) | xiτ , ni} is correct.

Here, we assume that the sampling mechanism for S0 is missing at random (MAR) in the sense of
Rubin (1976). That is, we assume

δ ⊥ xT | (n, xτ ).

To find ωi satisfying (3.4), we first find the basis functions satisfying

E{U(β; xi, ni) | xiτ , ni} ∈ span{b1(xiτ , ni), . . . , bL(xiτ , ni)}, (3.5)

where the span implies that the conditional expectation is represented by a combination of basis func-
tions, bl, that are formed only using the traditional features and observed number of claims where
l = 1, . . . , L.4 Under (3.5), estimating the conditional expectation E{U(β; xi, ni) | xiτ , ni} is somewhat
tricky as U(β; xi, ni) involves unknown parameter β. To avoid this difficulty, we consider an alternative
method using (3.4) without estimating the conditional expectation.

To achieve this goal, using the basis functions in (3.5), we impose the following system of
equations

∑
i∈S0

ωi[1, b1i, · · · , bLi] =
M∑

i=1

[1, b1i, · · · , bLi], (3.6)

as a constraint for finding the propensity weights ωi in (3.4), where bli = bl(xiτ , ni) is a vector of integrable
functions of traditional features and [1, b1i, · · · , bLi] is a L + 1 dimensional vector. To be specific, we take
[1, b1i, · · · , bLi] = [xiτ , ni · xiτ ] inspired by the form of Poisson score function, which implies L = 2v + 1
where v is the number of features in xiτ . Constraint (3.6) is often called the covariate-balancing property
(Imai and Ratkovic, 2014) in the context of causal inference, which enables an efficient estimation of
the propensity score by assuring that the distributions of available covariates in propensity weighted
sample and the population are similar. The following proposition shows that the covariate balancing is
a sufficient condition for self-efficiency in (3.4).

Proposition 1. Suppose that the estimating function satisfies (3.5). Then, any weights satisfying (3.6)
satisfies the self-efficiency in (3.4).

Proof. See Appendix A.

Now, to uniquely determine ωi, we can use the information projection of Wang and Kim (2021) under
the constraint (3.6) to get

ωi = 1 + M1

M0

exp{φ0 + φ1b1i + · · · + φLbLi} , (3.7)

where M0 =∑M
i=1 δi, M1 = M − M0 and φ = (φ0, · · · , φL) is an unknown parameter. The parameters are

estimated by solving the calibration equation in (3.6).

4Note that both determination of optimal L and construction of bl are still open questions as larger values of L would imply
richer information to span the space of conditional expectations at the expense of estimation efficiency. That is, increasing L can
reduce the chance of misspecification bias but may increase variance due to parameter estimation.
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Once φ0, · · · , φL are estimated by (3.6) and (3.7), we can use

ω̂i = 1 + M1

M0

exp
{
φ̂0 + φ̂1b1i + · · · + φ̂LbLi

}
as the final propensity weights for estimating β using (3.8):∑

i∈S0

ω̂i(φ)U(β; xi, ni) = 0. (3.8)

Because the propensity weights satisfy the calibration equation in (3.6), it satisfies the self-efficiency
without estimating the regression coefficients α̂5 in the working model

E{U(β; xi, ni) | xiτ , ni} = α0 +
L∑

l=1

αlbl(xiτ , ni).

But, the vector space spanned in (3.5) implicitly assumes a regression model that is

Ui = α0 +
L∑

l=1

αlbli + ei,

for some α0, α1, · · · , αL, where Ui = U(β; xi, ni) and ei is the error term satisfying E(ei) = 0. Since Ui =
(Ui1, · · · , Uip)′, the above model changes to

Uij = α0j +
L∑

l=1

αljbli + eij

where eij ∼ (0, Vj).
Then, Ûi = α̂0 +∑L

l=1 α̂lbli and α̂l (l = 0, 1, · · · , L) are chosen to minimize

∑
i∈S0

gi(φ̂)

{
Ui − α0 −

L∑
l=1

αlbl(xiτ , ni)

}2

with respect to (α0, α1, · · · , αL), where gi(φ̂) = exp
{
φ̂0 + φ̂1b1i + · · · + φ̂LbLi

}
. Thus, Ûi satisfies

∑
i∈S0

(
Ui − Ûi

)
gi(φ̂) = 0. (3.9)

Proposition 2. The proposed weight in (3.7) satisfies self-efficiency in (3.4) when Ūi is replaced
with Ûi.

Proof. See Appendix B.

Now, to improve this proposed method, we may use the information of model variance. Suppose that
V(ei) = vi is available, then we can use

ω̂i = 1 + M1

M0

exp
{
φ̂0 + φ̂1b1i + · · · + φ̂LbLi

} 1

vi

(3.10)

as the final propensity weights for estimating θ . It can still achieve (3.4) where α̂l(l = 0, 1, · · · , L)
minimizes

∑
i∈S0

gi(φ̂)

{
Ui − α0 −

L∑
l=1

αlbl(xiτ , ni)

}2
1

vi

5α̂ is the estimated regression coefficients of the (linear) working model explained in Equation (3.5).
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We can simply use the class in (3.10) as a class of calibration weights and choose vi = f (bi) such that
(3.6) holds and reduces the variance (by downweighting the large weights). One way is to use vi from
the conditional variance of Ui given the covariates.

Now, the estimation scheme for the study is listed in order according to the requirements of the
estimation process at each step.

1. Find H= span{b1(xiτ , ni), . . . , bL(xiτ , ni)} such that E{U(β; xi, ni) | xiτ , ni} ∈H, where
U(β; xi, ni) is the estimating function for β.

2. Find vi using a suitable method.
3. Obtain φ̂ by solving

∑
i∈S0

{
1 + M1

M0

exp(φ0 + φ1b1i + · · · + φLbLi)
1

vi

}
[1, b1i, · · · , bLi] =

M∑
i=1

[1, b1i, · · · , bLi],

4. Obtain β̂ by solving ∑
i∈S0

ω̂i(φ̂)U(β; xi, ni) = 0

where ω̂i(φ̂) = 1 + M1
M0

exp
{
φ̂0 + φ̂1b1i + · · · + φ̂LbLi

}
1
vi

.

The estimation of the standard error of β̂ is presented in Appendix C.

4. Simulation study
In this section, we use a hypothetical and less complex finite population to test the validity and appli-
cability of the proposed method. More specifically, it allows us to quantify the estimation performance
of regression coefficients with the proposed model (compared to the benchmarks) using finite samples
from a predetermined distribution. In this regard, we assume three hypothetical scenarios in which tra-
ditional features are fully available while telematics features are partially available, depending on the
sampling mechanism of observations with telematics information. We generate a finite population of
size 100,000 with the following specification:

Ni ∼P(μi), log μi = xiτβ1 + xiTβ2,

β1 = (β0, βA1, βA2, βG, βM), β2 = βT ,

xiτ = (1, xAi, x2
Ai, xGi, xMi), xiT = xTi,

xAi ∼ U (0.18, 0.81), xGi ∼Ber(0.6), xMi ∼ G(2, 1), xTi ∼N (0, 1),

β0 = −1.3, βA1 = −4, βA2 = 3.4, βG = 0.1, βM = 0.1, βT = 0.5,

where P , U , Ber, N , and G refer to Poisson, uniform, Bernoulli, normal, and gamma6 distributions,
respectively. Here, xAi refers to a traditional continuous variable with quadratic effect (e.g., driver’s
age), xGi refers to a traditional binary variable (e.g., gender), xMi refers to a traditional variable like self-
perceived mileage, and xTi refers to a telematics variable that has significant impacts on the risk profile.
Let S∗ be the finite population generated according to the notation used in Section 2. Once a finite
population is generated, the following scheme is applied to split the data.

1. First, 10% of the data points are set aside where {Ni, xiτ , xiT} are all available, which is equiva-
lent to S0 in Section 2. Depending on the assumption of availability of telematics information,
we apply the following four sampling schemes of S0:

6Here we used the parameterization of Klugman et al. (2012) such that E[Z] = αθ and Var[Z] = αθ2 if Z ∼ G(α, θ ).
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• Random selection: Data points assigned to S0 are chosen at random,
• Age selection: Each data point assigned to S0 is chosen with a sampling probability pro-

portional to 1/{1 + exp(3xAi)}, which means that younger ones are more likely to provide
telematics information due to their lower resistance to new technologies. In this case,
δ ⊥ N|xτ .

• Favorable selection: Each data point assigned to S0 is chosen with the sampling probability
proportional to 1/{1 + exp(2Ni)}, which means that those with less risky behaviors are more
likely to provide the telematics information. In this case, δ �⊥ N|xτ .

• Mileage selection: Each data point assigned to S0 is chosen with the sampling probability
proportional to 1/{1 + exp(xMi)}, which means that those with lower mileage are more likely
to provide the telematics information. In this case, δ ⊥ N|xτ .

2. After that, 80% of data points are used as a large dataset, but only with traditional features and
the response variable {Ni, xiτ }, which is equivalent to S1 in Section 2.
For comparison, we consider the following models to estimate β1 and β2:

• Naive model: Fit a usual Poisson GLM using the data points in S0, which is equivalent to
solving (3.3) for β assuming that ωi = 1 for all i.

• Traditional model: Fit a usual Poisson GLM using only traditional features and the response
variable {Ni, xiτ } in S0 ∪ S1, which is equivalent to solving (3.2) for β1 assuming that β2 = 0.
As such, this model does not allow the use of telematics information in the risk classification.

• Full model: It uses all data points in the training set to estimate the regression coefficients,
which is equivalent to solve (3.2) for β. Therefore, it is expected to provide the best estimation
performance, but may not be available in practice.

• Boosting model: It uses the same estimates of β1 from the traditional model and computes
η̂i = exp(xiτ β̂1) for each observation i in S0. After that, another Poisson GLM is fitted with
S0 where the telematics information, xiT , is the only regressor and log η̂i is used as an offset
to further estimate β̂2 as mentioned in Ayuso et al. (2019). It is equivalent to solving (3.3)
for β2 assuming that ωi = 1 for all i while β1 is replaced with its estimate from the traditional
model.

• Proposed model: It follows the estimation procedures described in Section 3, which is
equivalent to solve (3.3) for β where ωi is replaced by ω̂i(φ̂) for all i. In this study, we
use 1/vi = Deviance(Traditional)i − Deviance(Naive)i, where the Deviancei is the deviance
contribution of ith individual in S0.

3. Lastly, to incorporate the possibility that a policyholder may choose to opt for a telematics
policy or not over time, 10% of data points are randomly set aside as T for out-of-sample
validation (equivalently, the test set T is a representative sample of the population), where
{Ni, xiτ , xiT} are all available.

After fitting all models, the regression estimates of these models were used to find the predicted
values N̂i = exp(xiτ β̂1 + xiT β̂2) for i in the out-of-sample validation set T . Note that generation of each
of the finite population, data split, regression coefficients estimation, and the out-of-sample validation
are repeated R = 1000 times with different random seeds.

Table 1 shows the estimation results of the regression coefficients under different model specifica-
tions and sampling schemes. Here, bias, root mean square error (RMSE) and 90% confidence interval
coverage (CI) of βj are defined as follows:

Biasj = 1

R

R∑
r=1

(
βj − β̂ (r)

j

)
,
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Table 1. Estimation performance with the simulated data (Here N, T, B, F, and P refer to Naive, Traditional, Boosting, Full, and Proposed models,
respectively).

Bias RMSE CI

N T B F P N T B F P N T B F P
Random selection
β0 0.005 −0.125 −0.125 0.000 −0.019 0.190 0.142 0.142 0.066 0.080 0.902 0.376 0.376 0.893 0.858
βA1 −0.018 0.004 0.004 0.002 0.004 0.851 0.300 0.300 0.295 0.338 0.902 0.877 0.877 0.881 0.869
βA2 0.018 −0.006 −0.006 −0.003 −0.006 0.866 0.302 0.302 0.297 0.340 0.901 0.876 0.876 0.884 0.871
βG −0.001 0.000 0.000 0.000 0.000 0.055 0.019 0.019 0.018 0.021 0.905 0.879 0.879 0.890 0.871
βM 0.001 0.000 0.000 0.000 0.000 0.017 0.005 0.005 0.005 0.007 0.907 0.911 0.911 0.916 0.906
βT 0.000 0.048 0.000 0.041 0.027 0.053 0.009 0.052 0.901 0.313 0.887 0.458
Age selection
β0 0.004 −0.125 −0.125 0.000 −0.020 0.174 0.142 0.142 0.066 0.078 0.911 0.376 0.376 0.893 0.878
βA1 −0.021 0.004 0.004 0.002 0.011 0.827 0.300 0.300 0.295 0.331 0.906 0.877 0.877 0.881 0.898
βA2 0.027 −0.006 −0.006 −0.003 −0.013 0.896 0.302 0.302 0.297 0.339 0.904 0.876 0.876 0.884 0.895
βG 0.000 0.000 0.000 0.000 0.000 0.052 0.019 0.019 0.018 0.021 0.907 0.879 0.879 0.890 0.889
βM 0.001 0.000 0.000 0.000 0.000 0.016 0.005 0.005 0.005 0.007 0.902 0.911 0.911 0.916 0.900
βT 0.001 0.050 0.000 0.038 0.026 0.054 0.009 0.051 0.901 0.234 0.887 0.518
Favorable selection
β0 1.478 −0.125 −0.125 0.000 0.001 1.527 0.142 0.142 0.066 0.120 0.010 0.376 0.376 0.893 0.837
βA1 −0.157 0.004 0.004 0.002 0.010 1.705 0.300 0.300 0.295 0.435 0.917 0.877 0.877 0.881 0.843
βA2 0.143 −0.006 −0.006 −0.003 −0.012 1.739 0.302 0.302 0.297 0.431 0.910 0.876 0.876 0.884 0.845
βG 0.004 0.000 0.000 0.000 0.002 0.112 0.019 0.019 0.018 0.028 0.903 0.879 0.879 0.890 0.833
βM 0.005 0.000 0.000 0.000 −0.001 0.036 0.005 0.005 0.005 0.009 0.902 0.911 0.911 0.916 0.873
βT 0.009 0.344 0.000 0.008 0.057 0.344 0.009 0.095 0.888 0.000 0.887 0.779
Mileage selection
β0 −0.002 −0.125 −0.125 0.000 0.017 0.209 0.142 0.142 0.066 0.141 0.895 0.376 0.376 0.893 0.774
βA1 0.012 0.004 0.004 0.002 0.046 0.924 0.300 0.300 0.295 0.601 0.891 0.877 0.877 0.881 0.768
βA2 −0.014 −0.006 −0.006 −0.003 −0.047 0.937 0.302 0.302 0.297 0.608 0.884 0.876 0.876 0.884 0.780
βG 0.002 0.000 0.000 0.000 0.000 0.058 0.019 0.019 0.018 0.039 0.894 0.879 0.879 0.890 0.756
βM 0.001 0.000 0.000 0.000 −0.022 0.034 0.005 0.005 0.005 0.034 0.905 0.911 0.911 0.916 0.583
βT 0.001 0.050 0.000 0.045 0.028 0.055 0.009 0.075 0.896 0.317 0.887 0.731
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j |<1.645·SE(β̂)(r)

j },

where β̂
(r)
j is the estimate of βj at rth simulation, and SE(β̂)(r)

j is the estimated standard error of β̂
(r)
j .

From Table 1, it is clearly observed that if the sampling mechanism of S0 is purely random, then the
use of the naive model is less problematic in terms of estimation performance. Although the full model
shows the best performance in the estimation performance followed by the proposed model, the boosting
model (and correspondingly the traditional model) suffers from the biases in β̂0 and β̂T . One can also
observe that although the naive model is unbiased in the case of random selection, it is less efficient in
the parameter estimation compared to both the full and proposed models as shown in the higher values
of RMSE. When the sampling mechanism is age selection, it is shown that the naive model has larger
biases for β̂A1 and β̂A2 compared to the full and proposed models, as these coefficients correspond to
the age covariate that comes with selection biases in this scenario. On the other hand, if the sampling
mechanism of S0 is prone to favorable selection, then the differences in estimation performance are more
dramatic. Unlike the random sampling case, the naive model severely suffers from lack of fit and biases
in the estimates while only the full and proposed models provide acceptable ranges of estimates as S0 is
no longer a representative sample of the finite population. Lastly, in the case of mileage selection, there
is no significant improvement in estimation performance of the proposed model compared to the naive
model, but the insight from results is similar with the age selection. Note that the values of Bias, RMSE,
and CI of the traditional and full models across all four sampling methods are identical, which is natural
as both models do not depend on the sample split between S0 and S1 for estimation of the regression
coefficients. In the case of boosting model, it also shows identical values of Bias, RMSE, and CI for all
the traditional covariates as it shares the estimated coefficients with the traditional model by definition.

Note that mileage can appear in both traditional and telematics datasets as self-perceived mileage and
actual mileage, respectively. If the actual mileage is used for the selection, the sampling scheme with
mileage selection becomes non-ignorable. While it could be meaningful to consider the non-ignorable
missing mechanism in the UBI context (choosing a UBI policy based on telematics variables) as men-
tioned in Boucher et al. (2013), handling a non-ignorable missing pattern requires to jointly model
δ and xT (Heckman, 1976; Glynn et al., 2013) that comes with much more distributional assumptions
and restrictions. In this regard, we delegate this issue as a future research topic and refrain from further
discussing this issue in the current paper.

Note that the efficiency gain in the estimation of β2 = βT using the proposed model is no better
than the naive model, unlike in the cases of β1 = (β0, βA1, βA2, βG, βM). It is reasonable since there is no
information to borrow from S1 to better estimate β2 in the proposed model.

After assessing the estimation performance of each model, we use the out-of-sample validation set
Tr for each r = 1, . . . , R to compare their predictive performance. In the out-of-sample validation, we
use prediction RMSE (pRMSE) and the Poisson deviance statistic (DEV) defined as follows:

Avg_pRMSE(k) = 1

R

R∑
r=1

pRMSE(r;k),
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1
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)]
,

(4.1)
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Table 2. Out-of-sample validation performance with the simulated data.

Naive Traditional Boosting Full Proposed
Random selection
Avg_pRMSE 0.38192 0.38998 0.38216 0.38176 0.38187
Avg_DEV 0.55590 0.59170 0.55737 0.55534 0.55573

Age selection
Avg_pRMSE 0.38191 0.38998 0.38215 0.38176 0.38187
Avg_DEV 0.55591 0.59170 0.55735 0.55534 0.55572

Favorable selection
Avg_pRMSE 0.40327 0.38998 0.38596 0.38176 0.38204
Avg_DEV 0.75695 0.59170 0.57256 0.55534 0.55635

Mileage selection
Avg_pRMSE 0.38211 0.38998 0.38215 0.38176 0.38219
Avg_DEV 0.55641 0.59170 0.55736 0.55534 0.55671

where |Tr| is the number of observations in Tr and the predicted value N̂(r;k)
i is generated in model k with

rth simulation sample. Table 2 presents the out-of-sample validation performance of the aforementioned
models. Again, the values of Avg_pRMSE and Avg_DEV of the traditional and full models across all
four sampling methods are identical as the estimated regression coefficients, which are used for the
prediction, are identical across all sampling methods. As in Table 1, the use of naive and boosting models
is more vulnerable when the availability of telematics information is prone to favorable selection. It is
also shown that the predictive performance of the traditional model is generally inferior to the other
models, since it completely ignores the impacts of the available telematics information. Lastly, it is
shown that the proposed model shows satisfactory prediction performance comparable to that of the full
model (ideal yet not available in practice) in all scenarios for the missing mechanism.

5. Data analysis
5.1. Data description
To assess the validity and applicability of the proposed method under a more realistic environment than
the simulation study with possible sampling biases, we use a synthetic dataset from the study of So et al.
(2021) that includes traditional characteristics, telematics characteristics, and the response variable. As
mentioned in Section 1, it has been difficult for researchers to access a dataset on insurance claims with
telematics features due to privacy concerns and proprietary issues of insurers. In this regard, So et al.
(2021) effectively emulated a synthetic dataset that shares remarkably similar statistics with the original
dataset yet still preserves the privacy of the observations from the original source. Due to scarcity of a
realized data split for S0, S1, and T that are simultaneously obtained from an actual insurance poftfolio,
here we assumed that the synthetic dataset of So et al. (2021) is the finite population including both
the traditional and telematics features while the data splits followed the sampling schemes of Section 4.
Note that our purpose is not to detect selection biases from an actual insurance portfolio, but to quantify
impacts of the proposed method under potential selection biases. Although the available features in
the dataset are already summarized in tabular format compared to the raw data directly obtained from
the telematics device, they are still high dimensional. For example, one of the “traditional” features is
Region, which is a categorical variable with 55 categories.

However, the proposed data integration approach is based on estimating equations and GLMs so that
it lacks the ability to handle high dimensionality on its own, unlike neural network models or tree-based
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Table 3. Variable names and descriptions of the preprocessed dataset.

Type Variable Description
Traditional Duration Duration of the insurance coverage of a given policy, in days

Insured.age Age of insured driver, in years
Insured.sex Sex of insured driver (Male/Female)
Car.age Age of vehicle, in years
Marital Marital status (Single/Married)
Car.use Use of vehicle: Private, Commute, Farmer, Commercial
Credit.score Credit score of insured driver
Region Type of region where driver lives: rural, urban
Annual.miles.drive Annual miles expected to be driven declared by driver
Years.noclaims Number of years without any claims
TerritoryEmb Embedded value from the territorial location of vehicle

Telematics Annual.pct.driven Annualized percentage of time on the road
Pct.drive.xxx Percent of driving day xxx of the week: mon/tue/. . ./sun
Pct.drive.rush.am Percent of driving during am rush hours
Pct.drive.rush.pm Percent of driving during pm rush hours
Avgdays.week Mean number of days used per week
Accel.06miles Number of sudden acceleration 6 mph/s per 1000 miles
Brake.06miles Number of sudden brakes 6 mph/s per 1000 miles
Acbr.others Total number of sudden acceleration and brakes 8/9/. . ./14

mph/s per 1000 miles
Left.turns Number of left turn per 1000 miles with intensity greater than

equal to 8
Right.turns Number of right turn per 1000miles greater than equal to 8

Response NB_Claim Number of observed claims

models. In this regard, some of the available features were preprocessed. Due to the high dimension of
the dataset and the complexity of defining some of its features, the territorial embedding and principal
component analysis (PCA) were utilized to clean up the dataset. After data preprocessing, we retained
the following variables for our analysis as described in Table 3. For details of data preprocessing, see
Jeong (2022).

5.2. Estimation and prediction results
Unlike the simulation study, it is hardly possible to believe that the actual observations in the synthetic
dataset follow the specified Poisson GLM. In this regard, here we replicate the empirical distribution
of the preprocessed dataset (which is our finite population here) by generating bootstrap samples to
ensure each observation has the same empirical distribution as the finite population. More specifically,
we take bootstrap samples S0 and S1 of sizes 100,000 and 800,000, respectively, in each of the sampling
schemes listed in Section 4. Subsequently, a bootstrap sample T of size 100,000 is taken at random for
out-of-sample validation. After that, we repeat the process of fitting and testing these five models as in
Section 4 for R = 500 times to compare the estimation and predictive performance under each sampling
scheme.

To assess the in-sample estimation performance, we compare the estimated regression coefficients of
each method and sampling scheme with the estimated regression coefficients obtained from the finite
population. More specifically, bias, root mean squared error (RMSE), and 90% confidence interval
coverage (CI) of the regression coefficients are defined as follows:
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where β̃j and β̂
(r)
j are estimates of βj using the finite population and with rth bootstrap sample, respec-

tively. SE(β̂)(r)
j is the estimated standard error of β̂

(r)
j . Note that in our case, we prefer a method with

biases closer to 0, smaller RMSEs, and/or CIs closer to the theoretical benchmark, 90%.
Table S1 shows the estimation results of the regression coefficients under different model specifi-

cations and sampling schemes of the bootstrap samples from the prerocessed synthetic data. Note that
the estimated coefficients from the traditional model were omitted as they are only available for the tra-
ditional features and identical to those from the boosting model. Implications of the estimation results
with the actual data are as follows.

• In the case of random selection, only the boosting model suffers from the biases of the regres-
sion coefficients, and there are no big differences in the estimation performance between the
naive and proposed models. It implies that as long as the sampling mechanism of S0 (a small
dataset with both traditional and telematics features) from the finite population is purely ran-
dom, it is okay to ignore S1 (a large dataset only with traditional features) and analyze S0 for
ratemaking purposes.

• In the case of age selection and mileage selection, the naive model is more biased in the esti-
mation of the traditional covariates (especially the intercept term) compared to the proposed
model. It implies that if the observability of the telematics features depends on the traditional
features, then the proposed approach might be helpful in better understanding the underlying
impacts of the covariates on the claim experience.

• Lastly, in the case of favorable selection, the proposed model is no more unbiased, but the
naive model is still more biased in the estimation of the regression coefficients. Therefore,
if accessibility to telematics features is affected by favorable selection, it is recommended to
integrate two data sources to handle the missingness and selection biases of the telematics
features.

Such differences are also visualized in Figures S1, S2, S3, and S4 where a model with biases closer
to 0, smaller RMSEs, and/or CIs closer to 90% receives the higher rank for each covariate. It is consis-
tently observed that, in the case of either age or favorable selection, the proposed model is the second
best, following the full model that is unattainable in practice.

In addition to the estimation performance, the out-of-sample validation performance is assessed
using

Avg_pRMSE(k) = 1

R

R∑
r=1

pRMSE(r;k),

Prop_pRMSE(k) = 1

R
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)
,
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,
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Table 4. Out-of-sample validation performance with bootstrapping from the actual data.

Naive Traditional Boosting Full Proposed
Random selection
Avg_pRMSE 0.21187 0.21621 0.21204 0.21181 0.21184
Prop_pRMSE 0.653 1.000 0.998 0.309 –
Avg_DEV 24.01372 26.74222 24.20771 23.99236 24.01203
Prop_DEV 0.526 1.000 1.000 0.020 –

Age selection
Avg_pRMSE 0.21194 0.21619 0.21214 0.21179 0.21183
Prop_pRMSE 0.801 1.000 0.998 0.229 –
Avg_DEV 24.03209 26.73960 24.20694 23.98884 24.00955
Prop_DEV 0.917 1.000 1.000 0.012 –

Favorable selection
Avg_pRMSE 0.21402 0.21620 0.21410 0.21180 0.21187
Prop_pRMSE 1.000 1.000 1.000 0.182 –
Avg_DEV 25.48580 26.74150 25.49272 23.99129 24.02208
Prop_DEV 1.000 1.000 1.000 0.004 –

Mileage selection
Avg_pRMSE 0.21188 0.21612 0.21200 0.21171 0.21176
Prop_pRMSE 0.912 1.000 1.000 0.184 –
Prop_DEV 24.02466 26.74138 24.20250 23.99120 24.01350
Prop_DEV 0.744 1.000 1.000 0.016 –

where pRMSE(r;k) and DEV(r;k) are defined in (4.1). Based on the above definition, we prefer a model
with lower Avg_pRMSE, Prop_pRMSE, Avg_DEV, and/or Prop_DEV.

Table 4 shows that the proposed model is the only model comparable to the full model in terms
of pRMSE and DEV on average, especially when the observability of telematics features is prone to
favorable selection. It is also observed that the naive, traditional, and boosting models do not outperform
the proposed model in most bootstrap samples, as shown in the values of Prop_pRMSE and Prop_DEV,
regardless of the selection scheme. Therefore, the proposed approach is a reasonable alternative in the
absence of a finite population with both traditional and telematics features.

Figure S5 further highlights the distributions of proportional improvements in pRMSE and
DEV using the proposed model compared to the naive model, where the proportional improve-
ments in pRMSE or DEV with rth bootstrap sample are defined as 100

(
1 − pRMSE(r;proposed)

pRMSE(r;naive)

)
and

100
(

1 − DEV(r;proposed)

DEV(r;naive)

)
, respectively. While proportional improvements are shown to be close to sym-

metric and almost centered on 0 with positive averages for random, age or mileage selection, they are
clearly positive with favorable selection, which also supports the usefulness of the proposed method on
the existence of favorable selection in the provision of telematics features.

6. Concluding remarks
The scarcity of observations with telematics features in driver risk classification for auto insurance has
been problematic, which may be attributed to either privacy concerns or favorable selection when com-
pared to traditional feature data points. To address this issue, we proposed a data integration approach
that uses calibration weights for UBI with multiple sources of insurance claims data. Our results
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demonstrate that this framework can effectively integrate traditional and telematics data, while also
managing potential favorable selection problems. This conclusion is supported by a simulation study
and empirical analysis using a synthetic telematics dataset as it turns out that the proposed approach
could achieve satisfactory performance both in the in-sample estimation and in the out-of-sample pre-
diction, compared to the existing benchmarks for automobile insurance ratemaking practices. Thus, the
proposed approach has a potential to improve risk classification in auto insurance and assist insurers in
making informed decisions.

The possible extension of this article is twofold. First, the proposed data integration approach relies
on the assumption in (3.5) so it might not work well if the basis function of E{U(β; xi, ni) | xiτ , ni} is not
correctly specified. To address such a problem, one can implement a doubly robust calibration approach
that only requires either the basis function of the outcome variable or the propensity score to be correctly
specified. Second, the proposed approach can be extended to data integration for mixed-effects models
where a policyholder is observed over a period of time, so that the proposed framework can also consider
random effects for experience ratemaking, as well as the fixed effects.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/asb.2024.6
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Appendix
A. Proof of Proposition 1
Now, as long as (3.6) is satisfied, we can express

∑
i∈S0

ωiU(β; xi, ni) =
M∑

i=1

δiωiU(β; xi, ni) +
L∑

l=0

[
αl

(
M∑

i=1

bli −
M∑

i=1

δiωibli

)]

=
M∑

i=1

δiωiU(β; xi, ni) +
M∑

i=1

(1 − δiωi)

L∑
l=0

αlbli

=
M∑

i=1

{
δiU(β; xi, ni) + (1 − δi)

L∑
l=0

αlbli

}

+
M∑

i=1

δi(ωi − 1)

{
U(β; xi, ni) −

L∑
l=0

αlbli

}

for any α = (α0, α1, . . . , αL). Thus, for the choice of α̂ satisfying
M∑

i=1

δi(ωi − 1)

{
U(β; xi, ni) −

L∑
l=0

α̂lbli

}
= 0, (A1)

we can obtain
∑
i∈S0

ωiU(β; xi, ni) =
M∑

i=1

{
δiU(β; xi, ni) + (1 − δi)

L∑
l=0

α̂lbli

}
. (A2)

Furthermore, the condition in (A1) under model (3.5) implies that
∑L

l=0 α̂lbli is an estimator of
E{U(β; xi, ni) | xiτ , ni}. Thus, we can see that (A2) shows self-efficiency in (3.4). That is, the calibration
condition (3.6) on the basis functions in (3.5) is a sufficient condition for self-efficiency.
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B. Proof of Proposition 2
To show self-efficiency in (3.4),

(RHS) =
M∑

i=1

Ûi +
∑
i∈S0

Ui −
∑
i∈S0

Ûi

=
∑
i∈S0

ω̂iÛi +
∑
i∈S0

Ui −
∑
i∈S0

Ûi

=
∑
i∈S0

Ûi + M1

M0

∑
i∈S0

gi(φ̂)Ûi +
∑
i∈S0

Ui −
∑
i∈S0

Ûi

= M1

M0

∑
i∈S0

gi(φ̂)Ui +
∑
i∈S0

Ui = (LHS),

where the second equality follows from (3.6) and the fourth equality follows from (3.9).

C. Standard error estimation
The standard errors of the estimates can be estimated using the standard linearization method. Note that
β is the parameter of interest, and φ is the nuisance parameter that is used to estimate the parameter
of interest β. To estimate the variance of β̂, we also need to estimate the variance of φ̂ simultaneously.
Thus, we can construct two estimating functions for two parameters as follows.

Û1(φ) =
∑
i∈S

{δiωi(φ) − 1} bi,

Û2(φ, β) =
∑
i∈S

δiω̂i(φ)U(β; xi, ni),

where bi = (1, b1i, · · · , bLi)′ and

ωi(φ) = 1 + M1

M0

exp{φ0 + φ1b1i + · · · + φLbLi} .

The final estimator β̂ is the solution to the joint estimating equations:

Û1(φ) = 0 and Û2(φ, β) = 0.

We can treat θ
′ = (φ ′, β ′) and define

Û(θ ) =
(

Û1(φ)

Û2(φ, β)

)
.

The variance estimation for θ̂ can be implemented using the Sandwich formula. That is, V(θ̂) =
τ−1V(Û)τ−1′ where τ = E

{
∂

∂θ ′ Û(θ )
}
.

One can use an empirical estimate of V(θ̂ ) as follows:

τ̃ = ∂

∂θ ′ Û(θ )

∣∣∣∣
θ=θ̂

and Ṽ(Û) =
M∑

i=1

(Ũi − Ũi)(Ũi − Ũi)
′

as a proxy of τ and V(Û), respectively, where θ̂ ′ = (φ̂ ′, β̂
′
) is the solution of the joint estimating equation

and

Ũi =
⎛
⎝
{
δiωi(φ̂) − 1

}
bi

δiω̂i(φ̂)U(β̂; xi, yi)

⎞
⎠ , Ũi = 1

M

M∑
i=1

Ũi.
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