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Abstract

All subnormal subgroups of hypemormalizing groups have by definition subnormal normaliz-
ers. It is shown that finite soluble HN-groups belong to the class of groups of Fitting length
three. Finite HN-groups are considered including those with subnormal quotient isomorphic to
SL(2,5).

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 D 35, 20 D 10.

A. Camina [ 1, 2, 3] considered the class of groups satisfying the following
condition: normalizers of subnormal subgroups of G are subnormal in G.
We adapt his notation and call these groups HN-groups.

We will consider finite HN-groups here, using Camina's results as a foun-
dation. The consideration of join-irreducible subnormal subgroups of soluble
HN-groups leads to a bound to the Fitting length. More precisely, if 21, VI2,
<H, <H denote the classes of abelian, nilpotent of class 2, nilpotent of square-
free exponent, nilpotent, groups respectively and we use P. Hall's product
notation for group classes, we can show

MAIN THEOREM. If G is a soluble HN-group, then

G e TOTCR

The second part of the paper deals with the role that quotients isomorphic
to SX(2,5) play in HN-groups. We see in Section 4 that the quotient SL(2,5)
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212 Hermann Heineken [2]

may lead to perfect subnormal subgroups T in a HN-group such that T/Z(T)
is no longer the direct product of simple groups (Theorem 4.1); in this case,
however, the HN-group G can be described as a subdirect product of two
HN-groups in which one factor does not contain a subnormal subgroup as
described in Theorem 4.1, while the commutator subgroup of the other factor
is a direct product of such groups (Corollary 4.4). An example at the end
shows that the Fitting length of the soluble quotient of a directly irreducible
nonsoluble HN-group is not more reduced than the Main Theorem indicates.

1. Subnormal hulls of primary elements

In this section we will consider finite soluble HN-groups. If G is such
a group, then every subnormal subgroup of it is again a soluble HN-group.
We apply this to smallest subnormal subgroups containing a given element
x of prime power order. The more complete information we obtain for
involutions s is needed later; we treat this case separately.

LEMMA 1.1. Ifx is an element of order 2 of a soluble HN-group, the smallest
subnormal subgroup ofG containing x is always metabelian.

PROOF. If V is the smallest subnormal subgroup of G that contains x, then
V/V is cyclic of order 2.

We choose a chief factor R/S of V. There is a cyclic JtS-invariant subgroup
T/S ^ 1 of R/S in V/S, and since V/S is a HN-group, T/S is normal in
V/S. But R/S is a chief factor and so T = R and all chief factors of V are
cyclic. This shows that V is supersoluble. Therefore V is nilpotent, and if
V ^ 1, the construction of V yields that V is the Fitting subgroup of V. We
apply Theorem 6 of Camina [2] and obtain that V/Z{V) is nilpotent. Since
V is denned as the smallest subnormal subgroup containing the element x,
the commutator subgroup V is the intersection of all normal subgroups K of
V with nilpotent quotient group V/K. So Z(V') = V and V is metabelian.

The general case is much more complicated.

LEMMA 1.2. Assume that G is a finite soluble HN-group possessing an ele-
ment x of order a prime power p" such that x is not contained in any proper
subnormal subgroup ofG. IfM - G'GP and H/K is a chief factor ofG, then
(M')2[M', G]K/K is contained in CG/K{H/K).
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[3] Hypernormalizing groups 213

PROOF. By Camina [1, Proposition 2], G is of p-length 1. So the order of
G' is prime to p and we have C = (x, G') and G' n (x) = 1.

We consider a chief factor H/K such that (G/K)/CG/;:(H/K) is non-
abelian. For brevity we denote by U* the subgroup UK/K of G* = G/K.
We distinguish several cases.

CASE I. The rank of H* is not divisible by p. Now H* is a minimal
normal subgroup of the HN-group G* possessing an element z (= xK) of
order a prime power pr which is not contained in any proper subnormal
subgroup of G*. If T is a z-invariant subgroup of H*, then z is contained in
the normalizer of the subnormal subgroup T of G*, and so T is normal in
G*. So there are no proper z-invariant subgroups of H*, and we have

(1.1) the rank of H* is a divisor of p - 1.

Consider now an abelian normal subgroup A/C(H*) of G*/C(H*). If
A/C(H*) is noncyclic, then H* splits into proper ^-invariant subgroups Rj
such that A/C(Rj) is cyclic for every i. We collect all elements in H* with the
same centralizer, and in this way we obtain a description of H* as a direct
product of homogeneous components RFj. Conjugation by z permutes these
components, and therefore their number must be divisible by p, while the
rank of H* is smaller than p. This is a contradiction, and we obtain

(1.2) abelian normal subgroups of G*/C(H*) are cyclic.

Assume now A = (a,C(H*)). Conjugation by a induces in H* a linear
mapping. If this linear mapping has a minimal polynomial which is not
irreducible, then H* is the direct product of some homogeneous components
which again are permuted by conjugation with z, a contradiction.

We have derived that the minimal polynomial of the liner mapping induced
by a is irreducible. Assume now that aC{h*) is different from z~lazC(H*).
Then z'azC(H*) = akC{H*) for some k, and a and ak induce liner mappings
with the same irreducible minimal polynomial on H*. Since z is of order a
power of p, this minimal polynomial is of degree a multiple of p and so the
rank of H* is a multiple of p, contradicting (1,1). We derive

.. abelian normal subgroups of G*/C{H*) belong to the centre
( ' } ofG*/C(H*).

If B is the Fitting subgroup of G*/C{H*), then the subgroup Z(B') is
obviously an abelian normal subgroup of C*/C(H*). Now (1,3) yields

Z2(B)r\B' CZ{B')CZ(B)nB', B' C Z{B) and B3 = 1.
The Fitting subgroup of G*/C(H*) is of class two at most.

https://doi.org/10.1017/S1446788700031645 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031645


214 Hermann Heineken [4]

We consider now a nonabelian gr-Sylow subgroup S of the Fitting subgroup
B of G*/C(H*). Since H* is a minimal normal subgroup of G*, we have by
Schur's Lemma that Z(G*/C{H*)) is cyclic and so its subgroup Z(S) is also
cyclic. If the order of 5 ' c Z(S) is equal to qs, then Sqk is abelian for all k
satisfying 2k > s. Using (1,3) again we obtain s = I.

Choose a maximal abelian normal subgroup T of 5. Except for S = Q% we
may choose a noncyclic normal subgroup T, and H* will split into homoge-
neous T-invariant components. Their centralizers in T are permuted by con-
jugation with elements of S which are not in T. The rank of H* must there-
fore be multiple of \S/T\ = qm, and we have furthermore \S/Z(S)\ = q2m.

Now y permutes all qm + 1 maximal abelian normal subgroups of S by
conjugation, leaving none fixed. So p divides qm + 1. These two numerical
statements lead to qm <p—\ andp < qm +1, leaving equality in both cases as
the only possibility. So q — 2 and p is a Fermat prime 2m + 1. In particular,
\S'\ = 2 and H* is not a 2-group. The case of S = Q$ is similar to q = 3.

The Fitting subgroup B of G*/C(H*) is now the direct product of a cyclic
group of odd order contained in Z(G*/C(H*)) and the group S just de-
scribed. Now B/B' = S/S' is a chief factor of G*/C(H*); it is a factor of
order a power of 2 and of rank smaller than p. Using the previous deduction,
we obtain that ((G*/C(H*))/B')/C(B/B') cannot be nonabelian, as such a
case occurs only for chief factors of odd order. Since B is the Fitting sub-
group of G*/C(H*), C(B/B') = B/B', and G*/C(H*) is the extension of the
Fitting subgroup B by an abelian group (generated by zC{H*)). Thus the
statement of Lemma 1 is proved for Case I.

CASE II. The rank of H* is not 2 and is divisible by p. We can see at once
that every element of H* is contained in a proper yp-invariant subgroup of
H* and obtain

(11,1) y»C(H*) e Z(G*/C(H*)).

Assume that pm is the order of yC(H*) in G*/C(H*), and (H*)' = 1 for
some prime t. If K is the splitting field of spm ' - 1 over the field F of
order t, we have that H* can be considered as a vector space of dimension p
over K. Assume for the moment that the Fitting subgroup B of G*/C(H*)
is nonabelian. Since B is a normal subgroup of G*/C(H*) which contains
yC(H*), the minimal normal subgroup H* will split into the direct product
of AT-subspaces of equal dimension. These spaces cannot be of AT-dimension
1 since B is nonabelian. So H* does not split nontrivially as a 5-module.
Now every nonabelian Sylow subgroup S of B is or order prime to p. Choose
some maximal abelian subgroup T of S and some element a contained in
N(T)nS not in T. Now (a, T) is subnormal in S, and by induction on the
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[5] Hypernormalizing groups 215

defect we deduce that H* is an irreducible {a, r)-module, since the number
of constituents is at the same time p or 1 and has a common divisor with |5| .
Since T is abelian and a operates nontrivially on t, H* can no longer be an
irreducible T-module, leading to a contradiction which proves

(11.2) the Fitting subgroup of G*/C(H*) is abelian.

If U/V is any chief factor of G*/C(H*), y"C(H*) induces the identity on
U/V by conjugation. So the rank of U/V divides p - 1. Assume now that
p / 2 and that there is a 2-group in (G*/C(H*))/V which is not contained in
C{U/V). The 2-Sylow subgroup A of G/C(H*) operates irreducibly only on
subgroups of 2-power rank of H*. The normalizer of such a proper subgroup
of H* will lead to a contradiction to G being a HN-group. This shows from
Case I for U/V, that C(U/V) D {{G*/C(H*))/V)' and, in particular, that

(G*/C(H*))/C(B) is abelian.

We deduce

(11.3) G*/C(H*) is metabelian.

This shows slightly more than wanted in the statement of the lemma.

CASE III. The rank of H* is 2, and p — 2. If there are no proper z2-
invariant subgroups of H*, then G*/C{H*) = (zC(H*)) and nothing is to
be shown. If there are proper z2-invariant subgroups of H*, the argument
follows along the lines of Case II. Lemma 1 is shown.

REMARK. The two cases mentioned in the proof of Lemma 1.2 lead to
examples of HN-groups. For Case II is Camina's Example 2; see [3, page 63].
For Case I, matters are slightly more involved. We begin with a Fermat prime
p = 2m + 1 and another prime r, where r is not a square modulo p and is
of the form 4/ + 1. We choose a 2-group T such that Z(T) = V is of order
2, T itself is of order 22m+1 and admits an automorphism of order p. Such
groups T exist; see Hall and Higman [5, page 33]. There is, up to operator
isomorphism, only one faithful irreducible Zr module of T (cf. [5, page 17]),
and the group ring 2r[T] is the direct sum A © B, where A is the direct sum
of w2m fields of order r, while B is the full matrix ring of 2m x 2m matrices
over lf. We extend B by T in the obvious manner and extend BT by a
group P of automorphisms of T which is of order p. Assume that D is a
minimal T-invariant subgroup of B and that D is also invariant under P.
Then DTP is an illustration of our Case I. We have to show that such a
minimal T-invariant subgroup D of B exists.

Assume, to the contrary, that all minimal T-invariant subgroups of B are
moved by the nonidentity elements of P. Choose such a minimal T-invariant
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216 Hermann Heineken [6]

subgroup U of B, an element x ^ 1 of P and an element y of order 4 of T.
We have

and

Now from

uux •••ux" = 1 for all u in U

B = UX xU*2 x •• • x [/*' ' .

K W * • • • uyx" ' = 1 and (MM* • • • «*' V - 1

we obtain

JJ „*',-,*' = !
/=i

where by construction ux'y~yx' belongs to Ux', and so ux'y = uyx' for all /.
This is impossible since y does not belong to Z(T). This contradiction shows
the existence of our group DTP outlined before. (This construction for Case
I is probably well known, the details are included for the convenience of the
reader.)

LEMMA 1.3. If G is a finite soluble HN-group possessing an element x of
order a prime power p" such that x is not contained in any proper subnormal
subgroup ofG, and if M = G'G?, then (M')2[M', C] c F(G).

PROOF. For every chief factor H/K of G define C(H; K) such that

C(H;K)/K = CG/K(H/K).

According to Lemma 1.2 we know (M')2[M',C] C C(H;K). The statement
of the lemma now follows from

F(G) = f]{C(H; K): H/K is a chief factor of G}.

Now we can deduce two statements on soluble HN-groups in general.

LEMMA 1.4. If G is a soluble HN-group and H = G/F(G), then H/F{H)
is nilpotent of squarefree exponent.

PROOF. If x is an element of order a power of the prime p and 5 is the
smallest subnormal subgroup of G containing x, then, by Lemma 1.2, xp

is contained in a metanilpotent normal subgroup of S. The image of x into
H/F(H) by the canonical epimorphism mapping G onto H/F(H) is therefore
an element of order dividing p generating a cyclic subnormal subgroup of
H/F(H). This proves Lemma 1.4.
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[7] Hypernormalizing groups 217

LEMMA 1.5. IfG is a soluble HN-group andH = G/F(G), then H/Z2(F(H))
is nilpotent.

PROOF. Choose again an element x of order a power of a prime p and
denote by 5 the smallest subnormal subgroup of G containing it. So the
smallest subnormal subgroup of H containing xF{G) = x* is SF(G)/F(G) =
S/(Sf)F(G)) = S/F(S). By Lemma 1.3, this is the extension of a nilpotent
p'-group of nilpotency class 2 by a cyclic /7-group. Denote the maximal p'-
subgroup of F(M) by Q. We have (x*,Q) is subnormal in H. Now Q =
[•**> Q](C(X*) n Q)i a n d both factors are normal subgroups of Q. We obtain
[x*, Q] = (SF(G)/F(G))' and so it is nilpotent of class 2.

Since Q and x* are of relatively prime orders, we find that x* operates
without fixed points on [x*,Q]/[x*,Q]'. We deduce

[x\ Q] n (C(x*) n Q) c [x*, Q]' c z{[x\ Q}).

We consider any two elements a and b of [x*,Q]. The commutator [a, b]
is contained in Z([x*,Q]). On the other hand, if t is some element of
C(x*) n Q, we have t~lat = ac and t~lbt - bd, where c and d are also
contained in Z([x*,Q]). Now t~l[a,b]t — [ac,bd] = [a,b], and we obtain
[x*, Q]f\(C(x*)nQ) C Z(Q), and considering all commutators of length three
with one entry from [x*,Q] we obtain [x*,Q] c Z2{Q). Now x*Z2{Q) gen-
erated a cyclic subnormal subgroup in H/Z2(Q) and it follows that x*F(H)
generates a cyclic subnormal subgroup in HIZ2{F{H)). Now Lemma 1.5
follows: H/Zi{F(H)) is generated by cyclic subnormal subgroups.

2. Metanilpotent HN-groups with small nonabelian Fitting quotient

We begin by considering the smallest case of all.

LEMMA 2.1. Assume that G is a HN-group such that G/F(G) is nonabelian
of exponent p and of order pl. If' P is a p-Sylow subgroup of G and Q is
the maximal p'-subgroup ofG, then Q = [Q,P'] x C(P') n Q and [Q,P'\ is
abelian.

PROOF. Since G is a HN-group, the subgroups [Q, P'] and C(P') n Q of
the normal subgroup Q are normal in G. We will show first that [Q,P'] is
abelian.

By assumption we know that P = {x, y, PnF(G)) such that z = [x, y] is not
contained in PnF(G) but xP,y",[[x,y],y] and [[*,>>],;<:] belong to PnF{G).
First we assume that G is "minimal" in the following sense: L = [Q, P'] =
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218 Hermann Heineken [8]

[Q, z] is nonabelian and [Q, z]/M is abelian for all proper normal subgroups
M of G which are contained in G. We deduce that L' is the only minimal
normal subgroup of G which is contained in L, and L is a 0-group for some
prime q ^ p. Now L/L'Lq is the direct product of quotient groups which can
be considered as irreducible faithful (x,y) modules. Some elements of these
modules are centralized by x, so C(x)nL £ L'. Since C(x)DL is subnormal
in C, so is N(C(x) n L), which contains x. Using L = {C(x) D L)[L,x] we
obtain that [L,x] must be contained in N(C{x) n L), and we find

(i) C{x) n is normal in L.

We want to show that L' must be trivial, We assume first that L' is not cen-
tralized by z. In this case C(x) n L and C(>'~1A:y) n L are normal subgroups
of L intersecting each other trivially. Now (uy~luy\u e C(x)nL) is normal-
ized by z but not by L, a contradiction to G being a HN-group. So the two
normal subgroups have a nontrivial intersection, and

(ii) [z,L']=\.

We know that L is the product of C(x) n L and its conjugates by powers of
y, since this is true for L/L'. Since y~'xy' — xz' we find

(iii) [x,L']=l,

and, arguing in the same way for y instead of x, we have

(iv) [y,L']=l, L'CZ(G).

Now the minimality condition yields

(v) U is cyclic.

We choose a normal subgroup R of G such that L' § R c L and /?/L' is
a minimal normal subgroup of G/L'. By minimality of G, R — [R, z] is
nonabelian. In analogy to (i) we obtain

(vi) C(JC) D R is normal in R,

and since the conjugates of C(x) n R generate R, we have

(vii) C(x) D R is nonabelian.

The minimality of /? also yields

(viii) Z(C(x)nR) = L'.

Now we find furthermore

(ix) R = (C(x) n R)[R, x] = (C(x) n J?)(C(C(JC) n .R) n R),

where in both cases the intersection of the factors is L', and all factors are
Jt-invariant. Since no element of [R, x]/L' is left invariant by x and R/L' is
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[9] Hypernormalizing groups 219

therefore described in two ways as direct product of factors without operator
isomorphic parts, we have

(x) [R,x] = C{C(x)nR)nR

and

(xi) [(C{x)nR),{C(y-lxy'nR))]=l f o r / = l , . . . , p - 1 .

It is well known, that there are integers a, b depending on q such that
1 + a2 + b2 = 0 mod q, and we deduce that

T = (uy-luayy-2yby2\u e C(x) n R)L'

is an abelian normal subgroup of/?.Also [T, z] is an abelian normal subgroup
of R, and V n [T, z] = 1. So [T, z] centralizes its conjugates, and U is not
contained in the smallest normal subgroup of G which contains [T, z\. This
contradicts the minimal choice of G, and so the minimal counterexample G
does not exist. We find that L = [Q, z] must be abelian.

We obtained this result for the case that G was "minimal" in the sense
indicated, it is however easy to see that there is a normal subgroup K of G
which is contained in [Q, z] such that G/K is "minimal", whenever [Q, z]
is nonabelian, and we obtain a contradiction. So now the commutativity of
[Q, P'] is proved in general.

Since Q and P' have relatively prime orders and [Q, P'] is abelian, we have

[Q, P'] n (C(P') n Q) = [Q, P') n C(P') = l.

Lemma 2.1 is proved. Now we are able to come to the general case.

LEMMA 2.2. If G is a HN-group and G/F(G) is of exponent p, then
(G/Z(F(G)))' is nilpotent.

PROOF. We proceed by induction on the order of G'F(G)/F(G). If

G'F(G)/F(G) - 1,

nothing is to be shown. We assume that the lemma is shown for all groups
H satisfying the hypotheses and satisfying

\H'F(H)/F(H)\ < \G'F(G)/F(G)\ ± 1.

We fix a p-Sylow subgroup P of G and choose an element x of P with the
following property: if xF{G) $ Z(G/F(G)), then xF(G) £ Z2(G/F(G)). De-
pending on this element x there is an element y in P such that [x, y] is not
contained in F(G). It follows that [x,y]F(G) e Z(G/F(G)), and the subnor-
mal subgroup (x,y, F(G)) of G satisfies the hypotheses of Lemma 2.1. So, if
Q is the maximal ^'-subgroup of G, we have Q = [Q, [x,y]] x (C[x,y]) n Q)
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and tGJ-^jy]] is a n abelian normal subgroup of (x,y,F(G)). By construc-
tion, ([x,y], P n F(G)) is normal in P, and therefore we have that P is con-
tained in the normalizer of [Q,([x,y],P n F(G))] = [Q,[x,y]] and in the
normalizerof C(([x,y],PnF(G))) nQ = C([x,y])nQ. The quotient group
G/[Q, [x,y]] s (C([x,y])nQ)P satisfies the hypotheses of Lemma 2.2 and the
induction hypothesis. We obtain that ((C([x,y])nQ)P/Z{F(C([x,y])nQ)))'
is nilpotent, and under the hypotheses of the lemma this is equivalent to the
statement

[C([x,y]) n Q,P'] C Z(C{[x,y]) n Q).

Now Z{Q) = [Q,[x,y]] x Z{C([x,y]) n Q) and therefore [Q,P'] c Z(Q).
Lemma 2.2 now follows from the nilpotency of P'Q/Z(Q).

LEMMA 2.3. Assume that G is a soluble HN-group with Fitting subgroup R.
Then (G/R)/Z(F(G/R)) has nilpotent commutator subgroup.

PROOF. Let K = G/R. By Lemma 1.4 we know that K/F(K) is nilpotent
of squarefree exponent. Choose a p-Sylow subgroup P of K. Then F(K)P
is a normal subgroup of K satisfying the hypotheses of Theorem 2.2, and we
obtain that P'F(K)/Z(F(K)) is nilpotent. Since this is true for all primes
p dividing the order of K, we obtain K'F(K)/Z(F(K)) is nilpotent, and
Lemma 2.3 follows easily.

3. Af-groups and HN-groups

Following Camina's definition we call a group G an M-group, if G is soluble
and G/Z(F(G)) is nilpotent. We obtain the following first statement.

LEMMA 3.1. If G is an HN-group and X and Y are two normal subgroups
ofG which are M-groups, then XY is also an M-group.

PROOF. Consider an element t of order a power of p which is contained
in X: denote by T the smallest subnormal subgroup of G which contains
t, Since X is an M-group, [/, T] is a abelian p'-group. Denote the maximal
p'-subgroup of F(XY) by Q. Then [/, T] = [t, Q] and C(t) n Q are normal
subgroups of Q and we have

[t,Q]n(C()t)nQ) = l and [t,Q)(C(t)nQ) = Q

So the nilpotent group Q is the direct product of two factors, one of which
is abelian and consequently contained in Z(Q). Now (t)Z(F(XY)) is sub-
normal in XY, and the same happens for t in Y instead of X. Since XY is
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[11] Hypernormalizing groups 221

generated by the elements of prime power order which are contained in X or
in Y, we have that XY/Z(F(XY)) is nilpotent. This proves Lemma 3.1.

COROLLARY 3.2. If G is a HN-group generated by subnormal M-groups,
then G is an M -group.

The proof is done by an obvious induction argument on the defects.

LEMMA 3.3. If G is a HN-group with nilpotent normal subgroup N such
that N is a 2-group, then G is an M-group.

PROOF. We proceed by induction on the order of G/F(G) which is obvi-
ously a 2-group. The lemma is true if G/F(G) = 1. Assume that \G/F(G)\ =
2k and the lemma is shown for all H satisfying the hypotheses and \F/F(H)\
<2k.

We distinguish two cases: G/F(G) is cyclic or not.
Assume first that G/F(G) is noncyclic. Then G possesses two proper nor-

mal subgroups K and L containing F(G) such that KL = G. By induction
hypothesis, K and L are M-groups. Now G is an M-group by Lemma 3.1.

Assume now the second possibility and G = {x,F{G)) for some x of order
2r. Denote by W the maximal subgroup of odd order of G. By construction,
W is a normal subgroup of G contained in F(G). By induction hypothesis
we have

[x2, W]CZ{W) and W = [x
2,W]x (C{x2)nW).

Again {x, W) is an abelian by nilpotent subnormal subgroup of G and
therefore an HN-group. Now (x, W)/[x2, W] s (x, C(x2) n W) is a HN-
group and abelian by nilpotent. We obtain

C(x2)nW = [x, C(x2)nfV]x(C(x)nW) and W = [x, W) x (C(x) n W).

Since [x, W] is the direct product of abelian groups, it is abelian and con-
tained in Z{W). We have shown that G/Z(W) is nilpotent, and Lemma 3.3
follows easily.

LEMMA 3.4. If G is a soluble HN-group, then G is an extension of an M-
group by an M -group.

PROOF. Consider the smallest subnormal subgroup T of G containing the
given element t of order a power of a prime p. We denote by V the maximal
normal subgroup of T containing F(T) such that V/F(T) is a 2-group. By
Lemma 3.3, V is an A/-group, and by Lemma 1.2, T/V is a metabelian A-
group and so an M-group by Camina [2, Corollary, page 364]. Let R be the
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normal subgroup of G containing F(G) such that R/F(G) is the maximal
normal 2-subgroup of G/F(G). We have that R is an Af-group, and TnR =
V. Now G/R is generated by its subnormal subgroups TR/R s T(R nT) =
R/V which are M-groups, and G/R is an M-group by Corollary 3.2. This
completes the proof.

Now the proof of the Main Theorem follows from Lemmas 1.4, 1.5, 2.3
and 3.4.

4. The factor SL(2,5) in HN-groups

We begin with a construction. Assume that p is a prime such that p + 1 is
divisible by 60. There are integers u,v,w such that, for a given power pk — q
of p, we have

u2 + v2 = - 1 mod q and w2 = 5 mod q,

since these congruences have solutions modulo p. The 2 x 2-matrices over Zq

U(\+V))-2 VW+V+W-l\ A R - (

l Oj 4\vw

generate a group isomorphic to SL(2,5) since A2 is central and (A,B)/(A2)
yields Hamilton's representation of A5 (see Coexeter and Moser [4, Table 5,
page 138]). Using this representation of SL(2,5) in Aut(Q x Cq) we find that
there is an extension of Cq x Cq = N by SL(2,5) with trivial centre. Since
p - 1 is not divisible by 4,3 or 5, no noncentral element of SL{2,5) leaves
invariant a subgroup of order p, and by an obvious induction argument we see
that only the characteristic subgroups of N are left invariant by noncentral
elements of SL(2,5). This shows that the extension just constructed is a
HN-group. We will see that this example is in a sense typical. It shows that
the condition FP on Corollaries 1-4 of Camina [1, page 67] is indispensible.
The next theorem shows that condition FP can be reformulated as FP* in the
form: there is no subnormal subgroup isomorphic to SL(2,5) in G/F(G).

THEOREM 4.1. Assume that K is a UN-group with only one maximal nor-
mal subgroup, L, say, and that K/L — PSL(2,5). Then one of the following
is true:

( i ) L = l ;
(ii) L is of order 2 and K = SL(2,5);
(iii) L is nonabelian, L/L' is of order 2 and L' is the direct product of two

cyclic groups of order m, where all prime divisors ofm are of the form 60/ - 1.
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PROOF. Consider a chief factor R/S of K. If R/S is nonabelian, it must
be simple by Camina [1, Corollary, page 64]. Since the group of outer au-
tomorphisms Aat{W)/lnn(W) of a finite nonabelian simple group is (by the
classification of these groups) soluble, the only nonabelian chief factor of K
must be K/L, and so L is soluble. Assume now L 3 Rz> S 2 L' and choose
an element z £ L with z2 e L. There is a cyclic zS-invariant subgroup
{t,S)/S in R/S. Since A" is a HN-group, the normalizer N((t,S)) is subnor-
mal in K and contains the smallest subnormal subgroup of K which contains
z. So, by construction, (t, S) is normal in K and R/S is cyclic. Now K is
perfect, so R/S is central, that is S c [K,R]. We deduce L' = [K,L].

Now L/L' is isomorphic to a subgroup of the Schur multiplier of PSL(2,5)
which is known to be of order 2. This yields that either L - 1 or L/L' is of
order 2. By Lemma 1, L' must be abelian.

Consider now a p-chief factor R/S with RC.L'. Then i?/5 cannot be cyclic
since it is not a central chief factor and K is perfect. The chief factor R/S
must be irreducible with respect to every subgroup outside L, in particular
with respect to subgroups of order 4, 3 and 5. Considering the subgroups
of order 4 and 3, we find that R/S must have rank 2 and that the prime q
involved must be congruent to - 1 modulo 3 and modulo 4. Considering the
subgroups of order 5 we obtain in addition that q must be congruent to - 1
also modulo 5, so we have p = 1 mod 60.

Assume now that there are two different minimal normal subgroups A, B
of K which are of order p2, and choose elements a,b different from 1 out
of A and B. If JC is an element of order 4, in K, the subnormal subgroup
{ab,x~labx) is normalized by x and so normal in K. So AB is the union of
p2 + 1 normal subgroups of K, a contradiction. This shows that L' has rank
2, and (iii) holds.

THEOREM 4.2. If G is a HN-group and K and K+ are two different sub-
normal subgroups ofG satisfying the hypotheses of Theorem 4.1, ifL and L+

are their only maximal normal subgroups, then the orders ofL' and (L+)' are
relatively prime.

PROOF. Assume to the contrary that K and K+ possess isomorphic mini-
mal normal subgroups T and T+. Since K and K+ are subnormal and perfect
and possess only one maximal normal subgroup, K and K+ are normal in
{K,K") by a famous theorem of Wieldandt [6, (20)*, page 225]. Since all
normal subgroups of AT and K+ are characteristic in K and K+ respectively, T
and T+ are normal in KK+. If T = T+, we have that K+/C(T)nKK+ is iso-
morphic to the central product of two copies of SL(2,5), which is impossible
since T must have rank 2.
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In particular, we find that K and K+ intersect each other trivially. We
choose an element u ^ 1 from T and another element v / 1 from T+, also
an element y of order 4 from K and another such element z from K+. The
subgroup N = (uv,y~luyz~lvz) is subnormal in KK+ and is normalized
by yz, which is not contained in any maximal normal subgroup of KK+.
Now N must be normal in KK+ since KK+ is a HN-group, and N has trivial
intersection with K and with K+. So N is contained in the centre of KK+

which is trivial. This contradiction shows that the pair T, T+ does not exist,
and that L' and (L+)' are of coprime orders.

THEOREM 4.3. Assume that G is a HN-group and that K is a subnormal
subgroup of G satisfying the hypotheses of Theorem 4.1 with L nonabelian.
Then K is normal in G, and G is the subdirect product of two HN-groups M
and G/K, where M' is isomorphic to K.

PROOF. K is a normal subgroup of G by Theorem 4.2. From 1 = Z{K) =
K n CG{K) we see that G is a subdirect product of G/K and G/CG{K). The
HN-group G/CG(K) — M is a subgroup of Aut(AT), which in turn is an ex-
tension of Inn(AT) = K by an abelian group (represented by power automor-
phisms of L'). The proof is complete.

By iteration of Theorem 4.3, we obtain

COROLLARY 4.4. Every finite HN-group is a subdirect product of groups
A, whose commutator subgroups A\ are groups as described in Theorem 4.1
together with one FP* -HN-group B.

5. An example of a nonsoluble HN-group

It is easily seen that U — GL{7, 56) can be described as a direct product,
namely U = T x (Z(C/))7 where Z{T) £ T/T2 is cyclic and T7/Z{T) =
PSL(7,56) is simple. The group T possesses outer automorphisms a, /? in-
duced by the field automorphisms of GF(56) which are of orders 2 and 3
respectively. We choose two isomorphic copies T\, Ti of T and form an ex-
tension of their direct product. Let an isomorphism T mapping T\ onto Ti be
given. We define K to be generated by x,y, z, T\ x Ti subject to the relations

xi = yi = Z4 = [Xty] = [Xf z 2 ] = [y> 22j = 1;

x~lux = u? forueTi, y~lvy = vP for v e T2,
[x, v] = [y, u] = 1 for u € Tx and v e T2,
z~luz = uz forweTi, z~lvz = vx a for v e Tj.
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It is a task of medium difficulty to prove that the group K is a HN-group,
and we leave this to the reader.

If P is the maximal perfect normal subgroup of K, we see that K/PCK(P)

has Fitting length 3, also K/CK(Z(P)) has Fitting length 2. So the existence
of nontrivial perfect normal subgroups in a HN-group does not lead to further
restrictions on the Fitting length of the soluble quotients, and the bound in
Lemma 1.4 is attained. (The reader will have noticed that K is a twisted
wreath product with factors isomorphic to {x, T{) and to (z).)
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