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Arithmetic properties of certain

functions in several variables III

J.H. Loxton and A.J. van der Poorten

We obtain a general transcendence theorem for the solutions of a

certain type of functional equation. A particular and striking

consequence of the general result is that, for any irrational

number u) , the function

I [ha]zh

h=l

takes transcendental values at all algebraic points a with

0 < lal < 1 .

Introduction

In this paper, we continue our study of the transcendency of functions

in one or more complex variables which satisfy one of a certain general

class of functional equations. The ideas for this work go back almost 50

years to 3 papers of Mahler [9], [JO], and [ H ] in which he analyses

solutions of functional equations of the form

f{Tz) = R{z; f{z)) ,

where T is a certain transformation of the n complex variables

z = [z , ..., z ) , and R(z; w) is a rational function. In our earlier

papers [7] and [£], we extended Mahler's results by widening the class of

allowable transformations T . It is our object here to generalise the

theory in another direction and, specifically, to answer a problem posed by

Mahler, namely Problem 2 of [72]. In view of the technical nature of our
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16 J.H. Loxton and A.J. van der Poorten

general result, it seems appropriate to introduce the work of this paper by

discussing a number of examples.

In [9], Mahler showed that the Fredholm series

ft*) = I * ,
h=0

which s a t i s f i e s the functional equation

f(z2) = /(a) _ a ,

takes transcendental values at algebraic points a with 0 < |a| < 1 , and

in [ 101, he further showed that if a., . . . , a are multiplicatively

independent algebraic numbers each satisfying 0 < |a. | < 1 , then the
3

numbers /(a-J , .. ., f{am)
 a r e linearly independent over the field of

algebraic numbers. In fact, as shown in [£], under these conditions the

numbers f[a J , ..., /(°Lj are actually algebraically independent. A

recent note [7 3, 7 4] of Mahler shows inter alia that the series

l ?h

I (hirV

takes transcendental values at algebraic points a with 0 < |a| < 1 . We

can now generalise this result to show that series of the shape

= 2h

I a,z

h=0 h

where the a, = b,lc, are rational numbers satisfying

loglfcj, log|C?j| = o{£) (h •* ») ,

take transcendental values at algebraic points a with 0 < |a| < 1 ,

providing, of course, that infinitely many of the a, are non-zero. In
h

place of the single functional equation satisfied by the Fredholm series

f(z) , we now have a chain of functional equations for the functions

fAz) = Y, O-L?2 (fe 2 0) ,
* h=k h
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Arithmetic properties of functions 17

namely

It is with just such systems of functional equations that we shall be

concerned in this paper.

The ideas extend to functions in several complex variables. For

example, denote by {f, } the sequence of Fibonacci numbers, defined by

f = n f = l f, = f, + f, ( 7 J > 0 )Jo ' J1 ' n+2 n+1 h

Mahler [9] showed that the series

/(«,*) = I /hzfh+1 ,
h=0

which satisfies the functional equation

takes transcendental values at points (a, 3) with a, 3 algebraic,

a3 # 0 , and

log|a| + %(l+5*)log|6| < 0 .

In particular, the series

oo f

h=0

takes transcendental values at algebraic points oc with 0 < |a| < 1 . In

[S], we showed further that if a , ..., a are algebraic numbers each

satisfying 0 < |a.| < 1 and the numbers |ot, |, ..., |a | are

multiplicatively independent, then the numbers g[a ) , — , ?(a_J are

algebraically independent. We can now show that, under reasonable growth

conditions on the algebraic coefficients a, , numbers of the shape

are transcendental for algebraic a with 0 < |a| < 1 .
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18 J.H. Loxton and A.J. van der Poorten

Mahler shows in [73, 74] that his techniques suffice to prove the

transcendence of a class of numbers including the number

£ (fcirV-J,
7t=0 2n

an example given by Mignotte [75], [Here {fz.\ i s again the Fibonacci

sequence.) In [ 8 ] , we remark upon the amusing resul t that we can even show

tha t the numbers

£ r } (k = i , 2 , . . . )
h=0 Th

are algebraically independent. We can now show, generalising Mahler's

result [7 3, 74], that if {M,} is an integer sequence satisfying one of a

wide class of linear recurrence relations and the algebraic coefficients

a, satisfy a reasonable growth condition, then sums of the shape

£ ayf* (fc = l , 2 , . . . )
h=0 " %

are transcendental. In particular, one can take for the sequence {uA

the sequence {Pi,} o r 1*7̂ 1 °^ numerators or denominators respectively of

the convergents of an irrational real number. In a similar spirit, subject

to certain rather technical conditions on the functions involved, our

results yield the transcendence of infinite products such as

7i=0

and of continued fractions such as

uo
1+ 1+ 1+...

at algebraic points a with 0 < |a| < 1 , u, being a linear recurrence

of the type alluded to above.

Mahler's results do not seem at all well-known and one of the few

examples referred to in the literature is the transcendence of the sums
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Arithmetic properties of functions 19

/ (a) = I [hu]ah ,

for to a real quadratic irrational and a algebraic with 0 < |a| < 1 .

(As usual, [x] denotes the integer part of x . ) We shall extend this

result of Mahler's by proving the transcendence of the sums f (a) for

arbitrary real irrational co . This example is note-worthy in that it

displays uncountably many transcendental numbers in one-to-one

correspondence with the real irrational numbers. The result depends on the

following construction, leading to a chain of functional equations. We

assume, as we may, that 0 < u < 1 and write

V1

and

so that w = u and to, = to, - a, . Then, by elementary manipulation

of the sums, we obtain

2, «„

a.+l

If 0) is a quadratic irrational, the av are periodic so the chain of

functional equations yields a single functional equation and consequently

this case falls within the ambit of Mahler's work [9]. For arbitrary

irrational u , we need the general result of the present paper, which

permits us to infer the transcendence of ^ ( O J 3) for algebraic a, 3 in

the domain of convergence of the series, providing the partial quotients

a. are bounded. In the contrary case, with the a7 unbounded, more

direct methods already establish the required result.
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20 J . H . L o x t o n and A . J . v a n d e r P o o r t e n

The paper is divided into 3 parts, as follows. Chapter 1 contains a

number of definitions and preliminary observations which specify the type

of functional equations we are able to treat. The main transcendence

theorem i tself is stated and proved in Chapter 2. Finally, Chapter 3

contains applications of the general theorem to more concrete situations of

the type described above and concluding with an analysis of Mahler's series

1. Preliminary definitions

1. COHERENT SEQUENCES OF MATRICES

Let T = [t. .) be an n x n matrix with non-negative integer

entries. As usual, we define the spectral radius of T , denoted by

v{T) , to be the maximum of the absolute values of the eigenvalues of T

We further define a transformation T : C -*• Cn as follows: if

z = [z , . .., 3 ) is a point of C , then w = Tz is the point with

coordinates

»i = TT z ̂  (i < i 5 „) .
j=i 3

We adopt the usual vector notation for multi-indices, that i s , if

p = (v^, . . . , u j and v = [v^ • • •, \ ) , then we write

and

y y

s = 3 . . . s [z in C ) .

Thus, for example, we have

(Ts) = 3 [z in C J .

Finally, we denote by C* the set of points z = [z , . . . , 3 )̂ of C
with 3 ... z # 0 .
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A r i t h m e t i c p r o p e r t i e s o f f u n c t i o n s 21

Let T = {T, T , . . .} be a sequence of n x n non-negative integer

matrices and define i t s associated sequence of matrices S = {S , S , . . .}

(1) s
k = hTk-i ••• Ti ( f c - x ) •

It is convenient to write

(2) rk = r{sk) (k > 1) .

We denote by U(T) the set of all points z in C* with the following

property: there is a positive w-tuple r\ , depending only on the sequence

T and the point s , such that

(3) log i, r\> ( k -*• <*>)

for each integer n-tuple y • We call the sequence T a coherent

sequence of matrices if it satisfies the following 2 conditions:

(i) the sequence T-, is strictly increasing and v, •*• °° as

k •*•<*>, a n d

(ii) the set U(T) is a non-empty neighbourhood of the origin

in 0*

There is a significant case in which the above definition can be

formulated quite explicitly. Consider the sequence T = {T, T, — }

consisting of the repetitions of a single n x n non-negative integer

matrix T . By a theorem of Frobenius (see, for example, [5], page 80),

r{T) is itself an eigenvalue of T . If r(T) is greater than 1 and

also greater than the absolute values of all the other eigenvalues of T ,

and T has a positive eigenvector belonging to the eigenvalue v(T) , then

T = {T, T, ...} is a coherent sequence of matrices. Indeed, in this case,

S-, = "±" , so the condition (i) above is immediate and condition (ii) can be

verified by elementary linear algebra (see [7], Lemma h). In this case,

we can describe the vector r\ in (3) as the projection of the vector

(-log|s |, ..., -log|s |) on the eigenspace of T belonging to the

eigenvalue r{T) .
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22 J . H . L o x t o n and A . J . van d e r P o o r t e n

2. THE FUNCTIONAL EQUATIONS

Let T = {T' T . . . } be a coherent sequence of matrices and l e t

F = {fAz), f (z), . . . } be a sequence of functions of the n complex

var iables z = [z , . . . , s^) , each / ^ ( 2 ) being regular in some fixed

neighbourhood of the o r ig in . We say the sequence of functions F

s a t i s f i e s a recurs ive system of functional equations i f

where the a, .(z) and b,.(z) (o - j - gA are polynomials with degrees

a t most dy (d* — l ) . We denote by ^j,(2) * n e resu l tan t of the 2 forms

9k J 9-1.-3 9k • g,-0
I a,.(z)u3v " and [ bj-W^v K ,

J=0 ^ 3=0 **

so that A,(s) is also a polynomial in z , By hypothesis, the functions

of the sequence F have power series expansions at the origin, so we can

write

(5) fAz) = I T ( & ) B M (* 2 0) .
k v v

Let S = {S , S , ...} be the associated sequence of matrices of the

sequence T , defined by (l), and set r, = r(5^) , as before. The

functional equations (h) yield, by induction, the further equations

hk Hk
(6) f[Sz) = I A (z)f (z)3 I I B ,(z)f (z)3 (k > 1) ,

K. K jsQ K3 0 d=Q K3 0

where

(7) **-*i*2 -H (* = D

and the A,Az) and B..{z) (o - j - h^J are polynomials with degrees at

most °-tev > where o is a positive constant depending only on the

sequence T and
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The resultant of the two forms

k . h.,-3 k . K-3
I A Az)u3v * and I B Az)u°v K
3=0 ** J=O K°

is easily seen to he A (s)A (s 3) ... A, (s, a) .

How introduce the new variables t = [t ) , indexed "by n-tuples

V = [y,> ..., y J of non-negative integers, and set

Thus, by

(9)

Consider

(5)j we have

a function E*

E{z; t)

(2; t)

P

5=0

1

of

| = j

the

^(2)

shape

(fc2 0)

y

where the P .{z; t) are polynomials in 2 and in finitely many of the
0

variables t and the series on the right is the power series expansion of

E(z; t) at the origin. We say the sequence of functions F is strongly

transcendental if, for each function E{z; t) formed in the above manner,

there is a constant m with the following property: whenever k is a

sufficiently large positive integer and the polynomials P.[z; T ) are
3

not all identically zero, then there is an index y with |y| £ m such

that PM(j
(fe)) t 0 .

Finally, let a be a point of C* . We say that the point a is

admissible (more explicitly, admissible with respect to the sequence of

matrices T and the system of functional equations CO) if it has the

following 3 properties:

https://doi.org/10.1017/S0004972700022978 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022978


24 J.H. Loxton and A.J. van der Poorten

(i) a is in the neighbourhood (J(T) ,

(ii) A, (S, a] # 0 for each positive integer k , and

(iii) if n is the vector determined by (3) for z = a , then

the coordinates of n are linearly independent over Q .

We remark that conditions (i) and (ii) of the last definition are

"regularity" conditions. Thus (i) ensures that S,a -*• 0 as k ->•«>, so

that f^i^v0-) is defined for all sufficiently large k , and (ii) ensures

that the rational functions in the functional equations (6) are well-

defined at a , whenever / n(
a) exists. Condition (iii) amounts to a

condition of "independence" for the coordinates of a . In particular, by

applying a result of Baker on the logarithms of algebraic numbers, it can

be shown that (iii) holds if a. , ..., a are algebraic numbers and

|a. |, ..., |a | are multiplicatively independent (see the proof of Theorem

2 in [7]).

2. The transcendence theorem

3. STATEMENT OF THE MAIN THEOREM

Let K be an algebraic number field of finite degree, d say, over

Q . For each 3 in K , we can find a non-zero rational integer den 3 ,

a denominator for 8 , such that (den 3)3 is an algebraic integer. We

measure the size of 3 by

||B|| = max {|o3|, |den 8|} ,
a

where a runs through the d distinct embeddings of K into C . For a

polynomial p(s) = Y. P s with coefficients in K , we define

||p II = max ||p || .
U

We can now formulate the main transcendence theorem.

THEOREM 1. Let T = {r , T , ...} be a coherent sequence of

matrices. Let F = {f Az), fAz), ...} be a strongly transcendental

sequence of functions, each one being regular in some neighbourhood of the
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origin and satisfying the recursive system of functional equations (k), and

(fe)suppose that all the coefficients x of the power series expansions

(5) of the A. (s ) and all the coefficients of the polynomials a..(z) and

b, . (s) in the functional equations (k) lie in some fixed algebraic number

field. Let r , , h. , and e, be given by (2), (7 ) , and (8) . Assume that

there is a positive constant e 2 , independent of k > such that

(10) hk + ek + max {log||afc+1j. | |

and also that, for each e > 0 , there is a positive number CAz) such

that

l o g l T i | zrk{1^]

for all non-negative integer n-tuples u , whenever k i C (e) . Finally,

let a be an admissible algebraic point. If /0(o0 exists, then fQM

is transcendental.

The theorem generalises the main theorem of [7] (see [7 ] , Theorem 1

and Lemma 11). Indeed, i f the sequences T = {T, T, . . . } and

F = {f{z), f(z), . . . } each consist of repet i t ions of a single en t i ty , then

the system of functional equations (k) becomes a single functional equation

for f(z) and the hypothesis of strong transcendence for the sequence F

becomes the ordinary transcendence of the function f{z) , and th i s i s j u s t

the si tuation we t r ea t in [7 ] . The proof of the theorem depends, as in our

ear l ie r work, on the construction of a suitable auxil iary function which we

shall show has properties incompatible with the assumption that fr)(a) ^ s

algebraic. This programme i s carried out in the next h sections.

4. THE AUXILIARY FUNCTION

Throughout the remainder of t h i s chapter, we assume that the sequence

of matrices T , the sequence of functions F , and the point a sat isfy

a l l the requirements of Theorem 1 and we assume, in addition, that / n ( a )

i s algebraic. Let K be an algebraic number f ield of f in i t e degree, d
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(k)
say, over Q which contains all the coefficients T of the power

series expansions (5), all the coefficients of the polynomials appearing in

the system of functional equations CO, the coordinates of the point a ,

and the number /n(
a) • In the following work a , a , ... denote

positive constants depending only on the quantities introduced above and

ff.(e), C2(e), — denote positive constants which may in addition depend

on the parameter e . In particular, these constants do not depend on the

parameters k and p which will appear shortly.

For any m > 0 , we denote by P(m) the ring of polynomials in the

finitely many variables t with |u| < m and with coefficients in K .

LEMMA 1. There is an infinite sequence W of positive integers such

that the following 2 assertions for a polynomial p(t) in P(m) are

equivalent:

(i) p(x ) = 0 for infinitely many k in H ; and

(ii) p(i(k)) = 0 for all k in N .

Proof. Let H be the sequence of all positive integers and I, be

the ideal of P(m) comprising those polynomials p(t) such that

p(t ) = 0 for all k in W . If there is no polynomial p(t) in

P(m)\I such that p[i ) = 0 for infinitely many k in N , the

construction stops. If there is such a polynomial, p (t) say, then we

let W2 be the sequence of indices k in AL such that p. (T ) = 0 ,

and we let I2 be the ideal of P(m) comprising those polynomials p(t)

such that p(x ) = 0 for all k in U~ . Continuing the construction

in the obvious way, we obtain a strictly ascending chain I. c I c ... of

ideals of P(m) . Since P(m) is noetherian, the construction necessarily

terminates when we reach some ideal I- and the corresponding sequence W,

clearly has the property required in the lemma.

Let N(m) be some infinite sequence of positive integers with the
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Arithmetic properties of functions 27

property described in Lemma 1 and let I(m) be the ideal of polynomials of

P{m) satisfying the equivalent conditions (i) and (ii) of the lemma. In

general, there are many choices for N(m) , but having chosen one, we keep

it fixed for the rest of the discussion. Clearly, l(m) is a prime ideal

of P(m) and l{m) is not the whole of P(m) , since it does not contain

the constant polynomials. Thus P(m)/I(m) is a non-trivial integral

domain.

The next lemma gives the construction of the auxiliary function

Ep(z; t) .

LEMMA 2. For each positive integer p 2 e , there are p + 1

polynomials PQ(z; t), ..., P (z; t) which, considered as polynomials in

z , have degrees at most p in each variable and coefficients in

P(p ) , such that the function

(12) E (z; t) = I P.(z; t)F{z; t)J = Y p U ) s M

P j=o 3 y M

has the following 2 properties:

(i) all the coefficients p it) with |u| 5 hp are in

l[^±in) ; and

(ii) the function E [z; T ) is not identically zero for all

sufficiently large k in M(p1+1'") .

Proof. Set m = p1+1'n . We treat PQ(z; t), ..., P {z; t) as

polynomials in z whose coefficients are in P(m)/I(m) . With this

interpretation, the p + 1 polynomials P .{z; t) together possess
3

(p+l)"+ coefficients. Moreover, the p (i) defined by (12) are

polynomials in t and, for |u[ 5 m , we have p (t) in P(m)/I(m) . So

the requirement (i) of the lemma gives at most (%p +l) homogeneous

linear equations in the coefficients of the polynomials P .(z; t) . If P
3

is sufficiently large, the number of equations is less than the total
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number of coeff ic ients , so the system has a non- t r iv ia l solution in the

domain P(m)/I(m) . This achieves (i). The construction also ensures that

the polynomials P .[z; T ) are not a l l ident ical ly zero for each
3

suf f ic ien t ly large k in N{m) . This remark, together with the

hypothesis of strong transcendence of the sequence F , gives (ii).

5. AN UPPER BOUND FOR

LEMMA 3. Let Sfe, rfe , and x U be the quantities defined in (1).,

(2 ) , and (5)j and Ze£ # ( 3 ; t ) be the function constructed in Lemma 2.

Then

a- r{k)}\ < - c , r p 1 + l M

whenever p i c a n d k i s in W(p ) a«<2 sufficiently large compared

to p .

Proof. As in the proof of Lemma 2, we write

where the coefficients p ( t ) are polynomials in t whose degrees can be

bounded in terms of p alone. Let u be an n-tuple of non-negative

in t ege r s . By (3) and ( l l ) , we have

l o g and log

for any e > 0 and for al l sufficiently large k . Hence

log p IT J i(S7ctl

whenever k i s sufficiently large compared to p and p (T ] ^ 0 .

Thus the series for E \S,a; T is convergent for a l l k sufficiently
PI * )

l a rge compared to p and, by the construction of Lemma 2,

log t; T
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whenever p > a and k i s in W(p ) and sufficiently large compared

to p .

6. AN UPPER BOUND FOR \\E \S^a; Tv

Let p(s) = Y, P z be a polynomial with coefficients in the f ield

K . We say the polynomial q(z) = £ q z dominates p(s) , written

p(s) ̂  17(3) , if all the coefficients of q{z) are rational integers and

"Pu" ~ % fOr each y '

LEMMA 4. Let S, and r. ibe the quantities defined in (l) and (2).

Then

5ka)|| £ c7rfe (fe > 0) .

Proof. From the functional equations CO, we can write

/, (3) = GAz)/HAz) , where G, (z) and HAz) are regular in some

neighbourhood of the origin and satisfy

(13)

and in addition, GQ(a) and fiQ(a) are in K . From (6) , we obtain a

similar pair of equations for G-As,z) and H,{S,z] as forms in ^-(s)

and #0(s) 5 whose resul tant i s hAz)b>As.z) . . . A, [S, z) . Since a is

an admissible point , i t follows that Gp[S,oi] and ff, [s.a] cannot both be

zero. Set

We note that P(5,3) is a polynomial of degree at most "or, > s o

https://doi.org/10.1017/S0004972700022978 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022978


30 J.H. Loxton and A.J. van der Poorten

8 k(HO P[Skz) <P(z)

Now, from (10) and (13),

where we regard G-As^z] and H,[Sjz] as polynomials in z , G, -,(S, -.s)

and Hk -,{Sk -,z) • By induction on k and repeated use of the inequality

(lit), we obtain

Gk{skz), Hk{skz) <hokP{z)% k{GQ(z)+HQ(z)} k ,

where we have written

k h2 hk

Using (10) and recalling the assumption i 5 1 , we get

Gk[Skz] , Hk[Skz] < k{cgP(z) {GQ(z)+H0(Z)) }
 10 k

and finally,

lo&\\fk{ska)\\ 5 log||Cfc(sfca)|| + log\\Bk[ska)\\ S o ^ .

(k)
LEMMA 5. Let Sk, r . , and T be the quantities defined in (1),

(2)j and (5)., and let E (s; t) be the function constructed in Lemma 2.

For each e > 0 ,

whenever p i Cp(e) and k is sufficiently large compared to p .

Proof. Let P .(z; t) (0 5 j £ p) be the polynomials constructed in
3

Lemma 2 and set m = p . From Lemma 2, each P.(s; i) is a
3

polynomial in z of degree at most p and has coefficients which are

polynomials of degrees at most a = a(p) , say, in the variables t with
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Thus

P.{z; t) <||Pj.|| f j (l+8..)
P T T (l+*p)° (0 5 J 5 p)

On using (ll) and (lU), we see that, for each e > 0 ,

(15) log 1

whenever p i C_(e) and k is sufficiently large compared to p . The

assertion of the lemma follows at once from (15) and Lemma h.

7. COMPLETION OF THE PROOF OF THEOREM 1

Let d be the degree of the algebraic number field K described in

Section 4. If 3 is a non-zero algebraic number in K , we have the

fundamental inequality

(16) log|3| 5 -2d log||3|| ,

which follows easily from the observation that the norm of the algebraic

integer (den 3)3 has absolute value at least 1 (see, for example, [22],

page 6). We shall apply the fundamental inequality to the number

(fc)l
,a; T , but before doing so, we need the following lemma.

;

(k)LEMMA 6. Let 5fe, r^ , and xx ' be the quantities defined in ( l ) ,

(2), and (5)., and let E (z; t) be the function constructed in Lemma 2.

Then E \Sva; x '\ * 0 for infinitely many k in N(p1+1'W) .
PI K )

Proof. From (12), we have

(17) i

and, as in the proof of Lemma 3, the series is convergent whenever k is

sufficiently large compared to p . Choose such a k which is also in the

sequence N(p '") . Then, from (ii) of Lemma 2, the p (x ) are not

all zero. Since a is an admissible point, it satisfies (3) for some

suitable positive w-tuple n whose coordinates are linearly independent

over Q . We can therefore pick a non-zero term p (x ') [s..a) of the
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series (IT) such that

<v, n> = , n> : oj .

Here v depends on k ; but by the hypothesis of strong transcendence, v

takes only finitely many different values as k runs through W(p ) .

By restricting k to a suitable infinite subsequence, N say, we can

suppose that the index v defined above is independent of k . From the

construction of Lemma 2, p (t) is a polynomial in the variables t with

|p| — |v| + p and its degree in each t can be bounded in terms of

p alone. So by (11), for each e > 0 ,

providing p — Cj,(e) and k is sufficiently large compared to p . From

this estimate, together with (16) and (3), we obtain, for each e > 0 ,

v , n> < log v, n>

providing p > C (e) and k i s in W and i s sufficiently large compared

to p . Similarly, i f p (x ) [ST.0.) i s any other non-zero term of the

se r i e s (IT), then, under the same conditions,

l o g ii-v, n> .

How < p-V, r\) > 0 by the choice of v , so it follows that for all

sufficiently large k in N , the series (IT) has a single dominant term,

and this establishes the lemma.

We can now complete the proof of Theorem 1. In our previous

construction, we choose e < c. /2d and p > max{c , C"2(e)} , where a_,

c. , and Cj^z) are the constants appearing in Lemmas 3 and 5. By

combining the results of these lemmas, we then obtain

(18) log -2d

for all sufficiently large k in N(p ) . On the other hand,
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E iSiCt; x is an algebraic number in K and it is non-zero for
PI K J

infinitely many k in N(p + '") , by Lemma 6, so the inequalities (16)

and (18) are incompatible. This contradiction shows that /n(ct) is

transcendental and establishes the theorem.

3. Applications of the transcendence theorem

8. LACUNARY POWER SERIES

Uh
Let f{z) = Y, ai,2 b e a power series in the complex variable z

with a sufficiently rapidly increasing sequence of exponents u, . Cijsouw

and Tijdeman [3], generalising results of several previous authors, show

that if uyljr.-\l
uyl "* °°

 a n d t n e coefficients a, satisfy certain reasonable

conditions, then f{z) is transcendental for any algebraic number z

inside the circle of convergence. Analogous results involving series for

which the ratio uh+-\/
uil

 o f successive exponents does not tend to °° are

much harder to find and depend on special properties of the series. For

example, Schneider ([/$], page 35) applies the Thue-Siegel-Roth Theorem to

show that the Fredholm series

00 Ji
3(3) = I Z2

is transcendental if z = a/b is a non-zero rational number with

|s| < b ~ (e > 0) . However, as described in the introduction, Mahler

[9] proved much more, showing that g(z) is transcendental for any

algebraic z with 0 < \z\ < 1 . Recently, Mahler [J3, 74] has extended

his method to establish the transcendency of such series as

00 7j

Hz) = £ (fci)"1*2
h=o

for any algebraic z with 0 < |s| < 1 , but the allowable coefficients

are still heavily restricted. Our Theorem 1 yields a considerably wider

class of lacunary series which includes all Mahler's examples and

complements those of Cijsouw and Tijdeman [3].
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THEOREM 2. Let {uQ, w., . . . } be a strictly increasing sequence of

positive integers with " ^ | " ^ + 1 for h 2 0 . Let {a (z), aAz), . . . } be

a sequence of •polynomials whose coefficients all lie in a fixed algebraic

number field and denote the degree of <z, (2) by s, . Suppose that

8^ + log||a, || = o{ujj as h •*• °° . If a is an algebraic number with

0 < |a | < 1 and a, (a) is non-zero for infinitely many h , then the

number

I a. (a)a h

h=0 n

is transcendental.

We deduce that the hypotheses of the theorem imply that the function
Uh

/(s) = Y,aiAz)z i s a transcendental function. Of course, this

conclusion follows more directly from the Hadamard gap theorem (see [4],

page 231), which shows that f(z) has the circle |s| = 1 as a natural

•boundary.

Proof. By a suitable change of notation, we may suppose that

a, (a) t 0 for all h and that u = 1 . If the quotients ui,+1/
u
n
 a r e

unbounded, the assertion of the theorem follows from the results of Cijsouw

and Tijdeman (see [3], Section 5, Remark (v)), since the hypotheses of the

theorem ensure that there is no way of introducing brackets into the

u.
series £ av(a)a which will reduce it to a finite sum. We can therefore

assume that the quotients U
n+-J

uyi
 a r e bounded. We apply Theorem 1 to the

functions

4(2) = £ 0.(0)* h K {k > 0)
* h=k n

which satisfy the system of functional equations

/fc(«"* "k-X) = fk_Az) - ak_Au)z (fc > 1) .

To verify the strong transcendence of the functions fiSz) > consider, in

https://doi.org/10.1017/S0004972700022978 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022978


A r i t h m e t i c p r o p e r t i e s of f u n c t i o n s 35

the n o t a t i o n of Sect ion 2 , a polynomial

and suppose that the P .[z; x J are not a l l identical ly zero. Now
3

fAz) is a power series in which the exponents of the non-vanishing terms

can be expressed uniquely in the shape

K \ + ••• + H u h } l u k b - l - •?•- \ < ••• K h v 1 ~ e i < \ + 1 \ ] •

On taking h < h < ... < h with h - k sufficiently large, we get a

non-zero term of /r,(3) with a large gap in "both directions to the

nearest term of any of the series /V,(2) (0 — j — p) . From this remark

and the boundedness of u. ./u, , it follows that there is an integer m ,

independent of k , such that E[z; T J has a non-zero term with

exponent at most m . The remaining hypotheses of Theorem 1 are readily

checked and so /Q(
a) is transcendental.

By introducing functions of several complex variables, we can prove

u,
a-,z in

which the ratio u-u+-\/ui, °^ successive exponents is arbitrarily close to

1 .

THEOREM 3. Let {uQ, w,, . ••} be a sequence of positive integers

satisfying a linear recurrence u%,^Yl
 = ^T^u+n T_ + • • • + * uu wi-th h > 0 3

where the t . ( l - j - n) are non-negative integers, and suppose that the
3

characteristic polynomial X - t^X - - t is irreducible and that

its largest root, r say, is greater than 1 and greater than the

absolute values of all its other roots. Let {aAz), aAz), — } be a

sequence of polynomials in s = (z , , . . . , z J , whose coefficients all lie

in a fixed algebraic number field, and denote the degree of 3,(2) by
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s, . Suppose that s, + loglla, || = o[r ) as h -*•">. If

a = (a , . . . , a ) is an algebraic point of C*n such that

log|a | + r Iog|a2| + . . . + rn~ log|a | < o ,

and <h,(a) ? 0 for all h 3 then the number

•is transcendental.

In particular, if a is an algebraic number such that 0 < jot | < 1

and ai,(a
1> !> •••» i ) ^ ° f°r aH n > then the number

V (~ n -, 1 ~ «

is transcendental.

Proof. Set (MQ, W X

T =

0 0

1 0

0 0

0 0

. 0 t

We apply Theorem 1 to the functions

4(2) = I M

,. 0 t

,. 0

. 1

Ji-k

rt-1

(fc 2 o)

of the n complex variables s = (s , ..., s ) , which satisfy the system

of functional equations

As shown in the proof of Theorem 3 of [7], the sequence of matrices
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T = {T, T, ...} is coherent and it is easy to see that the neighbourhood

U(T) comprises the points z satisfying

Iog|a1| + r Iog|z2| + ... + r""
1 log|sj < 0 ,

and that the functions fi,(z) converge for z in U(T) . To show that

the functions /r.(3) a r e strongly transcendental, we proceed as in the

proof of Theorem 2, observing that /j,(3) > considered as a power series in

s , has large regular gaps. The application of Theorem 1 is now readily

justified and the assertions of the theorem follow.

The special linear recurrence of Theorem 3 can be replaced by a

recurrence of a much wider class. To see this, we note that Theorem 1 can

be applied in a similar way to functions of the more general shape

g (z) = I a (z)z hh k ,
* h=k n

where the matrices 5, belong to the associated sequence of a coherent

sequence of matrices. This example falls into the pattern of Theorem h

below.

9. MORE GENERAL FUNCTIONS WITH GAPS

In the previous section, we applied Theorem 1 to lacunary power

series. We now give applications to infinite products and continued

fractions with "gaps". For this purpose, we introduce the following

notation and hypotheses which are assumed in the statements of Theorems h

to 6 below.

Let T = {r., 21., } be a coherent sequence of n x n matrices.

Let {<)) (3), cj) (z), ...} be a sequence of rational functions of the n

complex variables z = [z., ..., 3 ) , each one being regular in some

neighbourhood of the origin and with all their coefficients lying in a

fixed algebraic number field. Denote by d, the maximum of the degrees of

the numerator and denominator of ij>̂ (s) and by ||(J>, || the maximum size of

the coefficients of <j>, (s) . Let S, and r, be the quantities defined
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by (1) and ( 2 ) . Assume t h a t there i s a p o s i t i v e constant c such t h a t

and that log||<J>,J| = o (r,) as h •»• °° . Finally, let a be an algebraic

point of U(T) such that the coordinates of the vector n determined by
(3) for z = a are linearly independent over Q .

THEOREM 4. Suppose <f^(°) = ° (h > 0) and consider the functions

K h=k

which satisfy the system of functional equations

If the fj.(z) are strongly transcendental, then the number /Q(a) is

transcendentaI.

THEOREM 5. Suppose (j>, (0) = 1 and ^[s.a] t 0 (h > 0) andr l r n n n

consider the functions

which satisfy the system of functional equations

^ M - *u( 2 ) \ i ( 2 ) {k -x) •
If the /^(^) ore strongly transcendental, then the nurriber / 0(c) is

transcendenta I.

THEOREM 6. Suppose <ta(°) = ° and <S>h[
s
h
a) * ° C» - °)

consider the functions

4 ( s ) = 1 + u - T T 7 .

which satisfy the system of functional equations
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If the fAz) are strongly transcendental, then the number /-(a) is
K 0

transcendentaI.

The proofs of the theorems axe straightforward applications of Theorem

1. To estimate the size of the coefficients of the power series expansions

of the continued fractions occurring in Theorem 6, we may use the

observations in Wall [23], pages UO-^3.

By specialising the schema of Theorems h and 5» we can obtain many

interesting examples, including some of the examples of Mahler [9], [13,

74], Mignotte [J5], and Schwarz [79]. We have not found any results in the

literature in the pattern of Theorem 6, although Scott and WaI I [27] have

considered the problem of deciding when continued fractions of this type

represent transcendental functions and have obtained some partial results.

10. THE SERIES £ [hu]zh AND RELATED EXAMPLES

As a final application of Theorem 1, we shall prove the following

theorem.

THEOREM 7. Suppose p(x) is a non-constant polynomial with

algebraic coefficients and w is a real irrational number. Then the power

series

(19) I p([hui])zh

h=l

takes a transcendental value for any algebraic number z with

0 < \z\ < 1 .

Special cases of the series (19) have been treated by various authors.

Thus Bb'hmer [7] showed that if g is a positive integer with g > 2 and

the partial quotients of the simple continued fraction expansion of u are

unbounded, then

1
h=l

i s a Liouville number and hence transcendental. His method has recently

been extended by WaI Ii sser [24] to cover the series
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oo

I n[hu])g-h ,
h=l

where {f{h)} is a non-constant periodic sequence of rational integers and

g is a positive integer with g > ma.x\f(h)\ . As a counterpart to

Bohmer's result, Mahler [9] proved that if w is a quadratic irrational,

then the series

(20) I [}m]zh

h=X

is transcendental for any algebraic s with 0 < \z\ < 1 . Much more is

known about the functional properties of these and related series. Such

questions were apparently first investigated by Hecke [6] who showed that

for any irrational 0) the series (20) has the unit circle as a natural

boundary. More generally, by combining the results of Newman [76] and

Petersson [77], we find that under the hypotheses of Theorem 7, the series

(19) has the unit circle as a natural boundary. The subsequent

developments in this area can be traced from the survey article of Schwarz

[20].

We follow Mahler in deducing Theorem 7 from the following result for a

related function of 2 complex variables.

THEOREM 8. Let u> be an irrational number with 0 < u> < 1 and let

P(x, y) be a polynomial with algebraic coefficients and not identically

zero. Denote the convergents of the simple continued fraction expansion of

oo by PjJq-i, (& - 0) . If a and 3 are algebraic numbers satisfying

q, p,
a3 t 0 3 a 3 * 1 {h > 1) , and log|a| + w log|g| < 0 ,

then

h
I I p[hv h)a ho

2

is transcendental.

We remark that the restriction 0 < (o < 1 is convenient, but clearly

not essential. So Theorem 7 follows from Theorem 8 with 3 = 1 and the

appropriate choice for the polynomial P(x, y) . We give the proof of
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Theorem 8 in the next section.

11. PROOF OF THEOREM 8

We require some notation from the theory of continued fractions, which

we normalise as in Cassels [2], Chapter 1. Suppose 0 < u) < 1 and denote

by {a^, a^, ...} the sequence of partial quotients of the simple

continued fraction of u . Set

so that (JJ = w and <^+1 = ^7 - a, . The convergents Pt./'Ji. o f

determined by

Po = 1 , <?0 = 0 ; P l = 0 , q± = 1 ;

and we have

Pfc+1 i l l ^ 1 1 1

We begin the proof by considering the function

which clearly converges in the domain

(23) I o g | s 1 | + to Iog |z 2 | < 0 .

Since u i s i r r a t iona l , any pair of posit ive integers [h , h ) sa t i s f i e s

just one of the inequali t ies 1 — h < h ui or 1 - h < h uT , so we have

(2k)

Next, for any integer a with 0 - a < u , we have
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(25)
h- —1

hla h h

£ Sn^o2 + I

a+1

Now (2U), (25), and a l i t t l e rearrangement gives

a +1
s 2

(26) (fc 2 1) ,

and by telescoping these functional equations together, ve get the formula

(27)

for all (s , s j satisfying (23). Formulae analogous to (26) and (27)

hold for the more general function

,(*!> *2;
 p) = 1 1 2

of Theorem 8, the extension being immediately effected by applying the

differential operator

to both sides of the preceding equations.

We must now consider 2 cases according as the partial quotients a..

are bounded or unbounded.

First Case. Suppose that the a, are bounded. From (22), this

implies that X (say) = lim inf q, -,/q-i, is finite and, in fact, X must

be irrational. Let N be a sequence of positive integers such that
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We introduce the matrices

Sk ~ TkTk-l •••

qk+i
 pk+l

qk pk

In order to apply Theorem 1, we must restrict k to the sequence N .

First, it is easy to check that the matrices S, for k in W arise from

a coherent sequence of matrices T' , say, whose elements are products of

suitable blocks of the T, , and that U(T') is the set of points defined

by (23). By combining the equations (26) in blocks corresponding to the

derivation of the sequence T' and applying the operator D(P) defined

above, we obtain a recursive system of functional equations linking the

functions F [z , z • P) for k in W . Since r[sh) ~ (u)+X)(?7 as
(JOT 1 2 K K

k -*• °° through N , these functional equations satisfy the requirements

(10) and (11) of Theorem 1. The first 2 conditions of the definition of an

qk Pkadmissible point assert that (3 , 2 ) satisfies (23) and that z z- # 1

for k i 1 . The third condition is implied by the first in this case,

since the vector i"| in (3) is proportional to (X, 1) . Finally, to

verify the strong transcendence of the functions fi.{z) = F [z , z ; Pj ,
K. uk 1 2

consider, in the notation of Section 2, the polynomial

The remarks of Section 10 show that A ( 2 ) cannot be an algebraic

function, so E[Z; T ) is not identically zero unless all the

P .[z; x ) are identically zero. From the definition of fAz) , we see
3 it

that

P[h , h ) if p= [h , frj and X S h2 < feu ,

otherwise.

It follows that if E[Z; X( ') is not identically zero and u is
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sufficiently close to to, , then the power series for E[z; T ) and

E[z; T ) agree up to the f irst non-vanishing term of E{z; T ) . By

the hypothesis of this case, the w, are bounded away from 0 and so the

usual sort of compactness argument gives the required strong transcendence

property. Thus a l l the hypotheses of Theorem 1 are fulfilled and the

desired conclusion follows.

Second Case. Suppose that the a, are unbounded. In this case,

Theorem 1 is inapplicable, but we can instead proceed more directly. We

suppose that F (a, B; P) is algebraic and we aim to reach a

contradiction, showing that this assumption is false. Let K be an

algebraic number field of finite degree, d say, over Q containing the

numbers a, 3 , and F (a, 3; P) , and al l the coefficients of the

polynomial P(x, y) . In the following, we denote by c , o~, . . .

positive constants depending only on the quantities just mentioned.

After applying the operator 0(P) to (27), we obtain a representation

for F [z , z ; P) of the shape

where the ^(3-i> s
2 ) a r e cer^aii1 rational functions of z s and

qh+l Ph+1z 2_ in which only the coefficients vary with the index h . We now

write

k-1 »
(28) y. = F (a, 0; P) - £ * (a, 6) = £ $. (a, 8) (k > l) .

K w h=l n h=k n

The first equality in (28) shows that the y. are algebraic numbers in K

and that

(29) log IIyk II < oxqk .
On the other hand, the second equality in (28) shows that
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(30) log|Yfe| S c2[qk+1 log|a|+pfe+1 log|e|) < -a3qk+1 ,

whenever k is sufficiently large, since log|a| + u log|$| < 0 . We can

qh Ph
express the right side of (28) as a power series in the variables a 3

with h > k . Again, since F [s , z ; P) is not an algebraic function,

the coefficients of each of the power series arising in this way do not all

vanish and so, for all sufficiently large k , each of these power series

has a single dominant term. It therefore follows, just as in Lemma 6, that

Y^ i- 0 for all sufficiently large k . Now by (22) and the hypothesis of

this case, there is an infinite sequence, N say, such that q, -,/q^ •* °°

as k -*••*> through N . From (29) and (30), we have

log|Yfe| < -id log|lYfcH

for all sufficiently large k in W . But the last inequality clashes

with the fundamental inequality (l6), giving the desired contradiction.

This completes the proof of Theorem 8.
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