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VB-Courant Algebroids, E-Courant
Algebroids and Generalized Geometry

Honglei Lang, Yunhe Sheng, and Aissa Wade

Abstract. In this paper, we first discuss the relation between VB-Courant algebroids and E-Courant
algebroids, and we construct some examples of E-Courant algebroids. Then we introduce the no-
tion of a generalized complex structure on an E-Courant algebroid, unifying the usual general-
ized complex structures on even-dimensional manifolds and generalized contact structures on odd-
dimensional manifolds. Moreover, we study generalized complex structures on an omni-Lie alge-
broid in detail. In particular, we show that generalized complex structures on an omni-Lie algebra
gl(V) @ V correspond to complex Lie algebra structures on V.

1 Introduction

The theory of Courant algebroids was first introduced by Liu, Weinstein, and Xu [17]
providing an extension of Drinfeld’s double for Lie bialgebroids. The double of a Lie
bialgebroid is a special Courant algebroid [17, 20]. Jacobi algebroids are natural ex-
tensions of Lie algebroids. Courant-Jacobi algebroids were considered by Grabowski
and Marmo [7], and they can be viewed as generalizations of Courant algebroids.
Both Courant algebroids and Courant-Jacobi algebroids have been extensively stud-
ied in the last decade, since these are crucial geometric tools in Poisson geometry and
mathematical physics. It is known that they both belong to a more general frame-
work, namely that of E-Courant algebroids. Indeed, E-Courant algebroids were in-
troduced by Chen, Liu, and the second author in [5] as a differential geometric object
encompassing Courant algebroids [17], Courant-Jacobi algebroids [7], omni-Lie al-
gebroids [4], conformal Courant algebroids [2], and AV -Courant algebroids [14]. It
turns out that E-Courant algebroids are related to more geometric structures such as
VB-Courant algebroids [15].

The aim of this paper is two-fold. First, we illuminate the relationship between
VB-Courant algebroids and E-Courant algebroids. Second, we study generalized
complex structures on E-Courant algebroids. Recall that a generalized almost com-
plex structure on a manifold M is an endomorphism J of the generalized tangent
bundle TM := TM & T*M that preserves the natural pairing on TM and such that
J? = —id. If, additionally, the \/—_l-eigenbundle of J in the complexification TM ® C
is involutive relative to the Dorfman (equivalently, the Courant) bracket, then J is said
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to be integrable, and (M, J) is called a generalized complex manifold. See [3,6,8,9,22]
for more details.

Given a vector bundle E > M, we consider its gauge Lie algebroid DE, i.e., the
gauge Lie algebroid of the frame bundle F(E). It is known that DE is a transitive Lie
algebroid over M and the first jet bundle JE is its E-dual bundle. In fact, ol(E) =
DE @ JE is called an omni-Lie algebroid [4], which is a generalization of Weinstein’s
concept of an omni-Lie algebra [25]. In particular, the line bundle case where E comes
from a contact distribution brings us to the concept of a generalized contact bundle.
To have a better grasp of the concept of a generalized contact bundle, we briefly review
the line bundle approach to contact geometry. By definition, a contact structure on an
odd-dimensional manifold M is a maximal non-integrable hyperplane distribution
H c TM. In a dual way, any hyperplane distribution H on M can be regarded as
a nowhere vanishing 1-form 6: TM — L (its structure form) with values in the line
bundle L = TM/H, such that H = ker 6. Replacing the tangent algebroid with the
Atiyah algebroid of a line bundle in the definition of a generalized complex manifold,
we obtain the notion of a generalized contact bundle. In this paper, we extend the
concept of a generalized contact bundle to the context of E-Courant algebroids.

The paper is organized as follows. Section 2 contains basic definitions used in the
sequel. Section 3 highlights the importance and naturality of the notion of E-Courant
algebroids. Explicitly, the fat Courant algebroid associated with a VB-Courant alge-
broid (see the definition of a VB-Courant algebroid below) is an E-Courant algebroid.
We observe the following facts:

* Given a crossed module of Lie algebras (m, g), we get an m-Courant algebroid
Hom(g, m) & g, which was given in [13] as a generalization of an omni-Lie alge-
bra.

¢ The omni-Lie algebroid ol(E) = DE & JE is the linearization of the VB-Courant
algebroid TE* @ T*E*. This generalizes the fact that an omni-Lie algebra is the
linearization of the standard Courant algebroid.

* For a Courant algebroid €, TC is a VB-Courant algebroid. The associated fat Cou-
rant algebroid JC is a T* M-Courant algebroid. The fact that JC isa T* M-Courant
algebroid was first obtained in [5, Theorem 2.13].

In Section 4, we introduce generalized complex structures on E-Courant algebroids
and provide examples. In Sections 5, we describe generalized complex structures on
omni-Lie algebroids. In Section 6, we show that generalized complex structures on the
omni-Lie algebra o[(V') are in one-to-one correspondence with complex Lie algebra
structures on V.

2 Preliminaries

Throughout the paper, M is a smooth manifold, d is the usual differential operator
on forms, and E — M is a vector bundle. In this section, we recall the notions of
E-Courant algebroids [5], omni-Lie algebroids [4], generalized complex structures
[8,9], and generalized contact structures [23].
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2.1 E-Courant Algebroids and Omni-Lie Algebroids

For a vector bundle E— M, its gauge Lie algebroid ® E with the commutator bracket
[-, - ]o is just the gauge Lie algebroid of the frame bundle F(E), which is also called
the covariant differential operator bundle of E (see [18, Example 3.3.4]). The corre-
sponding Atiyah sequence is

1) 0 — gl(E) —>DE L LM — 0.

In [4], the authors proved that the jet bundle JE can be considered as an E-dual bundle
of DE:

(2.2) JE = {v e Hom(DE,E) | v(®) = ® o v(idg) for all ® € gl(E) } .
Associated with the jet bundle JE, there is a jet sequence given by
(2.3) 0 — Hom(TM, E) = JE =5 E — 0.
Define the operator d:T'(E) — I'(JE) by
du(®):=0(u) forallu e T(E), 0el(DE).
An important formula that will be often used is
d(fu)=df®u+ fdu forallu el (E), feC®(M).

In fact, there is an E-valued pairing between JE and DE by setting

(2.4) (u,0)p =20(u) forall ye (JE)m, 0 € (DE)m,
where u € T(E) satisfies y = [u],,. In particular, one has
(4, D) = Dop(u) forall ® e gl(E), p € JE;
(9,0) =90(0) forally e Hom(TM, E), 0 € DE.

For vector bundles P, Q over M and abundle map p: P — Q, we denote the induced
E-dual bundle map by p*, i.e.,

p*:Hom(Q,E) — Hom(P,E), p*(v)(k)=v(p(k))fork e P,veHom(Q,E).

Definition 2.1 ([5]) An E-Courant algebroidisaquadruple (¢, [ -, - s, (+5 - ) 5> p)»
where X is a vector bundle over M such that (I'(X),[-, - ]x) is a Leibniz algebra,
(+»-)p:X ® X — E a nondegenerate symmetric E-valued pairing that induces an
embedding: X - Hom(X, E) via Y(X) = 2(X,Y),, and p: X - DE a bundle map
called the anchor, such that for all X, Y, Z € I'()K), the following properties hold:

(EC-) p[X, Y]oc = [p(X), p(Y)]os

(EC-2) [X, X]x :p*d(X,X)E;

(EC-3) p(X) (Y, Z)p = ([X, Y]sc, Z) + (Y, [ X, Z]5c) g 5

(EC-4) p*JE) c K, e, (p*(u),X)g = 3u(p(X)) forall u € JE;
(EC-5) pop =0.
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Obviously, a Courant algebroid is an E-Courant algebroid, where E = M x R, the
trivial line bundle. Similar to the proof for Courant algebroids ([20, Lemma 2.6.2]),
we have the following lemma.

Lemma 2.2  For an E-Courant algebroid X, one has
(X, p du]x =2p"d (X, p*du)g, [p"du,X]x =0 forall X eT(X), ueTI(E).
An omni-Lie algebroid, which was introduced in [4], is a very interesting example

of E-Courant algebroids. Let us recall it briefly. There is an E-valued pairing (-, - )
on OE & JE defined by

(2.5) @+ut+v)p=3({tt)g + (v,0)g) forall 0+u, t+veDEa JE.

Furthermore, I'(JE) is invariant under the Lie derivative £, for any 0 € I'(DE) that
is defined by the Leibniz rule:

(Lou, ) 20 (u,0"); — (1, [0,0"]9) forall yeT(JE), d' €T (DE).
On the section space T(DE @ JE), we can define a bracket as follows:
(2.6) [0+ ut+v]]2[0,t]o + Lov— Loy + du(r).

Definition 2.3 ([4]) 'The quadruple (DE®JE,[[-, -], (-, -)g,p)iscalledan omni-
Lie algebroid, where p is the projection from DE & JE to DE, (-, - )gand [[ -, - ]| are
given by (2.5) and (2.6), respectively.

We will denote an omni-Lie algebroid by ol(E).
2.2 Generalized Complex Structures and Generalized Contact Structures

The notion of a Courant algebroid was introduced in [17]. A Courant algebroid is
a quadruple (C,[[-, -], (-, ), ,p), where C is a vector bundle over M, [[-,-]] a
bracket operation on I'(C), (-, -), a nondegenerate symmetric bilinear form on C,
and p: C — TM a bundle map called the anchor, such that some compatibility condi-
tions are satisfied. See [20] for more details. Consider the generalized tangent bundle

TM:=TM & T"M.
On its section space T'(TM), there is a Dorfman bracket
27) [X+&EY+q]|=[X,Y]+Lxn—iydé forall X+& Y+yel(TM).
Furthermore, there is a canonical nondegenerate symmetric bilinear form on TM:
(2.8) (X+E,Y+n)+=%(f1(X)+5(Y))-
We call (TM,[[-,-]],(-, ), »prry) the standard Courant algebroid.

Definition 2.4 A generalized complex structure on a manifold M is a bundle map
J: TM — TM satisfying the algebraic properties:

32 =-id and (H(u)’ H(V))+ = (u,v)+
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and the integrability condition
[3(u), ()] = [ v] - 3( [3(u),v] + [u,d(v)]]) =0 forall u, v e I(TM).
Here, (-, -), and [[ -, - ]] are given by (2.8) and (2.7), respectively.

See [8, 9] for more details. Note that only even-dimensional manifolds can have
generalized complex structures. In [23], the authors give the odd-dimensional ana-
logue of the concept of a generalized complex structures extending the definition
given in [10]. We now recall the definition of a generalized contact bundle from [23].
A generalized contact bundle is a line bundle L — M equipped with a generalized con-
tact structure, i.e., a vector bundle endomorphism J: ©L & JL - ©L & JL such that
e Jis almost complex, i.e., J* = —id;

o Jis skew-symmetric, i.e.,

(Ja,B)L +(a,3B) =0 foralla,Be (DL JL),
 Jis integrable, i.e.,

[T, IB]] - [, Bl = I[[Iex, B]] - I[[,IB]] =0 foralla, B e (DL & JL).

Let (L — M, J) be a generalized contact bundle. Using the direct sum ol(L) = DL &
JL and the definition, one can see that

(¢ T
j_(wb —¢T))

where ] is a Jacobi bi-derivation, ¢ is an endomorphism of ® L compatible with J, and
the 2-form w: A*DL — L and its associated vector bundle morphism wy: DL — JL
satisty additional compatibility conditions [23].

3 VB-Courant Algebroids and E-Courant Algebroids

In this section, we highlight the relation between VB-Courant algebroids and
E-Courant algebroids and give more examples of E-Courant algebroids.
Denote a double vector bundle
D B
A l \L qB
A

- M
qa
with core C by (D;A,B;M). The space of sections I'5(D) is generated as a
C°*(B)-module by core sections I';(D) and linear sections T3 (D). See [19] for more
details. For a section c: M — C, the corresponding core section ¢': B — D is defined
as

B
 —

cT(bm) =5bm +ac(m) foral meM, by, €B,,
where * means the inclusion C — D. A section & B — D is called linear if it is a bundle
morphism from B - M to D — A over a section a € T(A). Given y € T(B* ® C),
there is a linear section §: B — D over the zero section 0: M — A given by

¥(bm) = 0p,, +4 ¥(bm).
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Note that T4 (D) is locally free as a C*° (M )-module. Therefore, T(D) is equal to
I'(A) for some vector bundle A - M. Moreover, we have the following short exact
sequence of vector bundles over M:

(3.1) 0—B"®@C—A— A—0.

Example 3.1 Let E be a vector bundle over M.

(i) Thetangentbundle (TE; TM, E; M) is a double vector bundle with core E. Then
A is the gauge bundle DE and the exact sequence (3.1) is exactly the Atiyah
sequence (2.1).

(ii) 'The cotangentbundle (T*E; E*, E; M) is a double vector bundle with core T* M.
In this case, A is exactly the jet bundle JE* and the exact sequence (3.1) is indeed
the jet sequence (2.3).

Definition 3.2 ([15]) A VB-Courant algebroid is a metric double vector bundle

E—2-~B
il
A T M 5
with core C such that E — B is a Courant algebroid and the following conditions are
satisfied:

(i) The anchor map ®:[E — TB is linear; that is,
O: (E; A,B;M) — (TB; TM, B; M)

is a morphism of double vector bundles.
(ii) The Courant bracket is linear; that is,

[T5(E). T5(E)] € T(E), [[T5(E),I5(E)]) € T5(E), [T5(E).T5(E)] = 0.

For a VB-Courant algebroid E, we have the exact sequence (3.1). Note that the
restriction of the pairing on E to linear sections of E defines a nondegenerate pair-
ing on A with values in B*, which is guaranteed by the metric double vector bundle
structure; see [11]. Coupled with the fact that the Courant bracket is closed on linear
sections, one gets the following result.

Proposition 3.3 ([11]) The vector bundle A inherits a Courant algebroid structure
with the pairing taking values in B*, which is called the fat Courant algebroid of this
VB-Courant algebroid.

Alternatively, we have the following proposition.

Proposition 3.4  For aVVB-Courant algebroid (E; A, B; M), its associated fat Courant
algebroid is a B*-Courant algebroid.
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Example 3.5 (Standard VB-Courant algebroid over a vector bundle) For a vector
bundle E, there is a standard VB-Courant algebroid

TE*® T"E* ——E*

L

TM®E —M

with base E* and core E* @ T*M — M. The corresponding exact sequence is given
by

0—gl(E) @ T"M®E — A — TM®E — 0.

Actually, by Example 3.1, the corresponding fat Courant algebroid A here is exactly the
omni-Lie algebroid o[(E) = ®E & JE. So the omni-Lie algebroid is the linearization
of the standard VB-Courant algebroid.

Example 3.6 (Tangent VB-Courant algebroid) The tangent bundle T'C of a Courant
algebroid € - M

TC ——TM
C——M

carries a VB-Courant algebroid structure with base TM and core ¢ - M. The asso-
ciated exact sequence is

0—T"M®C—C— C—0.

Actually, the fat Courant algebroid € is J€, which is a T* M-Courant algebroid by
Proposition 3.4. So we get that on the jet bundle of a Courant algebroid, there is a
T* M-Courant algebroid structure. This result was first given in [5].

A crossed module of Lie algebras consists of a pair of Lie algebras (m, g), an action
D> of g on m and a Lie algebra morphism ¢:m — g such that

¢(&) > =[&nlm,  P(x >8§) =[x, 6(8)]g

forallx eg, & nem.
Given a crossed module, there is an action p: g x g* - X(m*) of the natural qua-
dratic Lie algebra g x g* on m* given by

plu+a)=up-+¢*a,

where u > € gl(m) is viewed as a linear vector field on m* and ¢*« € m* is viewed as
a constant vector field on m*. Note that this action is coisotropic. We get the action
Courant algebroid [16] (g x g*) x m* over m* with the anchor given by p and the
Dorfman bracket given by

(32) [61, 62] = Lp(el)el — Lp(ez)el + [61, ez]gxg* + p*(del, €2>.
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foranye;, e, € T((gxg*)xm*). Here, de, € Q'(m*, gxg*) is given by Lie derivatives
(de)(X) = Lxe; for X € X(m™). Moreover, it is a VB-Courant algebroid

(grg*)xm" ——=m*

]

g *

with base m* and core g*. See [15] for details. The associated exact sequence is
0 — m®g*~Hom(g,m) — A— g — 0.
Since the double vector bundle is trivial, we have A = Hom(g, m) @ g.

Moreover, applying (3.2), we get the Dorfman bracket on Hom(g, m) & g.
Proposition 3.7  With the above notation, (Hom(g,m) ® g,[-,-],(*> - Jm>p = 0)
is an m-Courant algebroid, where the pairing (-, - ) is given by

(A+u,B+v)m = 3(Av + Bu),
and the Dorfman bracket is given by

[u,v] = [u Vg

[A.B] = Ao ¢oB-Bogo A
[A,v] = Aoado—ad1 oA+ D Av+ ¢(Av);
[v,A] = ad} oA - Ao ad?

for all A,B € Hom(g, m),u,v € g. Here, ad’ ¢ gl(g) and ad, € gl(m) are given by
ad)(u) = [v,u]y and ad)(a) = v > a, respectively, and - > Av € Hom(g, m) is defined
by (- > Av)(u) =u > Av.

Proof By (3.2), it is obvious that [u,v] = [u,v],. For A,B € Hom(g,m),v € g,
applying (3.2), we find
[A,B] = LoayB-L,3A= p(A)B-p(B)A=AopoB—Bog¢oA.

Observe that £,,yA = adl(A) = ad} oA and [A, v]gugs = —(ad’)?A = Aoad). We
have

[A,v] = L)V = L) A+ [A, V] gugr + p"(dA,v)
=0-ad oA+ Acad)+ DAV + ¢(Av),
where we have used
p*(dA,v)(u+B) =p(u+B)(Av) =u > Av + B(¢(Av)).
Finally, we have
[v,A] = L,)A = Lpayv + [V, Al gugr + p"(dv, A)
=ad! oA +0-Aocad+0.
This completes the proof. u
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Remark 3.8 This bracket can be viewed as a generalization of an omni-Lie algebra.
See [13, Example 5.2] for more details.

More generally, since the category of Lie 2-algebroids and the category of
VB-Courant algebroids are equivalent (see [15]), we get an E-Courant algebroid from
a Lie 2-algebroid. This construction first appeared in [11, Corollary 6.9]. Explicitly, let
(Ag®A_1,pay byl =19 +1},13) be a Lie 2-algebroid. Then we have an A_;-Courant
algebroid structure on

Hom(Ag, A_;) & Ay,
where the pairing is given by

(D+u,D" +v)a_, = 3(Dv+D'u)
for D, D’ e T(Hom(Ag,A_1)) and u, v € T(Ap), the anchor is
p:Hom(Ag, A1) ®Ag > DA, p(D+u)=Dol+1y(u,-),
and the Dorfman bracket is given by

[, v] = 19 (u,v) + I3 (u, v, -),

[D,D']=DohoD -D'oljoD,
[D,v] = —l;(v,D(-)) +D(l§(v, )) + l;( -,D(V)) +L(D(v)),
[v.D]=L(v,D(-)) - D(L(v,-)).

Generalized Complex Structures on E-Courant Algebroids

In this section, we introduce the notion of a generalized complex structure on an
E-Courant algebroid. We will see that it unifies the usual generalized complex struc-
ture on an even-dimensional manifold and the generalized contact structure on an
odd-dimensional manifold.

Definition 4.1 A bundle map J: X — X is called a generalized almost complex
structure on an E-Courant algebroid (I, [-, - ]s, (-, - ), p) if it satisfies the alge-
braic properties

(4.1) J?=-1 and (3(X),d(Y));=(X,Y),.

Furthermore, J is called a generalized complex structure if the following integrability
condition is satisfied:

(42)  [3(X),d(V)]x - [X, Y] = I([3(X), Y]oc + [X,3(Y) ) =0,
forall X, Y € I'(X).

Proposition 4.2 Let J:X — X be a generalized almost complex structure on an E-
Courant algebroid (X, [+, - |x, (-, - )g»p). Then we have J*|x = —4.

Proof By (4.1),forall X,Y e I'(X), we have
3" (A(Y))(X) =3(Y)(3(X)) =2(3(X),d(Y))g = 2(X,Y) = Y(X).
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Since X € I'(X) is arbitrary, we have
J°(d(Y))=Y forall YeTI(X).

Forany Z e T(X),let Y = -J(Z). By (4.1), we have Z = J(Y). Then we have
3(2)=3"(0(Y)) =Y = -3(2),

which implies that J* |5 = —J. [

Remark 4.3  Generalized complex structures on an E-Courant algebroid
(%[5 ]%> (> )g,>p) are in one-to-one correspondence with Dirac sub-bundles
S ¢ X ® C such that K ® C = S @ S. By a Dirac sub-bundle of X, we mean a sub-
bundle S c X that is closed under the bracket [ -, - ]% and satisfies S = S*. The pair
(S, S) is an E-Lie bialgebroid in the sense of [5].

Remark 4.4 Obviously, the notion of a generalized contact bundle associated with
L, which was introduced in [23], is a special case of Definition 4.1, where E is the line
bundle L. In particular, if E is the trivial line bundle L° = M x R, we have

DL°=TMoR, JL°=T"MeoR.

Therefore, E'(M) = DL° @ JL°. Thus, a generalized complex structure on an E-Cou-
rant algebroid unifies generalized complex structures on even-dimensional manifolds
and generalized contact bundles on odd-dimensional manifolds

Example 4.5 Consider the E-Courant algebroid A* ® E® A given in [5, Example 2.9]
for any Lie algebroid (A, [ -, -]4,a) and an A-module E. Twisted by a 3-cocycle © ¢
T'(A3A*, E), one obtains the AV-Courant algebroid introduced in [14] by Li-Bland.
Consider J of the form Jp = (72> 3 ), where D € gl(A) and Rp: A* ® E > A* ® E
is given by Rp(¢) = ¢ o D. We get that J is a generalized complex structure on the
E-Courant algebroid A* ® E @ A if and only if D is a Nijenhuis operator on the Lie
algebroid A and D* = -1.

Actually, D*> = -1 ensures that condition (4.1) holds. The Dorfman bracket on
X =A"® E® Ais given by

[u+ D, v+ W] =[u,v]a+ L, ¥ - L, 0+ p d®(v)

for all u,v € T(A), ®,¥ € I'(A* ® E), where p*:JE - A* ® E is the dual of the

A-action p: A — DF on E. Then it is straightforward to see that the integrability
condition (4.2) holds if and only if D is a Nijenhuis operator on A.

Any generalized complex structure on a Courant algebroid induces a Poisson
structure on the base manifold (see e.g., [1]). Similarly, any generalized complex struc-
ture on an E-Courant algebroid induces a Lie algebroid or alocal Lie algebra structure
([12]) on E .

Theorem 4.6 Let J: K — X be a generalized complex structure on an E-Courant
algebroid (I, [ -, - 1%, (-, - )g»p). Define a bracket operation | -, - |g:T(E) AT(E) —
I(E) by

(4.3)  [w,v]p22(p du,p’dv)y =(podop”)(du)(v) forallu,vel(E).
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Then (E,[-, - |g,jopodop* od) is a Lie algebroid when rank(E) > 2 and (E, [ -, - |r)
is a local Lie algebra when rank(E) = 1.

Proof The bracket is obviously skew-symmetric. By the integrability of J, we have
[3(p"du), 3(p" dv)]ac - [p"du, p™dlv]sc
= 3([3(p*du). p* vl + [pelu, 3(p* ) ac) =O0.

Pairing with p*dw for w € T'(E), by (EC-3) in Definition 2.1 and the first equation in
Lemma 2.2, we have

([3(p"du),d(p"dv)]ax, p"dw) g
=p(dp"du) (3p"dv,p*dw)y - (dp"dv, [dp"du, pdw]x )
=2(p*d (dp*dv,p dw), ,Hp*du)E -2(dp*dv,p*d (3p” du, p*dw)E)E
1 1
- E[u, [v,wle], - E[V, [, w]g] -
By (EC-1) and (EC-5) in Definition 2.1, we have
( [p*du,p*dv]x,p*dw)E =0.
Finally, using Lemma 2.2, we have
([a(p"du), p*av]sc + [p*du, I (p" dv)]ac, dp*alw)
=2(p*d (dp"du,p * dv)E ,dp*dw) 10
1
= E[w, [u,v]E]E.

Thus, we get the Jacobi identity for [ -, - |g. To see the Leibniz rule, by definition, we
have

[, fv]e = flu,v]e +3pdp™d(u)(f)v.

So it is a Lie algebroid structure if and onlyif jo po Jo p* od: E — TM is a bundle
map, which is always true when rank(E) > 2 (see the proof of [4, Theorem 3.11]). M

5 Generalized Complex Structures on Omni-Lie Algebroids

In this section, we study generalized complex structures on the omni-Lie algebroid
ol(E). We view ol(E) as a sub-bundle of Hom(ol(E), E) by the nondegenerate E-val-
ued pairing (-, - ), i.e.,

e2(e1) 22 (e, e2) forall ey, e, eT(0l(E)).

By Proposition 4.2, we have the following corollary.

Corollary 5.1 A bundle map J: ol(E) — ol(E) is a generalized almost complex struc-
ture on the omni-Lie algebroid ol(E) if and only if the following conditions are satisfied:

F=-id,  3oyr) = 3.
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Since ol(E) is the direct sum of ®F and JE, we can write a generalized almost
complex structure J in the form of a matrix. To do that requires some preparation.

Vector bundles Hom(A*DE, E) 55 and Hom(AFJE, E) o are introduced in [5,
21] to study deformations of omni-Lie algebroids and deformations of Lie algebroids
respectively. More precisely, we have

Hom(A*DE, E) 55 = {y € Hom(A*DE, E) [ Im(yy) c JE} , (k>2),
Hom(A*JE, E)pg = {0 e Hom(A*JE,E) | Im(d') c DE},  (k>2),
in which py: A¥DE - Hom(DE, E) is given by
(01,5 0k1) (V) = (D15, 041, 0)  for 0q,...,0k € DE,
and 0! is defined similarly. By (2.2), for any y € Hom(AFDE, E) 5z, we have
(5.1) p(01,..., 061, @) = Do u(dy,...,0-1,idg).

Furthermore, (I'(Hom(A*®E, E);g), d) is a subcomplex of (I'(Hom(A*DE, E), d),
where d is the coboundary operator of the gauge Lie algebroid ® E with the obvious
action on E.

Proposition 5.2  Any generalized almost complex structure J on the omni-Lie alge-
broid ol(E) must be of the form

]
(5.2) g- (i—i _}T\,)

where N:©DE — DE is a bundle map satisfying
N*(JE) c JE, meT(Hom(A’JE,E)pg), o€l ( Hom(A*DE,E);5)
such that the following conditions hold:
oo, +N*=-id, Nornl=rn'oN*, ooN=N"oq,.

Proof By Corollary 5.1, for any generalized almost complex structure J, we have
J*|oi(g) = —d. Thus, J must be of the form

_(N ¢
(¥ 4)

where N:©DE — DE is a bundle map satisfying N*(JE) c JE, ¢:JE - DE and
v:OE — JE are bundle maps satisfying

= (¢, ) = (W 0(M)g> (¥ (@), )= (@ y(1))-

Therefore, we have ¢ = 7 for some 7 € T(Hom(A?JE, E)og), and v = oy for some
o € T(Hom(A*DE, E) ;). This finishes the proof of the first part. As for the second
part, it is straightforward to see that the conditions follow from the fact that J* = —id.

|

Remark 5.3 A line bundle L satisfies JL = Hom(®L, L) and ©L = Hom(JL, L).
Therefore, the condition N*(JL) c JL always holds.
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Theorem 5.4 A generalized almost complex structure J given by (5.2) is a generalized
complex structure on the omni-Lie algebroid o[(E) if and only if the following hold:

(i)  m satisfies the equation

(5.3) ([, v]x) = [ (), 7' (v)]o  forall u,v e T(JE),
where the bracket [ -, - | on T(JE) is defined by
(5.4) (4 V] 2 Ly — Langypt —d (7 (), v) .

(ii) mand N are related by the formula

(5.5) N ([ v]n) = Laiuy (N (v) = L o) (N7 () — dr(N" (u), v).

(iii) N satisfies the condition

(5.6) T(N)(,t) = ' (ignedo)  foralld,t e T(DE),
where T(N) is the Nijenhuis tensor of N defined by
T(N)(2,6) = [N(2), N()]o - N(IN(@), t]o + [, N(8)]o - N[, t]o).

(iv) N and o are related by the following condition

(5.7) do(N(0),t,€) +do(0,N(t),€) + do(0,t, N(¢)) = don (0, . €),
forallv,t,€ e T(DE), where oy € T(Hom(A*DE, E) i) is defined by on (0, t) =
a(N(0),t).

Proof Consider the integrability condition (4.2). In fact, there are two equations
since T'(ol(E)) has two components I'(DE) and I'(JE). Firstlet e; = y, e; = v be
elements in T'(JE); then we have J(u) = ¥ () - N* (), (v) = n*(v) - N*(v) and
[[#,v]] = 0. Therefore, we obtain
[ (1) - N* (), 7(0) - N ()]
A ()~ N* ()] + 7t () - N ()])
= [7 (1), 7 (V)]0 = 7 (Lar(uyV = imr (v dpt) + N* (Lt )V = ey )
- Sn“(y)N*(v) + iﬂu(v)dN*(ﬂ) =0.
Thus, we get conditions (5.3) and (5.5).
Thenlet e; =9 € T(DE) and e, = p € T(JE); we have J(e;) = N(d) + 0;(d) and
d(ey) = m'(u) — N* (). Therefore, we obtain
IN) + 0,(2), (1) ~ N* ()] - [0, ]
~3(ING) + @), ] + [0.74 ) - N* ()]
= [N(@), 7 ()]0 ~ N[0, 7" (1)]o — 7* ( Enoypt — LN ()
+ N (En@yp —LoN" (1)) = En@)N™ () = i (wy oy (0)
- Lop - a0, 7 (u)]o = 0.
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Thus, we have

(5.8) [N(@), 7" ()]0 = N[0, 7' ()]0 + 7' (Ly oy = CoN" (1)),
(5.9 N"(En@yt—LoN" (1)) = En)N" (1)
+ i) doy(0) + Lop + 03[0, ﬂ“(y)]@.

We claim that (5.8) is equivalent to (5.5). In fact, applying (5.8) to v € T (JE) and (5.5)
to 0 € [(DE), we get the same equality.

Next let e; = 9 and e, = t be elements in I'(DE); we have J(e;) = N(?) + 04(d)
and J(ez) = N(t) + 0y(t). Therefore, we have

[IN(?) +04(2), N(t) + oy () ]]
= [0.t]o - J(IN(D) + 0y(2), t]] + [0, N(t) + oy (t)]])
= [N(2),N(t)]o - [0,t]o - N([N(2), t] + [0, N(t)]0) - 7' (£o04(t)
- iidoy(9)) + £x(0) 0y (1) — in(doy () = o4 ([N(0), tlo + [0, N(H)]0)
+N*(Lo0y(8) — idlay ()
=0.

Thus, we have

(5100 [N(2),N()]o - [0,t]o - N([N(2),t]o + [0, N(t)]o) =
t (Lo0y(t) — igdoy(0)),
1) ([N tlo + [0, N(D)]o) - Ln(o) 0u(t) + iy ey (2) =

N*(,an'h(f) - itdO'h(D)).

We claim that (5.9) and (5.10) are equivalent. In fact, applying (5.9) and (5.10) to
te T (DE) and p € I'(JE), respectively, we get the same equality

(IN@),N(®)]s - [0, ]o - N([N@),t]o + [0, N()]n), ),
=0 (m'oy (), ), + {o4(). [0, ' p]o) , + {0 (0), 7* (), — 7' () (04 (0), )
~{0 (@), [ 7' (W)]n), -

By the equality 7! o g, + N2 = —id and (5.10), we have

[N(®),N(t)]o + N*[0,t]o - N([N(0), t]o + [0, N(t)]o) =
' (Lo0y(t) - icdoy (2) - 00, t]0),

which implies that T(N) (9, t) = n* (ipa¢do). Thus, (5.10) is equivalent to (5.6).
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Finally, we consider condition (5.11). Acting on an arbitrary ¢ € ['(DE), we have

N(@) (0, (1), &) = {03(1), [N(2), t]) g + (03 (£), [N (), t] 2} = N(1) (0 (2), E)
+8(04(0), ) + (04(2), [N (1), t]0 ) + (04 (), [0, N(t) ]2 )
+0(0y(1), N(8)) — {03 (1), [0, N(£) ]2 ) s — (03 (2), N(¥))

+ N(8) (0,(0), t) + {03(0), [6, N() ] o)
=do(N(D),t,¢) +ta(N(D),t) —ta(N(),t) + o([t, t]o, N (D))
+do(9,N(t),8) —00(N(t),8) — ([0, t]o, N(t))
+do(0,t, N(8)) + o ([0, t]o, N(¥))
=0.
Note that the following equality holds:

(0 N(1)) = ~ {0, (N(6), )5 =~ (N* (6,(),2) 5
= —(0y(1), N(2)) = 0(N(0), 1).
Therefore, we have
(indo) (0,4, ¢) = don (0,4, 8),
which implies that (5.11) is equivalent to (5.7). [ |
Remark 5.5 Let{= ( 1\; ) be a generalized complex structure on the omni-Lie

algebroid o[(E). Then 7 ‘Satisfies (5.3). On one hand, in [4], the authors showed that
such 7 will give rise to a Lie bracket [ -, - |z on ['(E) via

[u,v]g = o' (du)(v) forall u,v e T(E).

On the other hand, by Theorem 4.6, the generalized complex structure J will also
induce a Lie algebroid structure on E by (4.3). By the equality

= podop”,
these two Lie algebroid structures on E are the same.

Remark 5.6 Recall that any b € T(Hom(A*DE, E);g) defines a transformation
eb:0l(E) - ol(E), defined by

)= ) )

Thus, e’ is an automorphism of the omni-Lie algebroid ol(E) if and only if db = 0.
In this case, e’ is called a B-field transformation. Actually, an automorphism of the
omni-Lie algebroid ol(E) is just the composition of an automorphism of the vector
bundle E and a B-field transformation. In fact, B-field transformations map general-
ized complex structures on o[( E) into new generalized complex structures as follows:

b (id 0 d 0
J ‘(bn id)°3°(—bh id)'
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Example 5.7 Let D:E — E be a bundle map satisfying D? = —id. Define Rp: DE —
DEby Rp(d) =00 Dand D:JE - JE by D(du) = d(Du) for u € T(E). Then

_[(Rp O
=% %)
is a generalized complex structure on ol(E). In fact, since
(Rp(du),0) = (du,00 D), =0(D(u)) = <5(du),D>E ,

we have R}, = D. It is straightforward to check that the Nijenhuis tensor T(Rp)
vanishes, and the condition D? = —id ensures that R% = —id.

Let 7 € I'(Hom(A2JE, E)pg) and suppose that the induced map n*: JE - DE is
an isomorphism of vector bundles. Then the rank of E is 1 or is equal to the dimension

of M. We denote by (7*)~! the inverse of 7! and by 77! the corresponding element in
I'(Hom(A*DE, E);E).

Lemma 5.8  With the above notation, the following two statements are equivalent:

(i) 7 e T(Hom(A*JE, E)og) satisfies (5.3);
(i) 7t is closed, i.e., dn! = 0.

Proof The conclusion follows from the following equality:
(! ([ v]) = [ (), T (W)]0, y) , = —dr™ (7 (), 7 (v), 7 (1)),
forall u, v, y € T(JE), which can be obtained by straightforward computations. M
Let (E,[-, - ]g, a) be a Lie algebroid. Define 7*: JE - DE by
(5.12) m(du)(-) = [u, -]g forall ueT(E).

Then 7* satisfies (5.3). Furthermore, (JE,[-, - ]j o 7*) is a Lie algebroid, where
the bracket [ -, - ] is given by (5.4). By Theorem 5.4 and Lemma 5.8, we have the
following corollary.

Corollary 5.9 Let (E,[-,]g,a) be a Lie algebroid such that the induced map
' JE > DE isan isomorphism. Then

0 !
=L )
is a generalized complex structure on ol(E).
Example 5.10 Let (TM,[-, ]rm,id) be the tangent Lie algebroid. Define

m:J(TM) — D(TM) by n*(du) = [u, -]ry. Then 7' is an isomorphism. See
[4, Corollary 3.9] for details. Then

0 '
(b )

is a generalized complex structure on the omni-Lie algebroid ol(TM).

https://doi.org/10.4153/CMB-2017-079-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2017-079-7

604 H. Lang, Y. Sheng, and A. Wade
Example 5.11 Let (M, w) beasymplectic manifold and let (T* M, [ -, - ]o1, (0*) ™)
be the associated natural Lie algebroid. Define n*: J(T*M) — D (T*M) by

mt (du) = [u - ot

which is an isomorphism (see [4, Corollary 3.10]). Then

0 !
=L )
is a generalized complex structure on the omni-Lie algebroid ol(T* M).

To conclude this section, we introduce the notion of an algebroid-Nijenhuis struc-
ture, which can give rise to generalized complex structures on the omni-Lie algebroid
ol(E).

Definition 5.12 Let (E,[-, - ]g, a) be a Lie algebroid, let N: OE — ©E be a Nijen-
huis operator on the Lie algebroid (DE, [ -, - |o,J) satisfying N*(JE) c JE, and let
m: JE — ©OE be given by (5.12). Then N and 7 are said to be compatible if

Noa!=a'oN* and C(m,N)=0,
where
C(mN) (> v) 2 [t v]my = ([N* (), V] + [, N* (V)] = N* [t v]x)»
for all u, v € T(JE). Here, my € T(Hom(A2JE, E) o) is given by
nn(u,v) = (v,Nn“(y))E forall y,v e I(JE).
If N and 7 are compatible, we call the pair (7, N) an algebroid-Nijenhuis structure on
the Lie algebroid (E, [ -, - |g, a).

The following lemma is straightforward, so we omit the proof.

Lemma 5.13 Let (E,[-, - |g,a) be a Lie algebroid, let n be given by (5.12), and let
N:DE — DE be a Nijenhuis structure. Then (7, N) is an algebroid-Nijenhuis structure
on the Lie algebroid (E,[ -, - |g,a) ifand only if N o ' = it o N* and

N [ v]n = Lr(uyN"(v) = Ly N* () = dr(N*(u), v).
By Theorem 5.4 and Lemma 5.13, we have the following theorem.

Theorem 5.14 Let (E,[-, - |g,a) be a Lie algebroid, let w be given by (5.12), and let
N:DE — DE be a Nijenhuis structure. Then the following statements are equivalent:
(i)  (m, N) is an algebroid-Nijenhuis structure and N* = —id;

(i) d=( N _’;\3* ) is a generalized complex structure on the omni-Lie algebroid ol(E).

Remark 5.15 An interesting special case is that where E = L is a line bundle. Then
(7, N) becomes a Jacobi-Nijenhuis structure on M. Jacobi-Nijenhuis structures were
studied by L. Vitagliano and the third author in [24]. In this case, 7 defines a Jacobi bi-
derivation { -, - } of L (i.e., a skew-symmetric bracket that is a first order differential
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operator, hence a derivation, in each argument). Moreover, this bi-derivation is com-
patible with N in the sense that 7 o N* = Nozt and C(7, N) = 0. It defines a new Ja-
cobi bi-derivation { -, - } 5. Furthermore, ({ -, - }, {-, - }~) is a Jacobi bi-Hamiltonian
structure; e, {-, -}, {+, -}y and {-, -} + {-, - } 5 are all Jacobi brackets.

6 Generalized Complex Structures on Omni-Lie Algebras

In this section, we consider the case where E reduces to a vector space V. Then we
have

DV =gl(V), JV=V.
Furthermore, the pairing (2.4) reduces to
(A, u)y, =Au forall Aegl(V), ueV.
Any u € V is a linear map from gl(V) to V,
u(A) =(A,u), = Au.

Therefore, an omni-Lie algebroid reduces to an omni-Lie algebra, which was intro-
duced by Weinstein in [25] to study the linearization of the standard Courant alge-
broid.

Definition 6.1 An omni-Lie algebra associated with V is a triple
(g(Vye Vv, [--1 ()y),
where (-, ), is a nondegenerate symmetric pairing given by
(A+u,B+v)y = 3(Av+Bu) forallA,Begl(V), u,veV,
and [[ -, - ]] is a bracket operation given by
[A+u,B+v] =[A B] + Av.

We will simply denote an omni-Lie algebra associated with a vector space V by
ol(V).

Lemma 6.2  For any vector space V, we have
Hom(A*gl(V), V)y =0,
Hom(A’V, V) g (v) = Hom(A?V, V).
Proof In fact, for any ¢ € Hom(A?gl(V), V)y and A, B € gl(V), by (5.1), we have
¢(AAB)=Bop(AAidy)=-BoAo¢(idy Aidy) =0.

Therefore, ¢ = 0, which implies that Hom(A% gl(V'), V) = 0. The second equality is
obvious. ]
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Proposition 6.3  Any generalized almost complex structure J: gl(V)oV — gl(V)oV
on the omni-Lie algebra o[(V') is of the form

-Rp t
(6.1) ( 0 D) ,
where m € Hom(A*V, V), D € gl(V) satisfying D* = —idy and n(Du,v) = n(u, Dv),
and Rp:gl(V') — gl(V) is the right multiplication, i.e., Rp(A) = Ao D.

Proof By Proposition 5.2 and Lemma 6.2, we can assume that a generalized almost
complex structure is of the form (1(‘)’ —7113* ), where N:gl(V) — gl(V) satisfies N* ¢
gl(V) and N? = —idg)(v), and 7 € Hom(A?V, V). Let D = —=N*; then we have

(Dv)(A) = -N*(v)(A) = —v(N(4)) = -N(A)r.

On the other hand, we have (Dv)(A) = ADv, which implies that N(A) = —Rp(A). It
is obvious that N* = —idg(y) is equivalent to D> = —idy. The proof is complete. W

Theorem 6.4 A generalized almost complex structure J:gl(V)® V — gl(V)® V on

the omni-Lie algebra o[( V') given by (6.1) is a generalized complex structure if and only
if the following hold:

(i) 7 defines a Lie algebra structure [ -, - ], on V;
(ii) D?=-idy and D[u,v], = [u, Dv], foru,ve V.

Thus, a generalized complex structure on the omni-Lie algebra ol(V') gives rise to a
complex Lie algebra structure on V.

Proof By Theorem 5.4, we have

[u,v]n = n"(u)(v) =n(u,v).

Condition (5.3) implies that [ -, - ], gives a Lie algebra structure on V. Condition (5.5)
implies that D[u, v], = [u, Dv],. The other conditions are valid.

The conditions D = —idy and D[u,v], = [u, Dv], say by definition that D is a
complex Lie algebra structure on (V, [ -, - ];). This finishes the proof. ]
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