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Walking droplets have been halted
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The swinging motion of the eigenmodes of a free inviscid drop has been known for nearly
a century. Yet, as the drop sits on a solid substrate, getting flattened by gravity, analytical
solutions waver due to the non-spherical base state and the dynamics of the three-phase
contact line. The recent paper by Zhang et al. (J. Fluid Mech., vol. 962, 2023, A10)
investigated the effect of gravity on the harmonic modes of sessile droplets for free and
pinned contact line conditions. An effective boundary element method has been used to
solve both axisymmetric and non-axisymmetric modes for a variety of Bond numbers and
static contact angles, also revising on the way a debated capillary instability.
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1. Introduction

A weightless free drop attains a spherical equilibrium shape owing to surface tension and
its inviscid natural frequencies obey the analytical Rayleigh—Lamb relation (Lamb 1924):

o
2= —ktk—1)k+2), kl1=01,..., 1<k, 1.1
b= k= Dk +2) < (11)

where the subscripts k and [/ are the poloidal and azimuthal wavenumbers, o the surface
tension, p the drop density and R its radius. It is noteworthy that the frequencies exhibit
spectral degeneracy, indicating that different / < k modes (with £ > 0) correspond to the
same Ay ;. When the drop sits on a solid boundary, the contact line (CL) separating the
immiscible fluids at the wall plays a key role as several mobility conditions are possible.
In the special case of hemispherical drops with a free CL (fixed contact angle «; see
figure 1), the frequency spectrum corresponds to the k + [ = even subset of the spectrum
(1.1). Indeed, the corresponding modes are mirror-symmetric about the equatorial
plane, thus automatically satisfying the no-penetration condition at the solid surface.
Although the spectral degeneracy of the free drop problem is carried over to the semi-drop,
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Figure 1. (a) Perturbed I" and unperturbed I" surface of a drop with static contact angle o with a curvilinear
coordinate s (s = s, corresponds to the CL position) and Frenet frame (e, n). (b) Mode shapes of a sessile drop
with o = 90° and Bo = 5 for free CL condition. Adapted from Zhang et al. (2023).

it can be broken by varying either the contact angle (Bostwick & Steen 2014) or the CL
mobility (Lyubimov, Lyubimova & Shklyaev 2006). Importantly, Bostwick & Steen (2014)
extended the results of hemispherical drops to spherical-cap drops by using a Green’s
function method and the inverse operators for disturbances, which is solved through
a Rayleigh—Ritz variational procedure. Within this framework, various CL conditions
have been investigated, namely free and pinned (i.e. fixed CL) corresponding to lower
and upper bounds on the natural frequencies. In addition, the linear dynamic condition
(Davis—Hocking CL law) was seen to yield damped oscillations owing to a capillary
dissipation at the CL. In the same work, it is also reported that the so-called Noether mode
(k =1 = 1) with free CL becomes unstable for super-hemispherical base states (i.e. static
contact angle 90° < o < 180°). This instability corresponds to a spontaneous horizontal
motion of the centre of mass, called the walking’ instability, which is also discussed in
the following.

As the drop shape differs from that of the spherical cap, however, there are no general
theoretical models for the natural frequencies, owing to the difficulties in the geometrical
treatment of the flattened drop configuration and the motion of the three-phase CL. Thus,
the effect of gravity on the natural frequencies and the corresponding modes of a sessile
drop had not been tackled until the recent paper of Zhang, Zhou & Ding (2023), where
the corresponding eigenvalue problem is solved numerically through a general boundary
element method (BEM) for different Bond numbers, CL conditions (either free or pinned)
and static equilibrium contact angle.

2. Overview

Consider a sessile drop sitting on a plane under the influence of gravity with static contact
angle o (see figure la). The fluid is assumed to be incompressible and irrotational,
and hence the velocity field can be written as u = —V1 and conservation of mass
reduces to the Laplace equation for the potential, V2 = 0. On the free surface, the fluid
velocity component perpendicular to the interface has to match that of the interface itself
(kinematic condition) which, in the limit of small amplitudes, reads n - Vi = —(dn/0d1),
where n is the normal unit vector pointing out of the fluid domain and 7 is the perturbation
of the free surface, satisfying the condition of volume conservation. The Young—Laplace
equation, relating the mean curvature and the pressure difference across the free surface,

966 F1-2


https://doi.org/10.1017/jfm.2023.443

https://doi.org/10.1017/jfm.2023.443 Published online by Cambridge University Press

Walking droplets have been halted

is then combined with the linearized Bernoulli equation:

W T A+ 4R VIT)y =0 2.1
E—i_;[ F77+(1+ 2)71]_(”° yn=0. 2.1
Here A is the Laplace—Beltrami operator depending on the equilibrium shape I", (k1, k)
are the two principal curvatures of I" and [T = gz is the gravitational potential. On the
solid surface the no-penetration condition is enforced, while at the CL a phenomenological
condition must be imposed. The linear condition e - Vi 4+ xn = 0 is compatible with
the stability analysis (see figure la, where e is the tangent unit vector), with the
mobility parameter given by x = kj(s.) cota or x — oo for free and pinned conditions,
respectively. The system of governing equations, free-surface and CL conditions can
be turned into an eigenvalue problem through the normal mode expansion ¥ (x,t) =
& (r, 2)eel® and (s, o, 1) = y(s)e”’e”‘/’, where A is the unknown complex eigenvalue.

Zhang et al. (2023) tackle such a problem through a BEM, which can deal with
arbitrary drop geometry, with the advantage of reducing the two-dimensional problem
to a boundary integral equation. The modes are then classified by the pair {n, [}, where
the latter is the azimuthal wavenumber and the former indicates the number of vertical
layers of the perturbation, which is related to the polar wavenumber of spherical harmonics
introduced in (1.1) as n = (k — [) /2 + 1. Figure 1(b) shows the first zonal (axisymmetric,
{n > 1,1 = 0}), sectoral (star-shaped, {n = 1,/ > 1}) and tesseral ({n > 1,/ > 1}) modes.
The key contribution of the paper by Zhang et al. (2023) lies in a systematic investigation
of the effects of gravity on the axisymmetric and non-axisymmetric oscillations of sessile
drops over a wide range of static contact angles o € [30°-150°] and Bond numbers
Bo = pgli /o € [0-10], with the characteristic length scale [, = [3v/ (21)]'/3 based on
the the drop volume v. It is shown that the frequency of zonal modes decreases with gravity
at small contact angle, but increases when the contact angle exceeds a certain critical
value, with larger o being more sensitive to the effects of gravity (in agreement with the
numerical simulations of Sakakeeny & Ling (2021)). The modes with free CL have a larger
frequency shift than the corresponding pinned modes, especially at low x. In contrast, most
of the sectoral modes show a significant frequency decrease for all contact angles in the
presence of gravity. The downward frequency shifts for pinned CL are smaller than for free
conditions, whereas upward frequency shifts occur for pinned CL and large o, only. In the
presence of gravity, the frequencies of most tesseral modes decrease at small contact angles
and increase at large ones (similarly to zonal modes), although some modes with small n
and large [ manifest a frequency decrease at small o (as happens for sectoral modes). This
analysis highlights that the spectral degeneracy of hemispherical drops (¢ = 90°) inherited
from the Rayleigh-Lamb spectrum (1.1) is also broken by gravity, with lower (higher)
frequencies for higher (lower) azimuthal wavenumber / with respect to the Bo = 0 case.

In the absence of gravity and with free CL conditions, the lowest non-zero frequency
mode (which is of particular interest as it is expected to be the dominant mode)
corresponds to the zonal mode {2, 0} for « > 90° and to the sectoral mode {1, 2} for
o < 90°. Conversely, as Bo increases, it is found that the lowest mode of a drop with
o > 90° gradually switches from mode {2, 0} to {1, 2}, with the consequence that for
sufficiently high Bo the mode {1, 2} is the lowest mode regardless of the contact angle.
As observed by Zhang et al. (2023), this result implies that for large drops (and movable
CL), non-axisymmetric oscillation will more likely manifest in large drops than in smaller
ones.

Ultimately, one of the main points of the paper is that the frequency of the Noether mode
{1, 1} with free CL conditions is the only frequency that is not shifted by gravity and is
always zero regardless of o and Bo. This finding is obtained numerically and confirmed by
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static stability theory, thus implying that the walking drop instability (Bostwick & Steen
2014) seems not to be present and an additional surface energy gradient is needed in order
to break the horizontal translational invariance of the drop.

3. Future

The appeal of the approach by Zhang et al. (2023) comes from the effectiveness in solving
the small-amplitude dynamics of inviscid drops of arbitrary shape. These results can be
of valuable help in several applications, including inkjet printing, additive manufacturing,
printed electronic components and circuits, forensic bloodstains, colloidal aggregation and
biological flows such as plants transpiration, among many others. A direct continuation
of the work could involve the investigation of other constrained capillary surfaces, such
as liquid bridges or drops on fibres, where theoretical predictions are lacking, especially
when gravity plays a role.

Looking ahead, the results by Zhang et al. (2023) are limited to the case of free or pinned
CL, whereas its motion is expected to greatly affect the dynamics of the perturbation.
The dynamic CL condition could be investigated in a linear setting resorting to a contact
angle deviation proportional to the CL speed Ao = Aucy, where the free and pinned
conditions are retrieved for the limiting case of the mobility parameter A =0 and A —
00, respectively. Such a simple CL condition (referred to as the Davis—Hocking condition)
has already been applied to hemispherical (Lyubimov et al. 2006) and spherical-cap
(Bostwick & Steen 2014) drops since it is compatible with the eigenvalue problem
introduced above and can be incorporated in the BEM. Yet, experimental observations
point to a nonlinear relation between CL velocity and contact angle, which prevents the
formulation of an eigenvalue approach. Nonetheless, the linear modes of Zhang et al.
(2023) can be used as a first-order solution of an asymptotic expansion to incorporate
a nonlinear CL law, as proposed by Viola, Brun & Gallaire (2018) where the stick—slip
CL dynamics of inviscid sloshing waves subjected contact angle hysteresis is solved
through of a weakly nonlinear analysis. A similar contact angle model has been also
used (Ludwicki et al. 2022) to investigate numerically the coalescence of sessile drops
using a three-dimensional volume-of-fluid method to track the motion of the free surface.
Alternatively, an immersed boundary approach can be exploited to account for viscous,
convective and buoyancy effects on sessile drops, along with their collective dynamics as
done by Chong et al. (2020).

The findings of Zhang et al. (2023) shed new light on the effects of gravity on sessile
drop oscillations, which deserve to be further investigated experimentally. Specifically, the
frequency spectrum shift produced by gravity is seen to be sensitive to the contact angle
and to the azimuthal wavenumber; comprehensive experimental studies of this aspect for
high-order and non-axisymmetric modes are still lacking and they would be very welcome
to complete the picture.
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