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1. Introduction. A subset E of the dual of a compact group G is called a Sidon set
(resp. I0 set1) if every bounded E-function can be interpolated by the Fourier transform
of a (resp. discrete) measure on G. Sidon sets in duals of compact, abelian groups have
been extensively studied and found to be very useful. Although there are examples
of Sidon sets that are not I0, both classes are plentiful. Indeed, every infinite subset
of Ĝ contains an infinite I0 set; for recent proofs see [4, 7, 10]. Other recent research
has emphasised the study of particular classes of examples of I0 sets in which further
properties are imposed on the interpolating measure or classes with more structure
such as Hadamard and ε-Kronecker sets (c.f. [6, 9, 17],

In contrast, there are compact, non-abelian groups whose duals admit no infinite
(central) Sidon sets [1, 20]. Sidon sets in compact, connected, non-abelian groups have
been essentially characterised, and this characterisation has been used to prove that
every infinite Sidon set contains an infinite I0 set and that the interpolating measure
can be taken to be real or supported on a small set, in addition to discrete [8, 14].

The non-existence of infinite Sidon sets in many non-abelian groups is a
consequence of the unboundedness of the degrees of the representations and motivated
the introduction of weighted Sidon-type sets in [15] , where the effect of the degree is
dampened.

In this paper we extend this notion to I0 sets, and we prove that every infinite
subset of the dual of any compact connected group contains weighted central I0 sets.
Our approach is quite different from the earlier work on the existence of central

1For interpolation set.
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Sidon-type sets because we construct the interpolating measure, rather than using the
dual method of bounding norms of suitable polynomials as in [3, 12, 18], for example.

We also study the more general problem of weighted I0 sets in the duals of compact,
abelian hypergroups, improving upon the results in [13] .

2. Weighted central I0 sets on groups. Let G be a compact group, and denote by Ĝ
its dual object, a maximal set of irreducible, inequivalent representations of G; M(G)
will denote the space of finite, regular, Borel measures on G. We let deg σ denote the
degree of the representation σ ∈ Ĝ and Hσ the complex Hilbert space of dimension
deg σ on which it acts. The norm of a matrix A ∈ B(Hσ ) will be the usual operator
norm and will be denoted ‖A‖∞.

Suppose E ⊆ Ĝ. Given a ∈ � and A = (Aσ )σ∈E with Aσ ∈ B(Hσ ), we let

‖A‖a,∞ = sup{(deg σ )a ‖Aσ‖∞ : σ ∈ E},

and we denote by la,∞(E) the weighted l∞ space,

la,∞(E) = {A = (Aσ )σ∈E : ‖A‖a,∞ < ∞}.

When a = 0 we have the usual l∞ space. By lz
a,∞(E) we will mean the subset of la,∞(E)

with A = (cσ Ideg σ )σ∈E.

A subset E ⊆ Ĝ is called Sidon (I0) if whenever A ∈ l∞(E), there is a (discrete)
measure μ on G such that μ̂(σ ) = φ(σ ) for all σ ∈ E. Finite sets are always Sidon/I0;
hence the interest is in infinite sets. When G is abelian these sets are abundant. Examples
include lacunary sets in � and linearly independent sets. Every infinite subset in the
dual of an infinite abelian group contains an infinite Sidon set, and any finite subset
of a Sidon set contains an I0 set of proportionate size [21]. An open problem is to
determine if every Sidon set is a finite union of I0 sets.

Motivated by the fact that there are no infinite Sidon sets in the dual of any
compact, simple, connected Lie group, the weaker notion of (central)(a, p)-Sidon sets
was introduced in [15]. Our interest is in the case p = 1, and we extend the definition
to (a, 1)-I0 sets.

Recall that a measure is called central if it commutes with all other measures on
the group under convolution. Central measures are characterised by the property that
their Fourier transforms are scalar multiples of identity matrices.

DEFINITION 2.1. (i) A subset E ⊆ Ĝ is called an (a, 1)-Sidon (resp. (a, 1)-I0) set
if whenever φ ∈ l1−a,∞(E), there is a (resp. discrete) measure μ ∈ M(G) such that
μ̂(σ ) = φ(σ ) for all σ ∈ E.

(ii) If each φ ∈ lz
1−a,∞(E) can be interpolated on E by the Fourier transform of a

central measure μ ∈ M(G), then E is known as a central (a, 1)-Sidon set.

A (1, 1)-Sidon (or (1, 1)-I0) set is Sidon (resp. I0), and since l1−a,∞ ⊆ l1−b,∞ if a ≤ b,
it is formally easier to be an (a, 1)-Sidon (I0) set as a decreases. Of course, if G is abelian,
there is no distinction between the classes as a varies, since the degree of any σ ∈ Ĝ is
one. It is known that Sidon sets are central Sidon, but the converse is false [18].

Given the relationship between Sidon sets and I0 sets, it would be natural to define
a central (a, 1)-I0 set as one for which the interpolating measure in the definition of
a central (a, 1)-Sidon set could be chosen to be both central and discrete. However, if
this were taken as the definition, not even all finite sets would be central I0. This is
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because in connected groups any discrete central measure is supported on the centre
of the group [20], and there are groups with finite centres.

Instead, we will replace central discrete measures by orbital measures: the orbital
measure μx, for x ∈ G, is the probability measure supported on the conjugacy class
containing x and defined by∫

G
f dμx =

∫
G

f (gxg−1)dmG(g)

for all continuous functions f on G. (Here mG denotes Haar measure on G.) Orbital
measures are always central, and their Fourier transforms are given by

μ̂x(σ ) = (Trσ (x)/ deg σ )Ideg σ .

We put forth the following definition.

DEFINITION 2.2. A subset E ⊆ Ĝ is called a central (a, 1)-I0 set if whenever φ ∈
lz
1−a,∞(E), there is a sum of orbital measures, μ = ∑

bkμxk ∈ M(G), such that μ̂(σ ) =
φ(σ ) for all σ ∈ E.

PROPOSITION 2.1. [11, Proposition 4.1] Any (a, 1)-I0 set in Ĝ is central (a, 1)-I0.

COROLLARY 2.2. Finite sets are central (a, 1)-I0 for all a.

As with central weighted Sidon sets there are a number of properties equivalent to
the definition of central weighted I0.

PROPOSITION 2.3. Let G be a compact group. The following are equivalent for E ⊂ Ĝ:
(1) The set E is a central (1 − a, 1)-I0 set.
(2) There is a constant C such that whenever φ ∈ lz

a,∞(E) there is a measure μ =∑
bkμxk such that μ̂(σ ) = φ(σ ) for all σ ∈ E and ‖μ‖ ≤ C ‖φ‖a,∞.

(3) For every 0 < ε < 1 (equivalently, there exists 0 < ε < 1) for which there is a
constant C so that whenever φ ∈ lz

a,∞(E) there is a measure μ = ∑
bkμxk such

that ‖μ̂|E − φ‖a,∞ ≤ ε ‖φ‖a,∞ and ‖μ‖ ≤ C ‖φ‖a,∞.
(4) For every 0 < ε < 1 (equivalently, there exists 0 < ε < 1) for which there is

a constant C so that for each choice of {rσ }σ∈E, rσ = ±1, there is a measure
μ = ∑

bkμxk such that ‖μ‖ ≤ C and

sup
{

(deg σ )a
∥∥∥∥μ̂(σ ) − rσ Ideg σ

(deg σ )a

∥∥∥∥
∞

: σ ∈ E
}

≤ ε.

Proofs of similar results can be found in [11] and [21], for example.
It follows easily from (4) that the independent sets of [18] are examples of central

I0 sets. Other examples of weighted I0 sets can be found in [11] in which the problem
of approximating signs by characters is studied in the non-abelian setting. The main
results of that paper, as applied to the study of I0 sets, are summarised below.

PROPOSITION 2.4. [11]
(1) If G is any infinite, compact, connected group, then Ĝ contains an infinite central

(0, 1)-I0 set.
(2) If G is any compact, simple, simply connected, connected Lie group, other than

SU(2) or SU(3), then Ĝ contains an infinite central (a, 1)-I0 set for some a > 0.
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3. Existence of weighted central I0 sets in compact, connected groups. In this section
we will prove that every infinite subset of the dual of a compact, connected group
contains infinite weighted central I0 sets. We prove this first for infinite products of
simple Lie groups, and then we appeal to the structure theorem for compact, connected
groups.

THEOREM 3.1. Let G = ∏
Gi be a product of compact, simple, connected, simply

connected Lie groups and let a < 1. Then any infinite subset of Ĝ of unbounded degree
contains an infinite, central (a, 1)-I0 set.

Proof. Let {σj} ⊆ Ĝ be a set of unbounded degree. We will select a suitable infinite
subset of {σj} through an inductive process, and during this process we will also identify
points xj ∈ G which will be used, later in the proof, to build the interpolating measures.

Without loss of generality we can assume δ = 1 − a < 1/2 and σj 	= 1 for any j.
Let πi : Gi → G be the natural embedding map. Note that for each j, σj ◦ πi is trivial
for all but finitely many i; let I1 = {i : σ1 ◦ πi 	= 1}. We can view σ1 as a representation
on H1 ≡ ∏

i∈I1
Gi in the natural way.

The trace of a representation at elements of the torus can be calculated by the Weyl
character formula (see [24, Theorem 4.14.4]). The formula is a quotient, P/Q, where
Q is independent of the particular representation and |P| is at most the cardinality of
the Weyl group of the semi-simple Lie group H1. The elements at which Q is non-zero
are called regular, and these are dense in the torus.

Choose a regular torus element, y1 = (x1j)j∈I1 ∈ H1, with the property that

|Trσ1(y1) − deg σ1| ≤ 1/6.

As y1 is regular there is a constant A1, depending on H1 and y1, such that |Trσ (y1)| ≤ A1

for all σ ∈ Ĥ1.

Fix q > 61/δ, set n1 = 1 and choose n2 > n1 such that

deg σn2 ≥ q max
(

deg σn1 , A1
1/(1−δ)

)
.

We have σn2 = α
(1)
2 × α

(2)
2 for some α

(1)
2 ∈ Ĥ1 and α

(2)
2 ∈ Ĥ2 ≡ ∏̂

i∈I2
Gi, with I1, I2

disjoint sets of indices. If α
(2)
2 = 1, then clearly Trα(2)

2 (x) = 1 for all x ∈ H2. Other-
wise, Trα(2)

2 has a root in H2 [5], and so by continuity we can find a regular element
(x1j)j∈I2 ∈ H2 such that ∣∣∣Trα(2)

2 ((x1j)j∈I2 )
∣∣∣ ≤ 1.

Let J2 = I1
⋃

I2, and choose a regular element y2 = (x2j)j∈J2 , with x2j 	= x1j for some
j ∈ J2 and satisfying ∣∣Trσn2 (y2) − deg σn2

∣∣ ≤ 1/6.

Then find A2 such that for i = 1, 2 and all λ ∈ ̂H1 × H2,∣∣Trλ((xij)j∈I1∪I2 )
∣∣ ≤ A2.

We have now chosen two of the representations which will be in the infinite central
(a, 1)-I0 subset, namely σn1 and σn2 , and have determined the J2 coordinates of the
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points x1 and x2, namely x1j, x2j for j ∈ J2. We continue the construction by proceeding
inductively.

Assume that for k = 1, . . . , N we have chosen representations

σnk = α
(1)
k × · · · × α

(k)
k , k = 1, . . . , N, where α

(j)
k ∈ Ĥj ≡

∏̂
i∈Ij

Gi,

constants Ak and distinct, regular elements (xij) ∈ ∏
i∈Jk

Gi for i ≤ k and Jk = ⋃k
l=1 Il

with the following properties:

(i) for yk = (xkj)j∈Jk we have
∣∣Trσnk (yk) − deg σnk

∣∣ ≤ 1/6;

(ii)
∣∣∣Trα(k)

k ((xij)j∈Ik )
∣∣∣ ≤ 1 for all i ≤ k − 1;

(iii)
∣∣Trλ((xij)j∈Jk )

∣∣ ≤ Ak for all λ ∈ ∏̂k
i=1 Hi and i = 1, . . . , k; and

(iv) deg σnk ≥ q max(deg σnk−1 , A1/(1−δ)
k−1 ) (for k ≥ 2).

Next, select nN+1 > nN so large that

deg σnN+1 ≥ q max
(

deg σnN , AN
1/(1−δ)

)
and suppose σnN+1 = α

(1)
N+1 × · · · × α

(N+1)
N+1 , where α

(j)
N+1 ∈ Ĥj ≡ ∏̂

i∈Ij
Gi. Let JN+1 =⋃N+1

l=1 Il. Choose a regular element (x1j)j∈IN+1 , such that∣∣∣Trα(N+1)
N+1 ((x1j)j∈IN+1 )

∣∣∣ ≤ 1

and set xij = x1j for j ∈ IN+1 and i ≤ N. (So now the IN+1 coordinates of x1, . . . , xN

have been determined.) Select a regular element yN+1 ∈ ∏N+1
j=1 Hj, yN+1 	= (xij)JN+1 for

i ≤ N, satisfying ∣∣TrσnN+1 (yN+1) − deg σnN+1

∣∣ ≤ 1/6.

To complete the induction step we specify the JN+1 coordinates of xN+1 by setting them

equal to yN+1, and we choose AN+1 so that for all λ ∈ ∏̂N+1
j=1 Hj and i = 1, . . . , N + 1

we have
∣∣Trλ((xij)j∈JN+1 )

∣∣ ≤ AN+1.
We will now verify that {σnj } is a central (a, 1)-I0 set. So let {ri} be a choice of signs

and put

μ =
∑

i

ri
μxi

(deg σni )
δ
,

where xi = (xij)j were defined through the inductive construction. (Put xij = e for any
unspecified coordinates.) This is a finite measure since the degrees grow exponentially.
Of course,

μ̂(σnk ) = 1
deg σnk

(∑
i

ri
Trσnk (xi)

deg σ δ
ni

)
Ideg σnk

.
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Recall that σnk = α
(1)
k × · · · × α

(k−1)
k × α

(k)
k , where α

(j)
k ∈ Ĥj. The choice of Ak−1

(property (iii)) ensures that if i ≤ k − 1, then∣∣∣Trα(1)
k × · · · × α

(k−1)
k ((xij)j∈Jk )

∣∣∣ ≤ Ak−1.

Property (ii) gives that
∣∣∣Trα(k)

k ((xij)j∈Jk−1 )
∣∣∣ ≤ 1 for all i ≤ k − 1, and combining these

facts we see that ∣∣Trσnk (xi)
∣∣ ≤ Ak−1 if i ≤ k − 1.

As qδ > 6,
∑∞

k=0 q−δk ≤ ∑
k 6−k ≤ 2 and because

deg σnk ≥ q max
(

deg σnk−1 , Ak−1
1/(1−δ)

)
,

it follows that ∣∣∣∣∣ 1
deg σnk

(∑
i<k

ri
Trσnk (xi)

deg σ δ
ni

)∣∣∣∣∣ ≤ 1
deg σnk

∑
i<k

Ak−1

deg σ δ
ni

≤ 2Ak−1

deg σ δ
nk

≤ 2
6 deg σ δ

nk

.

Property (i) imples that∣∣∣∣rk
Trσnk (xk)

deg σ δ+1
nk

− rk deg σnk

deg σ δ+1
nk

∣∣∣∣ ≤ 1

6 deg σ δ+1
nk

.

Since one always has |Trσ (xi)| ≤ deg σ ,∣∣∣∣∣ 1
deg σnk

(∑
i>k

ri
Trσnk (xi)

deg σ δ
ni

)∣∣∣∣∣ ≤
∑
i>k

1
deg σ δ

ni

≤ 2
6 deg σ δ

nk

.

Together these three estimates give the bound

sup
k

deg σ δ
nk

∥∥∥∥∥μ̂(σnk ) − rkIdeg σnk

deg σ δ
nk

∥∥∥∥∥
∞

≤ 5
6
,

which certainly suffices to prove that {σnk} is a central (a, 1)-I0 set. �
LEMMA 3.2. Suppose G = G1 × G2, {τj} ⊂ Ĝ1 and {σj} is a central (a, 1)-I0 set in Ĝ2.

Then {τj × σj}j is a central (a, 1)-I0 set in Ĝ.

Proof. If (φ(j)Ideg τj×deg σj ) belongs to lz
1−a,∞({τj × σj}j), then (φ(j)Ideg σj ) belongs to

lz
1−a,∞({σj}j). Hence there is a measure μ = ∑

akμxk on G2 whose Fourier transform
interpolates (φ(j)Ideg σj ). But then the measure v = ∑

akμ(e,xk) satisfies

v̂(τj × σj) =
(∑

ak
Trτj(e)Trσj(xk)

deg τj deg σj

)
Ideg τj×deg σj

= φ(j)Ideg τj×deg σj .

Thus {τj × σj}j is a central (a, 1)-I0 set. �
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PROPOSITION 3.3. Let G = T × ∏
i∈I Gi, where T is a compact, abelian group and

the Gi are compact, simple, connected, simply connected Lie groups. Any infinite set of
representations of G of bounded degree contains an infinite, central I0 set.

Proof. Let {σj} be a sequence of distinct representations of G of bounded degree.
Let πi : Gi → G denote the natural embedding. As Gi contains only finitely many
representations of any given degree, {σj ◦ πi}j is a finite set for any i ∈ I. Also, if we
assume that the degrees of the representations are bounded by 2N , then the cardinality
of {i : σj ◦ πi 	= 1} is at most N for each j. These facts, combined with the combinatorial
argument described in detail in the proof of Theorem 2.7 of [12], show that {σj} must
contain an infinite subset of either of the following forms:

(i) {τj × φj}, where τj ∈ T̂ are distinct and φj ∈ ∏̂
i∈I Gi;

(ii) {τj × φ × χj}j, where τj ∈ T̂ , φ ∈ ∏̂
i∈I ′ Gi and {χj} are an infinite set of

mutually orthogonal, non-degree one representations in
∏̂

i/∈I ′ Gi.
If (i) holds, then by [14, Theorem 4.1] we can pick an infinite I0 set {τjk} ⊂ {τj}. The

corresponding set {τjk × φjk} is central I0 by the lemma.
In case (ii), {χj} is an example of an independent (or I) set in the sense of [18,

Section 4], since by [5] there is an element xj ∈ Gj which is a zero of χj. Thus {χj} is
central I0, and again the lemma can be invoked. �

COROLLARY 3.4. Let G = T × ∏
i∈I Gi, where T is a compact, abelian group and the

Gi are compact, simple, connected, simply connected Lie groups. Let a < 1. Then any
infinite set of representations of G contains an infinite central (a, 1)-I0 set.

Proof. Let {σj} = {τj × φj}, for τj ∈ T̂ and φj ∈ ∏̂
i∈I Gi, be an infinite set of

representations on G. If {σj} has bounded degree, we appeal to the proposition. If
it has unbounded degree, then {φj} is an infinite set of representations on

∏
Gi with

unbounded degree. By the theorem {φj} contains an infinite central (a, 1)-I0 subset, say
{φjk}, and by the lemma {τjk × φjk} is also central (a, 1)-I0. �

Using the structure theorem for compact connected groups we can now prove the
result mentioned in the introduction.

THEOREM 3.5. Let G be a compact, connected group and let a < 1. Then every infinite
subset of Ĝ contains an infinite central (a, 1)-I0 set.

Proof. The structure theorem states that there is an epimorphism π : H ≡ T ×∏
i∈I Gi → G, where T is a compact, connected, abelian group and the Gi are compact,

simple, connected, simply connected Lie groups [19]. Let {σj} be an infinite subset of
Ĝ. Then {σj ◦ π} is an infinite set of representations on H and consequently contains
an infinite central (a, 1)- I0 subset {σjk ◦ π}. It is routine to verify that {σjk} is central
(a, 1)-I0 as well. �

REMARK 3.1. This yields a new method of proving that every infinite subset of the
dual of a compact, connected group admits an infinite central (a, 1)-Sidon set for any
a < 1. Since a central (1/p, 1)-Sidon set is also central p-Sidon set [15] this approach
also gives a new proof of the existence of central p-Sidon sets for p > 1, first established
in non-abelian groups in [3].

4. Weighted I0 sets in hypergroups. Let K denote a compact, abelian hypergroup and
K̂ its dual. We refer the reader to Jewitt’s treatise [16] for basic facts about hypergroups.
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An interesting example of a compact, abelian hypergroup, which is not a group,
is the space GI of conjugacy classes of a non-abelian compact group G. A function
f on G which is constant on the conjugacy classes may be viewed as defined on the
hypergroup GI , and we will denote this function by f #. Jewitt showed that

ĜI =
{

(Trσ )#

deg σ
: σ ∈ Ĝ

}
.

In [25] Sidon sets in hypergroups were investigated. Weighted Sidon sets were
introduced in [13], and this definition can also be naturally extended to I0 sets. Again
we need to introduce weighted l∞ spaces: Given a ∈ � and E ⊆ K̂ let

la,∞(E) =
{

(aχ )χ∈E :
∥∥(aχ )

∥∥
a,∞ ≡ sup

χ∈E
{∣∣aχ

∣∣ ‖χ‖−2a
2 } < ∞

}
.

The exponent 2a is a notational convenience. Of course, if a = 0, then this is the usual
space l∞(E). As the characters of K are always bounded from above, if inf{‖χ‖2 : χ ∈
E} > 0 (as is the case when K is a group, for example), the spaces la,∞ are identical.
But for many hypergroups, la,∞(E) is a proper subset of lb,∞(E) for a > b.

DEFINITION 4.1. Let K be a compact, abelian hypergroup. A subset E ⊆ K̂ is called
an (a, 1)-Sidon (resp. (a, 1)-I0) set if whenever φ ∈ l1−a,∞(E), there is a (resp. discrete)
measure μ on K such that μ̂(χ ) = φ(χ ) for all χ ∈ E.

REMARK 4.1. Suppose δC(x) denotes the point mass measure on GI at the point
which is the conjuacy class containing x ∈ G and μ = ∑

bkδC(xk). Let ν ∈ M(G) be
given by ν = ∑

bkμxk . If σ ∈ Ĝ and χ = (Trσ )#/ deg σ is the corresponding character
on GI , then μ̂(χ )Ideg σ = ν̂(σ ). Thus E ⊆ Ĝ is central (2a − 1, 1)-I0 if and only if
E# ⊆ ĜI is (a, 1)-I0 in the hypergroup sense. This is further motivation for taking
the interpolating measures to be sums of orbital measures in the definition of central
weighted I0 sets for non-abelian groups.

Weighted I0 sets on hypergroups can be characterised in a manner analogous to
Proposition 2.3.

PROPOSITION 4.1. Let K be a compact abelian hypergroup. The following are
equivalent for E ⊂ K̂:

(1) The set E is an (1 − a, 1)-I0 set.
(2) There is a constant C such that whenever φ ∈ la,∞(E) there is a discrete measure

μ such that μ̂(χ ) = φ(χ ) for all χ ∈ E and ‖μ‖ ≤ C ‖φ‖a,∞.
(3) For every 0 < ε < 1 (equivalently, there exists 0 < ε < 1) for which there is

a constant C so that whenever φ ∈ la,∞(E) there is a discrete measure μ such that
‖μ̂|E − φ‖a,∞ ≤ ε ‖φ‖a,∞ and ‖μ‖ ≤ C ‖φ‖a,∞.

(4) For every 0 < ε < 1 (equivalently, there exists 0 < ε < 1) for which there is a
constant C so that for each choice of {rχ }χ∈E, rχ = ±1, there is a discrete measure μ such
that ‖μ‖ ≤ C and ∥∥∥(

μ̂(χ ) − rχ ‖χ‖2a
2

)
χ∈E

∥∥∥
a,∞

≤ ε.

PROPOSITION 4.2. Any finite set E in K̂ is I0.
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Proof. This is an easy consequence of the compactness of K and the fact that
finite sets are Sidon. Given a finite subset E of K̂ and φ ∈ l∞(E) of norm at most one,
choose a measure μ such that μ̂(χ ) = φ(χ ) for all χ ∈ E. For each x ∈ K obtain a
neighbourhood Ux such that

|χ (x) − χ (y)| <
ε

‖μ‖ for all y ∈ Ux and χ ∈ E.

Choose a finite subcover Ux1 , . . . , Uxn . Without loss of generality we can assume
these sets are disjoint. Set ν = ∑n

j=1 μ(Uxj )δxj . It is a routine exercise to verify that
|̂ν(χ ) − φ(χ )| < ε for all χ ∈ E. �

It is known that every infinite subset of K̂ contains an infinite set that is (a, 1)-Sidon
for all a < 1 [13]. In this section we will prove a partial extension of this.

DEFINITION 4.2. We will say that the compact, abelian hypergroup K has the
pointwise boundedness property if every neighbourhood of e contains infinitely many
points x ∈ K having the property that there is a constant C(x) satisfying |χ (x)| ≤
C(x) ‖χ‖2 for all χ ∈ K̂.

First, we give some examples of hypergroups which have this property.

EXAMPLE 4.1. The hypergroup of conjugacy classes of a compact, semi-simple,
connected, simply connected Lie group has the pointwise boundedness property.

Proof. This is a consequence of the Weyl character formula (see [24]) from which
one can conclude that ∣∣∣∣Trσ (x)

deg σ

∣∣∣∣ ≤ C(x)
deg σ

for the dense set of regular elements in the group. When χ = Trσ/ deg σ , ‖χ‖2 =
(deg σ )−1; hence the result is clear. �

EXAMPLE 4.2. The hypergroup whose dual is a set of (normalised) Jacobi
polynomials, Pα,β

n /Pα,β
n (1), has the pointwise boundedness property.

Proof. This can be seen from the asymptotic behaviour of the Jacobi polynomials.
It is known [23, p. 167] that

Pα,β
n (cos θ ) =

{
θ−α−1/2O(n−1/2) if n−1 ≤ θ ≤ π/2,

O(nα) if 0 ≤ θ ≤ n−1.

As a result,
∥∥∥Pα,β

n

∥∥∥
2

≥ O(n−1/2). Provided x 	= ±1, the inequalities above imply that

there is a constant C(x) such that
∣∣∣Pα,β

n (x)
∣∣∣ ≤ C(x)

∥∥∥Pα,β
n

∥∥∥
2

for all n sufficiently

large. �
THEOREM 4.3. Let K be a compact, abelian hypergroup having the pointwise

boundedness property and let a < 1. Suppose {χn}∞n=1 is a subset of K̂ satisfying
infn ‖χn‖2 = 0. Then {χn} contains an infinite central (a, 1)-I0 set.

Proof. Put δ = 1 − a < 1/2. Choose n1 such that
∥∥χn1

∥∥
2 ≤ 1/4. As χn1 is continuous

and K has the pointwise boundedness property we may select x1 ∈ K and a constant A1
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such that
∣∣χn1 (x1) − 1

∣∣ < 1/4 and |χ (x1)| ≤ A1 ‖χ‖2 for all χ ∈ K̂. Because 2δ − 1 < 0,
we may pick n2 > n1 so that

32A1
∥∥χn2

∥∥2δ

2 ≤ 4A1
∥∥χn1

∥∥2δ

2 ≤ ∥∥χn2

∥∥2δ−1
2 .

Then choose x2 	= x1 and A2 such that
∣∣χn2 (x2) − 1

∣∣ < 1/4 and |χ (x2)| ≤ A2 ‖χ‖2 for
all χ ∈ K̂.

Repeating this procedure inductively constructs an infinite sequence of integers
n1 < n2 < · · · , distinct points x1, x2, · · · ∈ K and constants A1, A2, . . . , satisfying the
following:

(i)
∣∣χnj (xj) − 1

∣∣ < 1/4,
∣∣χ (xj)

∣∣ ≤ Aj ‖χ‖2 for all χ ∈ K̂ , j ≥ 1;

(ii)
∑

k<j Ak
∥∥χnk

∥∥2δ

2 ≤ ∥∥χnj

∥∥2δ−1
2 /4 for j ≥ 2; and

(iii)
∥∥χnj

∥∥2δ

2 ≤ ∥∥χnj−1

∥∥2δ

2 /8 for j ≥ 2.
We will now prove that {χnk} is an (a, 1)-I0 set by verifying property (4) of

Proposition 4.1. So let {rk} be a choice of signs and consider the discrete measure

μ =
∞∑

k=1

rk
∥∥χnk

∥∥2δ

2 δxk .

This is a finite measure since∑
k

∥∥χnk

∥∥2δ

2 ≤
∑

k

8−k+1
∥∥χn1

∥∥2δ

2 < ∞.

Since μ̂(χnj ) = ∑
k rk

∥∥χnk

∥∥2δ

2 χj(xk) we have

∣∣∣μ̂(χnj ) − rj
∥∥χnj

∥∥2δ

2

∣∣∣ =
∣∣∣∣∣∣
∑
k	=j

rk
∥∥χnk

∥∥2δ

2 χnj (xk)

∣∣∣∣∣∣ +
∣∣∣rj

∥∥χnj

∥∥2δ

2

(
χnj (xj) − 1

)∣∣∣
≤

∣∣∣∣∣∣
∑
k	=j

rk
∥∥χnk

∥∥2δ

2 χnj (xk)

∣∣∣∣∣∣ + ∥∥χnj

∥∥2δ

2 /4.

To bound the sum over k < j we use the fact that
∣∣χnj (xk)

∣∣ ≤ Ak
∥∥χnj

∥∥
2 and (ii) to

obtain ∣∣∣∣∣∣
∑
k<j

rk
∥∥χnk

∥∥2δ

2 χnj (xk)

∣∣∣∣∣∣ ≤
∑
k<j

Ak
∥∥χnk

∥∥2δ

2

∥∥χnj

∥∥
2 ≤

∥∥χnj

∥∥2δ

2

4
.

For the sum over k > j we note that
∣∣χnj (xk)

∣∣ ≤ 1; thus∣∣∣∣∣∣
∑
k>j

rk
∥∥χnk

∥∥2δ

2 χnj (xk)

∣∣∣∣∣∣ ≤
∞∑

k=j+1

∥∥χnk

∥∥2δ

2 ≤ ∥∥χnj

∥∥2δ

2

∞∑
k=1

8−k ≤
∥∥χnj

∥∥2δ

2

4
.

Hence the choice of {xj} ensures that∣∣∣μ̂(χnj ) − rj
∥∥χnj

∥∥2δ

2

∣∣∣ ≤ 3
4

∥∥χnj

∥∥2δ

2 ,

and this establishes property (4). �

https://doi.org/10.1017/S0017089509990024 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990024


INTERPOLATION SETS 603

REMARK 4.2. Note that the proof actually shows that the pointwise boundedness
property is not needed for all characters in K̂ but only those from the infinite set {χn}.

COROLLARY 4.4. Suppose K is an infinite hypergroup whose dual is a set of Jacobi
polynomials, Pα,β

n (x)/Pα,β
n (1) with α > −1/2. If a < 1, then any infinite set of characters

contains an infinite (a, 1)-I0 set.

Proof. We have already observed that such a hypergroup has the pointwise
boundedness property. Since Pα,β

n (1) = O(nα), if α > −1/2 then any set of characters
{χn} satisfies infn ‖χn‖2 = 0. �
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