
A NOTE ON CONTINUED FRACTIONS 

A. OPPENHEIM 

1. Introduction. Any real number y leads to a continued fraction of the 
type 

(i) y~** + T1 + T, + ...> 
where au bL are integers which satisfy the inequalities 

(2) 1 <at< bt (i = 1,2, . . . ,), 

by means of the algorithm 

(3) y = yo= b o ] + ^ = 6o + ^ , y i > a i , 

y\ = bi] + ~ = h + —, y2 > 02, 

the as being assigned positive integers. The process terminates for rational 
y; the last denominator bk satisfying bk > ak + 1. For irrational y, the process 
does not terminate. For a preassigned set of numerators at > 1, this C.F. 
development of y is unique; its value being y. 

Bankier and Leighton (1) call such fractions (1), which satisfy (2), proper 
continued fractions. Among other questions, they studied the problem of 
expanding quadratic surds in periodic continued fractions. They state that 
"it is well-known that not only does every periodic regular continued fraction 
represent a quadratic irrational, but the regular continued fraction expansion 
of a quadratic irrational is periodic. Such a result would not be expected to 
hold in general for proper continued fraction representations of quadratic 
irrationals" (1, p. 662). 

In point of fact, as I prove in this note, every quadratic irrational admits of 
infinitely many periodic proper continued fraction representations. Indeed, 
only one term is needed in the periodic part and at most three terms in the 
non-periodic part: 

«' s«+t:+!-;+(r 
Moreover, in infinitely many representations a3 = bz — 2c or, again, with 
a3 = c, bz = 2c. For the class of quadratic irrationals whose regular continued 
fraction expansion has a period with an odd number of terms, it is possible 
to have (in infinitely many ways) a3 = 1, b% = 2c. 
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It may be noted that Bankier and Leighton obtained periodic proper con­
tinued fraction expansions in infinitely many ways for the class of quadratic 
irrationals whose regular continued fraction expansion (i) is purely periodic 
and (ii) has an odd number of terms in the period. My results are stated 
explicitly in the following three theorems. 

THEOREM 1. Any real quadratic irrational can be expressed as a proper periodic 
continued fraction of the form (4), in which the period consists of one term only 
and the non-periodic part (which may be empty) contains at most three terms. 

The expansion is possible, in infinitely many ways, with è3 = 2c, an even 
integer. 

THEOREM 2. For a given quadratic irrational, there are infinitely many of the 
expansions in Theorem 1 satisfying 

az = bz = 2c. 

This is also true with a3 = c, 63 = 2c. 

THEOREM 3. Let 6 be any quadratic irrational and write 

e = 6o + fo, bo = [0], 0 < f0 < 1, 

where 

SO — r> 

Let so be the least positive integer satisfying 

Ro\so(Pl - No). 

Then, if the regular continued fraction for so\/No has a period with an odd 
number of elements, infinitely many of the expansions (4) for 6, have a3 = 1. 

For the proofs we require five lemmas and these are stated and proved in 
§§ 3, 4. 

2. A conjecture. Some time ago I made a conjecture (which I cannot 
prove) about these representations, when the integers at are assigned in a 
special way. Let y > 1 be an irrational number. Assign a± = b0. Determine 
b± and assign a<z = b\. Determine b% and assign a3 = £2, and so on. In this 
way, we determine a unique expansion 

(5) y = h + h + h + h + ...' 
in which the integers bt satisfy the inequalities 

(6) 1 < bo < 61 < b2 < . . . . 

Plainly, if bt = b from some point on, y must be a quadratic surd. 
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CONJECTURE. If y > I is a quadratic irrational, the expansion (5) is ulti­
mately periodic, that is, from some point on, the bt have a fixed value. 

Examples: 

2V2 + 1 1 3 
3 •+• 3 + 4 + \ 4 / B ' 

2 

iC' + «,-» + s-+^+ fe ' ) j <•-'•' *">• 
b _a_ (2a\ 
a + 2a + \ 2 a / 0 

^(a2 + 2a)* = è + f , ~ , l ^ J , ( 6 = 1 , 2 , . . . . o ) , 

ft^ + ^ - f t + J , , ^ , ( f g ) , (6 = 1,2,...,6a2). 
2 

3a v ^ "y " 6az + \2aù + 

3. In what follows, N is a positive non-square integer, 

(7) c = [N*], N = c2 + a, 1 < a < 2c. 

We express each of iV% — iV* as proper continued fractions with a single 
term in the periodic part and then apply the results to the general quadratic 
irrational. 

LEMMA 1. Let 

a_ a^ a_ 
? ~ 2c + 2c + 2c + . 

Then 

f = - c + NK 

Proof. Since £ > 0, £(2c + f) = a, we have 

£ = - c + (c2 + a)*. 

LEMMA 2. Let 

— 2c + 1 — fl JL &_ 
V ~ 2c + 1 + 2c + 2c + . . . 

Then 

7] = C + 1 - NK 

Proof. Note that 

2c + 1 - a (c + l ) 2 - N 
V = = c + 1 - iV*. 

2c + 1 + £ c + 1 + N5 

4. We next consider quadratic irrationals of the following three types: 
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R 

P + N* 
R 

P -IF-

I. f = F + N* ; o < f < 1, R > 1, -tf* < P < Ari, /e|(tf - P2), 

IL r = J ' " ;o < f < l,i? > l, P > N\ R\(P2 - N), 

III. f = ^ ^ ' ; 0 < r < 1,-R > l,Jg|(Pg-A0-

LEMMA 3. Per s^rds 0/ ty^e / , define integers au bi, by the conditions 

aiR = A7 - P2 , 6i = [N* - P] = c - P. 

Then 

— 2i — JL _ a i 

r ~ ^~ + 2c + 2c + . . . ~ b1 + T 

Proof. Note that 

P + iV1
 = ai 

R ~ - P + N1, 

where 

0 < J^tp <hNi-P>0. 

Hence 1 < a\ < N2 — P or a\ < c — P = b±. Thus 
ai ci\ a\ 

bi + % h - c + N* N* - P 

and the result follows from Lemma 1. 

= r, 

LEMMA 4. P#r surds of type II define integers a2, £2 6y ^^ conditions 

a2R = P2 _ ¥ , J2 = [P - #*] = P - c - 1. 

Then 

> _ a2 — Ql 2c + I — a a_ a_ 
b2 + 77 ~ b2 + 2c + 1 + 2c + 2c + . . . ' 

Proof. Observe that 

P + Nh a2 
Ç R P - N*' 

where 

P - ATf 0 < n "2
 ATè < 1,P - 7 V * > 0. 

Hence 

1 < a2 < P - N\ 1 < a2 < P - c - 1 = 62. 
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Thus our continued fraction for f is proper and its value is clearly 
a^ a_2_ a2 

b2 + v ~ h + c + 1 - N1 " P - N1 ' 

L E M M A 5. For surds of type I I I define an integer a2 by the condition 
a2R = P2 - N. Then 

f ~ ( P + c) + ? ~~ P + c + 2c + 2c + . . . ' 

Proof. Since 
. _ Û2 #2 
ç ~~ p + N* ~ {p + c) + r 

where 0 < f < 1, 1 < a2 < P + #*, 1 < a2 < P + c, the result follows from 
Lemma 1. 

5. Proofs of t h e o r e m s 1, 2, a n d 3. Let the quadrat ic irrational 0, say, 
be expressed in the form 6 = b0 + fo, where bo = [0], 0 < f0 < 1 and 

. _ P o ± M 

Since we can also express f0 in the form (P ± N*)/R, where 

R = sRo, P = sPo, N = s2N0 (s > 1) 

it belongs to one of the types I, I I , or I I I , provided t h a t the integer s is chosen 
so t h a t R\(P2 — N). I t is sufficient, then, if RO\S(PQ2 — N), and plainly 5 can 
be so chosen in infinitely many ways (s = tRo/g, where g is the greatest 
common divisor of Ro and P 0

2 — No and t is any integer > 1). T h u s Theorem 
1 follows immediately from Lemmas 3, 4, and 5. 

Observe t ha t So = Ro/ (Ro, Po2 — No) is the least positive integer such t h a t 
Ro\s0(Po2 — iVo). Then we may write 

r ° " Ro ~ R 

where N = t2s0
2N0 (t > 1). Recall t h a t 

c* + a = N = t2s0
2No 

where 

c = [N*], 1 < a < 2c, 

by (7). T o obtain a = 2c, it is enough to solve the Pellian equation 

(c + l ) 2 - tWNo = 1 

for c and t. Since s0
2No is not a square, there are infinitely many such pairs. 

Similarly, for a = c we require the solutions of the Pellian equation 

(2c + l ) 2 - ItWNo = 1, 

which also gives infinitely many pairs. This proves Theorem 2. 
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For Theorem 3 we require a — 1 and then it is enough to solve the Pellian 
equation 

c2 - so2Not2 = - 1 . 

Now, it is well known that if the regular continued fraction for SQN^ has a 
period with an odd number of elements, then this has infinitely many solutions 
in c and t. This proves Theorem 3. 

6, Examples for the well-known quadratic irrational ^(1 + \ /5) are listed. 

where c and t satisfy (c + I)2 — 5t2 = 1, so that 

(c + 1) + *V5 = (2 + V5)2rc, (« = 1,2 ), 

for example, 

(c,t) = (8,4), ( 160 ,72 ) , . . . 

(ii) Kl + V5) = 1 + ^ + (£)j 

where c and t satisfy (2c + l)2 — 5(2<)2 = 1, so that 

(2c + 1) + 2tV~o = (2 + V5)2", (» = 1 , 2 , . . . ,) 

for example, 

(c,t) = (4,2), ( 8 0 , 3 0 ) , . . . , 

( i i n | ( l + V 5 ) = l + ^ + ( - ^ , 

where c and £ satisfy c2 — 5/2 = — 1 and so 

c + tV5 = (2 + V5)2*-1 (w = 1, 2, . . ,) 

for example, 

(M) = (2,1), ( 3 8 , 1 7 ) . . . . 
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