SUBAFFINE SCHEMES*

Klaus Hoechsmann

(received July 5, 1968)

Let an open, quasi-compact subscheme of an affine scheme be called <u>subaffine</u>. This note will centre on an elementary characterization of such schemes in terms of their topology and global sections. Thence one can obtain simplifications and generalizations of some well-known theorems, such as Serre's Criterion [2, Thm. 1].

In [1, II. 5.2.1], that criterion is stated for quasi-compact preschemes under the additional hypothesis that they be either separated or noetherian. This assumption (which we shall recognize to be superfluous) seems to enter into the theory via [1, I. 9.3], where it ensures that the pre-scheme in question is well-built, i.e., that it is the finite union of open, affine sets U_i whose pairwise intersections $U_i \cap U_j$ again are finite unions of open, affine sets. The chief virtue of this property is expressed in Lemma 1 below.

In the sequel, X will denote a quasi-compact pre-scheme, $A = \Gamma(X, O_X)$ its ring of global sections. As usual, for f in A, we write X_f for its domain of invertibility.

By the arguments of I. 9.3 of [1], we have

LEMMA 1. If X is well-built, the canonical map $A_f \rightarrow \Gamma(X_f, O_X)$ is an isomorphism for all $f \in A$.

A global section f will be called <u>affine</u>, if the set X_f is affine. Putting $Y = \operatorname{Spec} A$, the lemma shows that the canonical map $\phi: X \to Y$ induces an isomorphism $X_f \overset{\hookrightarrow}{\to} Y_f$ for each affine f, provided that X is well-built. This, however, will be the case, if X can be covered by affine sets of the form X_f , because $X_f \cap U$ is affine whenever U is (f affine or not). Since moreover each X_f is the precise pre-image of Y_f , we can conclude:

Canad. Math. Bull. vol. 12, no. 2, 1969

^{*}This note was written at the Summer Institute of the Canadian Mathematical Congress, of which the author was a Fellow.

LEMMA 2. If X can be covered by affine sets of the form X_f , the canonical map $\phi: X \to Y = Spec(A)$ is an open immersion. Its image is the union of all Y_f with f affine.

From this we deduce that X is subaffine, if and only if it has "many" global sections.

PROPOSITION 1. For a quasi-compact pre-scheme X the following statements are equivalent:

- (i) Sets of the form X_f form a base of the topology of X.
- (ii) X can be covered by affine sets of the form X_f .
- (iii) X is subaffine.

 $\frac{Proof.}{X_f} \cdot \overset{\text{(ii)}}{X_f} \Rightarrow \overset{\text{(ii)}}{\Rightarrow} \text{ Every open, affine } U \subseteq X \text{ must contain an } X_f \cdot \overset{\text{(ii)}}{X_f} \Rightarrow X_f \cap U \text{ is affine.}$

- (ii) \Longrightarrow (iii) The map φ of Lemma 2 identifies X with an open subscheme of Spec(A).
- (iii) \Rightarrow (i) Let X be open in Y = Spec(B). The topology of X is based on subsets of the form Y_b , $b \in B$. If $\rho: B \to \Gamma(X, O_X)$ is the restriction map, $Y_b = X_{\rho(b)}$.

Lemma 2 also allows an analogous characterization of affine schemes.

PROPOSITION 2. For a quasi-compact pre-scheme $\, X \,$, the following statements are equivalent:

- (i) X is subaffine; for any covering composed of sets X_f , the corresponding global sections f generate no proper ideal in A.
 - (ii) The affine global sections generate no proper ideal in A.
 - (iii) X is affine.

 $\underline{\text{Proof.}}$ (i) \Rightarrow (ii) By hypothesis, we find an affine covering by sets of type $\,X_{_{\rm f}}^{}$.

- (ii) \Rightarrow (iii) Ditto. But now the complement of $\varphi(X)$ is empty: it consists of the zeros of all affine global sections.
 - (iii) ⇒ (i) Trivial.

Using items (i) and (iii) of both propositions, and noting that (i) in each case depends on A only "modulo nilpotence", we get an extension of a well-known result (cf. [1, I.5.1]).

COROLLARY. Any pre-scheme X is affine or subaffine (resp.), if and only if X_{red} is.

 $\underline{\text{Proof}}$. We note that if X_{red} is affine or subaffine, it (and hence X) is quasi-compact, so that Proposition 2 is applicable.

As for Serre's Criterion, we refer back to [1, II. 5.2.1]. There it is shown that for any quasi-compact pre-scheme X, the cohomological triviality of quasi-coherent O_X -Modules implies condition (ii) of Proposition 2.

REFERENCES

- 1. A. Grothendieck, Éléments de géométrie algébrique. (Publ. Math. I.H.E.S., Paris, 1960, 1961).
- J.P. Serre, Sur la cohomologie des variétés algébriques. Jour. de Math. 36 (1957) 1-16.

University of British Columbia