ON EVERYWHERE DENSE IMBEDDING OF
FREE GROUPS IN LIE GROUPS

MASATAKE KURANISHI

In this note it will be proved that some kinds of Lie groups (including semi-
simple Lie groups) have an everywhere dense subgroup which is algebraically
isomorphic to the free group generated by two elements (Theorem 8).

In §1 characterizations of Lie groups which are approximated by discrete
subgroups! are given. This section is closely connected with a part of the results
of Malcev [4] and Matsushima [5], and some thecrems are slight modifications
of them (Theorems 2 and 3).

In §2 2 sufficient condition for Lie algecbras to be generated by two ele-
ments is given, and in §3 the main theorem is proved.

The writer owes very much to Messrs. Y. Matsushima, M. Gotd, and S. Mu-
rakami for their discussions and suggestions during the preparation of this note.

§1. Lie groups approximated by discrcie subgroups

Turorem 1. Let G be an n-dimensional local Lie group and U a neighborhood
of the identity e of G, in which a canonical coordinates sysiem is introduced.
Let H b2 a discrete subset of G satisfying the following conditions,

1) If V is any neighborhood of e such that VV'C U, then for any x,
y&E VNH, sy = H.

2) E contains hy, he, . . ., ha, which are linearly indedendeni in U (with
zespect to the coordinates system in U),

Then G is n nilpotent Lie group.

Proof, 1t is easily scen that if x and » ave elements of U, then
1) 1wyx v £ min(lx], [y]),
where x| is the euclidean distance between ¢ and x inU. Let p be the point of
H which is not equal to ¢ and [p| < || for every x & H. Then by (1) p is
commiutative with every element of A, in particular

huphi= = (1=1,2,...,n).
Hence
Riprhit =Y (i=1,2,. . .,n),

Received Qct, 26, 1950,

Y Cf. Definition 1. This notion is introduced by H. Toyama [7].

% Let x* be the one-parameter subgroup passing x such that x! = x, We use this notation
throughout this note.
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D hipr = hi =12,...,n).
By the same argument as above, we can deduce
PP =h* (1=1,2,...,n).
Hence p is contained in the center of G. Since H is a finite set, it is easy
to see that G/p* is an (n — 1)-dimensional local Lie group satisfying the condi-

tions of our Theorem. By the assumption of the induction, G/p* is a nilpotent
Lie group and p* is contained in the center of G. Hence G is also nilpotent.

DEeFINITION 1. A locally compact group G is said to be approximated by dis-
crete subgroups if there is a sequence of discrete subgroups D, (n=1,2,...,)
of G satisfying the following condition (A).

(A). For any open set O of G, there exists an integer I (depending on O) such.
that O N\ D, is not empty for every n=1.

CoRrOLLARY. Let G be a Lie group approximated by discrete subgroups. Then
G is nilpotent.

Proof is immediate from Theorem 1.

DerINITION 2. Lie algebras are said to be rational if the structure con-
stants are all rational numbers under the appropriated basis. Lie groups are
said to be rational if Lie algebras corresponding to G are rational.

The following two Lemmas are well known.

LemMmA 1. Let G be a rational, nilpotent, and simply connected Lie group.®
Then the space of G is homeomorphic to a Euclidean space, i.e., we can in-

troduce in G a cartesian coordinates system (x, . . ., ") satisfying the following
conditions:

1) The multiplication functions, fi(x',...,%%; 5, ...,y (=1,2,...,n)
expressed in these coordinates are polynomials of x',...,x%; 3!, .. .,y" with
rational coefficients. .

2) g)=(@x",...,1x") with fixed (x',. . .,2") is a one parameter subgroup-
of G.

LemMma 2. Let %', .. .,x" be a coordinates system of G satisfying the condi-

tions of Lemma 1. If x is an element of the center of G, then

Xy=x+y
for every element y of G.

DerFINITION 4. The coordinates system satisfying the conditions of Lemma 1

% It is known that there exist nilpotent Lie algebras which are not rational. Cf..
Malcev [4].
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is said to be rational. An element x = (x',. . .,x") is said to be rational (in
the rational coordinates system) if %' i=1,...,n) are vational numbers. A
subgroup D is said to be rational (in the rational coordinates system) if all the
elements of D are rational elements.

TueoreMm 2. Le/ G be an ﬁ-dz'mé%sz’oyml, nilpotent, simply connecied, and
rational Lie group. Introduce a rational ccordinatles system in G. Suppose {hat
there is given a rational discrete subgroup D. Then G is approximaied by discrete
subgroups Dy, containing D. Moreover, for every Dy, there exist d,'™, . . ., d,™
in Dm such that every element d of D,, can be wriiten uniquely as

d = afjmw”!’ L ,dn""”“”.

Proof. (By induction cn the dimension of ). Since D is nilpotent, there
exists an element d. of D, which is commutative withh every elements of D,
Since the one-parameter subgroup passing an element is unique in G, d; is con-
tained in the center of G. We can assume without loss of generality that
d:=(1,0,...,0)and x = (&0,...,0), (0<% 1) is not contained in 2. Lt
Z be the one-parameter subgroup passing d.. /7 is also nilpetent. raticnal,
and simply connected Lie group, and by associating to the coset coutaining
x =(x',...,x") the point (x% . ..,x") of (#-- 1)-dimensional euclidean space,
a rational coordinates system is introduced inn G/Z." Let ¥ he the image of
D in G/Z. Then G/Z satisfies the condition of our Theorem replacing 13 by
D’. By the assumption of induction G/7 is approximated by 2,/ coataining 1),
Let df,. . ..d,.;" be the generaters of D,/ us stated in the Theoremi, and put
d; = 0. d", ..., didi = ... ,dm, i=12,. . ,n - 1)

Then . s

d= 11_1 d;mi-g dif =g ¢ (my, . . Ma_y; Moy oo o hinsy),

where ¢ (my, . .., Mn_ys By o o ha)EZ, 5= (0,8% ..., 8%, and (g% ... ,8%)
e D,/. Since by Lemma 2 ¢ is the first coordinate of d, d™ = (0, wmd, . . .,
mid/"), and the product functions are polynomials with rational coefficients, it
is verified that there exists d, = (1/M, 0,. . .,0) (M is an integer) such that ¢
My, « v yhney) = @ymoec i with @ my, ..., 5,_, as an integer. If we take M
sufficiently large, the group D, generated by d, . . .,d, contains D, and {Dn}
approximates G.

THEOREM 3.8 Let G be a nilpolent and simply connected Lie group and D
a discrete subgroup of G. Assume that there is no connected proper subgroup

4 Cf. Lemma 2.
5) We omit the index (m) to avoid the inessential complications.
6 For the proof see Malcev [4], or Theorem of Matsushima [5].
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H of G containing D. Then G is rational and under the appropriated rational
coordinates system D is a rational group.

TueoreM 4. Let G = G/Z be a connected Lie group, where G is the universal
covering group of G, and Z is a discrete normal subgroup of G. The necessary
and sufficient conditions for G to be approximated by discrete subgroups are the
Sfollowing conditions.

1) G is nilpotent and rational Lie group.

2) Under the appropriated rational coordinates sysiem, Z is a rational
subgroup.

Proof is immediated from the corollary to. Theorem 1 and from Theo-
rem 2.

THEOREM 5. Let G be a connected Lie group. The necessary and suffiicient
condition for G to be approximated by discrete subgroups are that there exists a
discrete subgroup D of G salisfying the following condition.

There exists a neighborhood U of e which can be identified with neighborhood
of the corresponding Lie algebra L and U (\ D contains the basis of L.

Proof. Suppose that there exist D and U satisfying the above condition.
By Theorem 1, G is nilpotent. Let G be the universal covering group of G
and D be the subgroup of G covering D. Then by Theorem 3, G and D are
rational. Hence by Theorem 2, G is approximated by D, containg D. Since
D contains Z,” G is approximated by discrete subgroups D, which are the
images of D,.

Remark. There exist rational nilpotent Lie groups which cannot be ap-
proximated by discrete subgroups. For example we can easily construct such
a Lie group whose center is one-dimensional.

§2, Lie algebras generated by two elements

Let L be a Lie algebras over a field F of characteristic 0. L is said to be
generated by two elements @ and b if the minimal Lie subalgebra containing
Aa and pb (A, u=F) is L, Let ¥ be the algebraic closure of F, and let L be
the Lie algebra obtained from L by extending F to F. If L is semi-simple, so is
L, and vice versa. It is well known that the semi-simple Lie algebra L has the
following structure. Let & be a maximal abelian subalgebra of I containing
a regular element and let hy,. . ., 5 (& L) be a basis of . Then there exists
a system of vectors of an /-dimensional euclidean space, whose vectors are
called root vectors. To each root vector @ we can corelate an element e. of

" Suppose that G = G/Z.
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L so that hy,...,H, e.,e5,. .. constitute a basis of L, and the structure for-
mulaes of L have the following form
[%, e.] = (ad)ea,
where & =t:2l hi, « = (ay,. . .,a1), (ad) = g«;x‘.
Lo, €] ={ 0 a+B*0 i.s not a root,
Na,seasps Nep %0, a+ B %0 1is a root,
[es; e.a]= ha= fi—", a'h;.
Root vectors are distinct among each other, and if a 'xsr a root vector, then —a is
also a root vector, There exist root vectors a'’,. . ., a¥ such that [e,, e_],
. .sle, e 0] form a basis of H.
THEOREM 6. Lel L be a sems-simple Lie aigebra over a field F of charac-
teristic 0. Then there exist two elemenis a and b which generate L.
Proof. Put a = g} e, and h =>4h;. Then
8 = [k, a] = S)(ad)e.,
2= Ty [ 1] = Sladyen,

sk=[h...,[0al.. L3 =S (ad) e,

‘Take 4 = (4, ..., ) such that ((a —B)1) = 0 for every root « and 3. Then
a, Sy, 83, - . . ,Sn-1-; are linearly independent. Let L* be the minimal subalgebra
over F of I containing them. Then L* contains each e,, hence it contains also
[ee, e.a9], 4=1,2,...,). Thus L* =1L,

To summarize the above results, there exist finite number of monomials
Pi(x,y)=[...[xy]...Jsuch that every element of L is a linear combina-
tion of Pi(a, k) with coefficients of 7. Take a basis p;,...,pn of L and put

SV kP = PS80, S 000)).
k=1 j=1 =1

Then 7/ are polynomials of &%, %/ with coefficients in F. Let M(&',...,&"; 7',
o, n_.
.,7") be the matrix (r/*) and @ =>)aipi, h = gb’p;. Then the rank of
. i=1 =
Ma;,...,a"; b',...,b" is n. Hence there: exist elements ¢',...,c" d,

. ..,d" of F such that the rank of M(c¢',...,c”; d',...,d")is also n. Then
L is generated by ¢ = ?::;: c'pi, d =§;d"1>;.
Remark 1. Let L be a Lie algebra over a field /' of characteristic 0. By
Levi’s theorem L is decomposed into the form
L=S+R, SNKk=0,
where R is the radical of L and S is a seri-simple subalgebra. Associating a
linear transformation: R 2 x - s, 5] & R for every element s of S, a representa-
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tion of S is given. The representation of S is characterized by its weights.
If the weights of this representation satisfy some conditions, the proof of Theo-
rem 6 is also applicable for these Lie algebras.

§3. Groups generated by two elements

A topological group is said to be generated by two elements @ and b, if the
minimal closed subgroup containing @ and & is G.

THEOREM 7. Let G be a connected and perfect Lie group and L the Lie alge-
bra corresponding to G. If L is generated by two elements, so is G. Moreover,
we can take the generators a and b in an arbitrary small neighborhood of the
identity e.

Proof. Since L is generated by two elements, there exist @ and 4 in an arbi-
trary small neighborhood of e, such that a* and »* generate G. Denote by H,
the closed subgroup generated by a"*" and b¥%", and let H,® be the component
of the identity in H,, then

1N HCHC..., H'CH!C ...,
Q H,=G.
Since H,® is connected, there exists an integer N such that H=H,'=H?, ,=.. .,

and so for every element k2 of Hp,,n=1,2,. ..

(2) h~*Hh = H.

From (1) and (2), H is a closed normal subgroup of G and G/H is approximated
by discrete subgroups Hyv.z/H, k =0,1,2,. ... By Theorem 1 G/H is nilpotent,
but on the other hand G is perfect. Hence G/H = {e}. This shows that G is
generated by a®’ and b7,

Our next aim is to take generators ¢ and b which do not satisfy any rela-
tions. For that purpose we make some preparations.

Let A be a compact metric space and §#(A) the family of all the closed
subsets of A. Let U:(B) be the z-neighborhood of BC A. For M and N
E §(A), put

a(M,N) = inf =.
Ce(M2N
Us(N)2M

It is well known® that by this (Hausdorff) metric a, % (A) becomes a com-

pact space.

LemMma 3. Let G be a connected perfect Lie group. If a and b generate
G, then there exists a neighborhood V of e such that any ¢’ & Va and ¥ & Vb
generate G.

8 Cf. Chapter 2, §5 of Alexandroff and Hopf [1].
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Proof. Suppose that there exists no neighborhood V of e as stated in the
Lemma. Then there exist two sequences {a,} and {b.} converging to @ and b
respectively, such that the closed subgroups G, generated by «, and b, are
proper subgroups of G.

Take a neighborhcod U of e in which we can introduce a canonical coordi-
nates system, and put

K,=G,NT.
Since K, & F(U), we can select a subsequence {Ky} of {Ka} converging to K
€ F(U) by the above metric @. Since @ and b generate G, it is not hard to
show that K = U. Hence there exists an integer N such that Ky contains #?
linearly independent points p; (1 =1,2,...,7) of K = U. Let G,® be the com-
ponent of the identity in Gy. Then
PTGy C Gy  fori=1,2,...,r.

Hence G»" is the normal subgroup of G. In the factor group G/G,° the dis-
crete subgroup Gy/Gy® satisfies the conditions stated in Theorem 5, hence G/G."
is a nilpotent Lie group. This is a contradiction to the fact that G is a perfect
group.

LemMMma 4. Let G be a Lie group which is not solvable and let U be a
neighborhood of e in which we can introduce the canonical coordinates system.
Suppose that there exist open sets O and O’ contained in U, a monomial M(x, y)
= f[ x™y™, and an element s of G satisfying the following conditions :

HFor every pe= O and g &= O, M(p,q) = s.
Then the monomial M(x, y) is trivial.

Proof. 1) Suppose at first that G is a semi-simple linear group. Let L be the
Lie algebra of matrices corresponding to the linear group G. Then L = {ix*|x*
e L, i: complex number} is a complex semi-simple Lie algebra. Every element
% & U can be written as (x/)* = x* = exp Ax*, x* = (x*/)& L. {x|x = exp &%,
x*e& L) generates a Lie group G containing G. Fix p=exp p*£0, ¢ 0,
and x = exp x* of G, and define

% = exp (ip* + (1 — £)x*), t: complex number,
and (fi () = M(%t,q).
Then f#(t) is an analytic function of ¢ and is constant (= s;/) if ¢ is real and
sufficiently near to 1. Hence f;/(f) is constant for every value of ¢, that is,
M(x, q) = s for every element x = exp z*, x* L. Define
x* = exp Ax*, s¥ &L

9 Let r be the dimension of G.
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and (gi'(3)) = M (2, q).
Then g;(A) is an analytic function of the complex number A and constant for
real value of i, hence M(x,q) =s for x =exp x* x*= L. Repeating these
arguments, we can deduce that

M(x,y) = s for any elements x = exp x*, y = exp y*, s*&L, y*& L.

But every complex semi-simple Lie algebra contains a subalgebra which is
isomorphic to the unimodular Lie algebra of degree 2. Hence it is sufficient
to prove the case when G is the unimodular group of degree 2. Put!®

1 1, 1 0
x=( ‘s yA=[ ],
0 1 A1

then
e (1 mi 1 0 g) *
M(x’y)‘)=n( ] ]-‘:[ ]’
7 =I0Q 1 nik 1 * *
gl =mny . . .;mpdt + . L.
Hence if M(x,y) is not trivial, F(x, y) = s for some x = exp x*, y = exp y*
of G.

(I1) Suppose that G is a semi-simple Lie group. Then there exists a discrete
normal subgroup Z such that G/Z is isomorphic to a linear group. Consulting
(I) and the discreteness of Z, it is easy to prove the Lemma in this case.

(III) Let G be a Lie group which is not solvable. Let R be the radical of
G. Then G/R is semi-simple and = {¢}. Suppose that the monomial M (x, y)
satisfies the conditions of our Lemma for G, then M(x, y) also satisfies the
same conditions for G/R. Hence by (II) M (x,y) is trivial.

THEOREM 8. Let G be a connected perfect Lie group. Suppose that the Lie
algebra corresponding to G is generated by two elements.' Then G contains an
everywhere dense free group with two generaters, that is, there exists a subgroup
F of G satisfying the following conditions.

(1) F is everywhere dense in G.

(2) F is isomorphic to a free group ¥ generated by two elements.

Proof. The element of § is a monomial M (2, ») = ‘135””77”“ T = {Mn(&, ),
n=12....} Let An = {(x, )| Ma(x,y) =TL2™ y" =¢, (x,9) =G X G},

By Theorem 6, G is generated by two elements p and ¢q. By Lemma 3,
there exist open sets P= p and @ 3¢ such that p’ and ¢ (Y EP, ¢ = Q)

10) See Hayashida [2].
) Consulting the remark 1 of Theorem 5, we can construct perfect Lie algebras which
can not be generated by two elements.
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generate G. By Lemma 4, A, N\ (P x Q) is nowhere-dense in P x @. Hence
by Baire’s theorem, there exists ($, ¢) € P x @ such that (3, q) & U An. Let
. n=1

F be the subgroup of G algebraically generated by p and g, then F satifies our
conditions.

CoroLLARY. Every connected semi-simple Lie group contains an everywhere

dense free group with two generators.

1
[2]

[31

[4]

[5]

(61
7

REFERENCES
Alexandroff and Hopf, Topologie, Springer, (1935).
Hayashida, On faithful representations of free groups, Kodai Math. Sem. Rep. No. 2,

P27, (1949).

Kuranishi, Two elements generations on semi-simple Lie groups, Kédai Math. Sem.
Rep. Nos. 5 and 6, pp. 9-10 (1949).

Malcev, On a class of homogeneous space, Izvestiya Akad. Nauk SSR. Ser. Math, 13
(1949) (in Russian).

Matsushima, On the discrete subgroups and homogeneous spaces of nilpotent Lie

‘groups (in this issue).

Pontrjagin, Topological groups, Princeton, (1939).
Toéyama, On discrete subgroups of a Lie group. Koédai Math. Sem. Rep. No. 2, pp.
36-37, (1949).

Mathematical Institute,
Nagoya University

https://doi.org/10.1017/50027763000010059 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000010059



