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Abstract

In this paper we focus on the asymptotic properties of the sequence of convex hulls which
arise as a result of a peeling procedure applied to the convex hull generated by a Poisson
point process. Processes of the considered type are tightly connected with empirical point
processes and stable random vectors. Results are given about the limit shape of the convex
hulls in the case of a discrete spectral measure. We give some numerical experiments to
illustrate the peeling procedure for a larger class of Poisson point processes.
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1. Introduction

Consider a Poisson point process (PPP) π = πα,ν with points scattered over R
d . Identify

R
d \ {0} with R

1+ × Sd−1, where Sd−1 is the unit sphere. Assume that the intensity measure
of this process µ is of the form

µ = θ × ν. (1)

Here θ is the absolutely continuous measure on R
1+ determined by the density function

dθ

dλ
(r) = αr−α−1, r > 0,

λ is the Lebesgue measure in R
1, and α > 0 is a parameter. The spectral measure ν is a bounded

measure on the σ -algebra B(Sd−1) of Borel subsets of Sd−1. Without loss of generality, we
assume that ν(Sd−1) = 1. We denote by Sν the support of ν, and by cone(Sν) the cone generated
by Sν .

Representation (1) means that, for any Borel A ⊂ R
1 and E ⊂ Sd−1,

µ{x : |x| ∈ A, ex ∈ E} = θ(A)ν(E),

where ex = |x|−1x for all x ∈ R
d .
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Let B(0, r) denote the ball of radius r centered at the origin. It is easily seen that, for
any δ > 0, µ(B(0, δ)) = ∞ and µ(Rd \ B(0, δ)) < ∞, that is, with probability 1, in any
neighborhood of the origin there are infinitely many points of π while π(Rd \B(0, δ)) is finite.

Our interest in the point processes controlled by (1) is explained by the following facts.
Let ξ (1), . . . , ξ (n) be independent copies of a random vector ξ with the distribution Pξ such

that the function P{|ξ | > r} regularly varies as r → ∞ with exponent −α and the measures
(νr )r defined by

νr(E) = P{eξ ∈ E : |ξ | > r}, E ∈ B(Sd−1),

weakly converging to ν on Bc(0, τ ) for any τ > 0.
Consider the empirical point process βn generated by ξ (1), . . . , ξ (n) or, more precisely, by

the random set
ς

(n)
1 = {b−1

n ξ (1), . . . , b−1
n ξ (n)} = {ξ̂ (1), . . . , ξ̂ (n)},

where
bn = inf{r : n P{eξ ∈ E : |ξ | > r} ≤ 1}.

It is easily seen that the point process βn weakly converges to π = πα,ν ; see, e.g. [4,
Proposition 3.21]. Thus, each πα,ν is a weak limit of a sequence of empirical processes.

It can be easily established that πα,ν admits the following representation:

πα,ν =
∞∑

k=1

δ{�−1/α
k εk}, (2)

where �k = ∑k
i=1 γk for the sequence (γk)k∈N of independent, identically exponentially dis-

tributed random variables with mean 1, and (εk)k∈N is a sequence of independent and identically
distributed (i.i.d.) random elements in Sd−1 with common distribution ν, independent of
(γk)k∈N; see, e.g. [2]. It is worth recalling that the point processes πα,ν naturally arise within
the framework of the theory of stable distributions. For example, if α ∈ (0, 1) then the
series ζ = ∑

x(j)∈πα,ν
x(j) converges almost surely (a.s.) and has the d-dimensional stable

distribution; see, e.g. [2], [3], and [5, Chapter 2].

Definition 1. We say that the underlying distribution Pξ and the corresponding spectral measure
ν (as well as the point process πα,ν) are nonunilateral if ν is supported by a set Sν ⊂ Sd−1

such that cone(Sν) = R
d .

In this paper we focus on the sequence of convex hulls that arise from the peeling procedure
introduced in [1]. In what follows, C(A) denotes the convex hull generated by A ⊂ R

d and
ext C denotes the set of extreme points of a convex set C. If C is a convex polyhedron then
ext C is the finite set of its vertices.

It is convenient to start with the binomial process (ς
(n)
1 ). Let C(n)

1 = C(ς
(n)
1 ). If the measure

Pξ , the distribution of ξ , is nonunilateral then, a.s., C
(n)
1 is a polyhedron and, furthermore,

ς
(n)
1 ∩ ∂C

(n)
1 = ext C(n)

1 .

Define
ς

(n)
2 = ς

(n)
1 \ ext C(n)

1 , C
(n)
2 = C(ς

(n)
2 );

then
ς

(n)
3 = ς

(n)
2 \ ext C(n)

2 , C
(n)
3 = C(ς

(n)
3 ),

and so on. Obviously, the sequence of these nonempty convex hulls, (C(n)
k )k∈N, is finite and its

length is random.
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If 0 < α < 2 and ν is nonunilateral, then (C
(n)
0 , C

(n)
1 , . . . , C

(n)
k ) as n → ∞ converges in

distribution to (C0, C1, . . . , Ck) for any fixed k; see [1]. Consequently, the sequence #{ext C(n)
k }

is bounded in probability as n tends to ∞. Here #A denotes the cardinality of the set A.
In order to learn how C

(n)
k relates to Ck when k = kn → ∞, we need, first, to learn how

Ck behaves as k → ∞. It should be noted that C
(n)
k can be regarded as the multidimensional

analog of the order statistics. So, the asymptotic properties of C
(n)
kn

are of great interest from
the viewpoint of mathematical statistics.

We now generalise the construction of the peeling sequence to an infinite set of points,
ς = ς1, the support of the random measure πα,ν . We may apply to ς the same peeling
procedure as in the case of the finite set ς

(n)
1 . As a result, we obtain the sequence of sets

ς1, ς2, . . . , the sequence of their convex hulls C1, C2, . . . , and the sets of extreme points
ext Ck, k ≥ 1. Furthermore, ςk+1 = ςk \ ext Ck a.s. If ν is nonunilateral then 0 ∈ Ck a.s., Ck

is a.s. a polyhedron, and ςk ∩ ∂Ck = ext Ck for all k.
Intuitively, we expect that the asymptotic behavior of Cn is rather regular. It is convenient

to state our basic conjecture in the following way. Define

Ĉn = ρ−1
n Cn, where ρn = max

x∈Cn

|x|.

Conjecture 1. If ν is nonunilateral then there exists a nonrandom set Ĉ such that

lim
n→∞ dH (Ĉn, Ĉ) = 0 a.s.

The set Ĉ (if it exists) is called the limit shape of the sequence Ĉn. It is easy to show that if
such a Ĉ exists then it is certainly nonrandom. Indeed, labeling the points of ς in the descending
order of their distances from the origin we obtain a sequence x(1), x(2), x(3), . . . such that, a.s.,

|x(1)| > |x(2)| > |x(3)| > · · · .

It is worth noting that the joint distribution of |x(1)|, |x(2)|, . . . , |x(n)| is absolutely continuous
with a density of the form

pn(r1, r2, . . . , rn) = αn(r1r2 · · · rn)−α−1 exp(−ν(Sd−1)r−α
1 ) 1{r1>r2>···>rn} .

Let (η, ε), (η1, ε
(1)), (η2, ε

(2)), . . . be i.i.d. with common distribution

P{η > r, ε ∈ E} = e−rν(E).

According to (2), we have

{x(j)}∞j=1
d= {ε(j)(η1 + · · · + ηj )

1/α}∞j=1, (3)

which implies that the event {limn→∞ Ĉnexists} belongs to the σ -algebra I of the events
invariant with respect to all finite permutations of the random vectors {(ηk, ε

(k)), k ∈ N}. Here,
‘

d=’ denotes equality in distribution. By the Hewitt–Savage zero–one law, I is trivial. Since the
limit set Ĉ = limn→∞ Ĉn is I-measurable, we conclude that Ĉ is constant with probability 1.

Now we give a first example where the existence of the limit shape is proved.

Example 1. Let Sν consist of d+1 unit vectors e(1), . . . , e(d+1) such that cone(e(1), . . . , e(d+1))

coincides with R
d . Then πα,ν is decomposed on d + 1 one-dimensional independent PPPs

of the form (x
(i)
k = |x(i)

k |e(i)). Since ν is nonunilateral, the points x
(i)
k , i = 1, 2, . . . , d + 1,

serve as vertices of Ck, k = 1, 2, . . . . Moreover, |x(i)
k | d= (νi)

1/α(η1 + · · · + ηk)
1/α and

ρnn
1/α → t+ = max1≤i≤d+1(νi)

1/α a.s. Then the limit shape Ĉ is the convex polyhedron
with vertices v(i) = (ti/t+)e(i) and ti = (νi)

1/α, i = 1, 2, . . . , d + 1.
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Theorems 1 and 2, stated and proved below, deal with the case where a nonunilateral ν is
supported by a finite number of unit vectors. If #(Sν) > d +1 then the situation becomes much
more complicated.

Intuitively, we expect that, say, in the case of ν uniformly distributed over Sd−1 the unit
ball arises as the limit shape. However, it is not easy to prove this formally. The authors
tried to verify the credibility of this conjecture using the Monte Carlo simulation. Obviously,
representation (2) provides a basis for such a simulation. The results of the simulation presented
in Section 4 make this conjecture very credible.

2. Almost-sure convergence of the peeling

In this section we assume that the spectral measure ν of the process πα,ν is atomic, i.e. it
is supported by a finite number of the points e(1), . . . , e(l) belonging to the unit sphere Sd−1.
Furthermore, it is also assumed that cone{e(1), . . . , e(l)} = R

d . Denote by νi = ν({e(i)}), i =
1, 2, . . . , l, the atoms of ν.

Then the considered point process πα,ν is a superposition of the one-dimensional independent
PPPs defined on the rays

Li = {x : x = te(i), t > 0}, i = 1, . . . , l,

with intensities

µi(A) = νiα

∫
A

r−α−1dr, A ∈ B(Li ). (4)

Definition 2. Let A = {a(1), . . . , a(m)} ⊂ R
q be a finite set with m ≥ d + 1. The set A is

extreme if ext C(A) = A.

Theorem 1. Let Ck(πα,ν) be the kth convex hull of the PPP πα,ν . Denote by C∞ the convex
hull generated by A = {ν1/α

1 e(1), . . . , ν
1/α
l e(l)}. If A is extreme then

dH (k1/αCk(πα,ν), C∞) = O

(√
lln k

k

)
a.s. as k → ∞,

where lln k = ln ln k. The polyhedron C∞ determines the limit shape of the convex hulls
Ck(πα,ν).

Remark 1. If σ is uniformly distributed over its support in the sense that νi = l−1, then the
total number of vertices of C∞ equals l. Furthermore, the vertices lie on the sphere of radius
l−1/α . Loosely speaking, the convex hulls Ck(πα,ν) become round as k → ∞.

If the condition that A is extreme is omitted, we can state the following result.

Theorem 2. Let Ck(πα,ν) be the kth convex hull of πα,ν . Denote by C∞ the convex hull
generated by A = {ν1/α

1 e(1), . . . , ν
1/α
l e(l)}. Then

dH (k1/αCk(πα,ν), C∞) → 0 a.s. as k → ∞. (5)

Remark 2. Let f be a continuous homogeneous functional of degree γ defined on convex sets.
Theorem 2 implies that

kγ/αf (Ck(πα,ν)) → f (C∞) a.s.
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3. Proofs

3.1. Auxiliary lemmas

Let η1, η2, . . . be i.i.d. random variables with the standard exponential distribution, so that
a = Eη1 = var η1 = 1. Define the sum

�n = η1 + · · · + ηn. (6)

By the law of the iterated logarithm there exists an almost-sure finite random variable κ with
values in N such that, for n ≥ κ ,

|n−1�n − 1| < 2

√
lln n

n
a.s.

Consider a function h(z) = z−1/α . If |z − 1| ≤ 1
2 then |h(z) − h(1)| ≤ Lα|z − 1|, Lα < ∞.

Let n′ = min{n : 2
√

lln n/n < 1
2 }. If n ≥ max(n′, κ) then

|h(n−1�n) − h(1)| ≤ 2Lα

√
lln n

n
,

and, therefore, for n ≥ κ = κ(ω),

|�−1/α
n − n−1/α| ≤ 2Lα

√
lln n

n1/α+1/2 a.s. (7)

We call any countable set of points from R
d such that, for any δ > 0, there are a finite

number of points belonging to the set that lie outside the ball {x : |x| ≤ δ} the configuration.
So the point 0 is the limit point of any configuration.

We call a configuration ς nonunilateral if all convex hulls, Ck = Ck(ς), k = 1, 2, . . . ,
generated by ς contain 0 as an interior point. It is evident that, under the conditions of
Theorem 1, the random measure πα,ν is a.s. supported by a nonunilateral configuration ς .

Denote by int(ς) the set of the interior points of ς , i.e. int(ς) = {x : x ∈ ς, x /∈ ∂C1(ς)}.
Let K be the set of nonunilateral configurations such that no d + 1 points lie on the same
hyperplane.

Lemma 1. If ς1, ς2 ∈ K and ς1 ⊂ ς2, then, for all k ∈ N, Ck(ς1) ⊂ Ck(ς2).

Proof. It is trivial to prove that C1(ς1) ⊂ C1(ς2). If x is an interior point of C1(ς1), i.e. x ∈
int(C1(ς1)), then x is also an interior point of C1(ς2); therefore, int(C1(ς1)) ⊂ int(C1(ς2)),
and this implies that

C2(ς1) = C1(int(C1(ς1))) ⊂ C1(int(C1(ς2))) = C2(ς2).

By induction, the lemma is proved.

Lemma 2. Let ς, ς ′ ∈ K be such that ς ′ ⊂ ς and #(ς ′ \ ς) = m < ∞. Then

Ck+m(ς) ⊂ Ck(ς
′) ⊂ Ck(ς), k ∈ N. (8)

Proof. Since ς, ς ′ ∈ K and 0 is the only limit point of both configurations, all the
Ck(ς), k = 1, 2, . . . , are polyhedrons. Note that, for all k, l ≥ 1,

Ck+1(ς) = C1(int(Ck(ς) ∩ ς)) (9)

https://doi.org/10.1239/aap/1282924056 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1282924056


Peeling procedure for a PPP SGSA • 625

and
Ck+l (ς) = Ck(int(Cl(ς) ∩ ς)). (10)

First, let m = 1. Note that the inclusion C1(ς
′) ⊂ C1(ς) follows directly from the relation

ς ′ ⊂ ς . Define {a} = ς \ ς ′. Consider two possible cases, a /∈ C1(ς
′) and a ∈ C1(ς

′).
Let a /∈ C1(ς

′). In this case a ∈ ∂C1(ς), i.e. C1(ς
′) �= C1(ς). This implies that int(ς) ⊂ ς ′.

Utilising (9) with k = 1 yieldsC2(ς
′) ⊂ C1(ς). Since the inclusionC1(ς

′) ⊂ C1(ς) is obvious,
we conclude that (8) holds for k = m = 1.

Assume that (8) holds for m = 1 and all k ≤ n, and show that it also holds for m = 1 and
k = n + 1. By the induction assumption we have

Cn+1(ς) ⊂ Cn(ς
′) ⊂ Cn(ς). (11)

Since int(Cn(ς
′) ∩ ς ′) = int(Cn(ς

′) ∩ ς), we obtain, taking into account (9),

Cn+l (ς
′) = C1(int(Cn(ς

′) ∩ ς)).

From the right-hand side inclusion of (11), it follows that Cn+1(ς
′) ⊂ Cn+1(ς). Furthermore,

from the left-hand side inclusion of (11) we conclude that

int(Cn+1(ς) ∩ ς) = int(Cn(ς
′) ∩ ς ′).

Applying (10) yields Cn+2(ς) ⊂ Cn+1(ς
′). Thus, (8) holds for k = n + 1 and m = 1, i.e. the

case a /∈ C1(ς
′) is completed.

If a ∈ C1(ς
′) then there exists an integer n0 such that

Cn(ς
′) = Cn(ς

′), n = 1, 2, . . . , n0, Cn0+1(ς
′) �= Cn0+1(ς

′).

Furthermore, a /∈ Cn0+1(ς
′). Obviously, (8) is trivial for m = 1 and n = 1, 2, . . . , n0. Hence,

it remains to apply the above argument to the configurations Cn0+1(ς)∩ς and Cn0+1(ς
′)∩ς ′.

Thus, the lemma is proved for all k and m = 1.
Now, let m > 1, i.e. ς \ ς ′ = {a1, . . . , am}. Consider the configurations

ς0 = ς, ς1 = ς \ {a1}, ς2 = ς \ {a1, a2}, . . . , ςm = ς \ {a1, . . . , am} = ς ′.

Note that the neighboring configurations differ by a single point. So, we may apply (11).
Applying (11) yields

Ck+m(ς) ⊂ Ck+m−1(ς1) ⊂ Ck+m−2(ς2) ⊂ · · · ⊂ Ck(ςm) = Ck(ς
′) ⊂ Ck(ς).

This completes the proof.

3.2. Proof of Theorem 1

Lemma 3. Let e(i) for i = 1, . . . , l with l ≥ d + 1 be unit vectors such that

cone{e(1), . . . , e(l)} = R
d .

If A = {ν1/α
1 e(1), . . . , ν

1/α
l e(l)} is extreme then there exist r > 0 and ε depending only on A and

on the dimension d such that the set {r1ν
1/α
1 e(1), . . . , rlν

1/α
l e(l)} is extreme for all (r1, . . . , rn)

such that |ri/r − 1| < ε, i = 1, . . . , l.

Proof. The proof of this lemma is evident.
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Proof of Theorem 1. Let us label the points x
(i)
1 , x

(i)
2 , . . . lying on the ray Li in descending

order of their norms. Obviously, the sequences {x(i)
n , n ∈ N}, 1 ≤ i ≤ l, are jointly indepen-

dent. By (4),
{|x(i)

n |} d= {ν1/α
i �

−1/α
n },

where �n is defined as in (6).
Let ε > 0. According to (7), there exists n0 = n0(ω) such that, for all i = 1, . . . , l and all

n ≥ n0,
|x(i)

n − ν
1/α
i n−1/α| ≤ 2Lαn−1/α−1/2

√
lln n (12)

and
2Lαn−1/2

√
lln n < ε.

Let the configuration ς ′ be formed by the points x
(i)
n , n ≥ n0, i = 1, . . . , l, i.e.

ς ′ =
l⋃

i=1

{x(i)
n0

, x
(i)
n0+1, . . . }.

Consider, for all k ≤ 1,

A+
k = {(n0 + k − 1)−1/α(1 + εk)ν

1/α
1 e(1), . . . , (n0 + k − 1)−1/α(1 + εk)ν

1/α
l e(l)}

and

A−
k = {(n0 + k − 1)−1/α(1 − εk)ν

1/α
1 e(1), . . . , (n0 + k − 1)−1/α(1 − εk)ν

1/α
l e(l)},

where

εk = 2Lα

√
lln(k + n0 − 1)

k + n0 − 1
.

By virtue of (12), the points x
(1)
n0 , . . . , x

(l)
n0 hit the layer C(A+

1 ) \ C(A−
1 ). By Lemma 3, the

convex hull C1(ς
′) is the polyhedron and

ext C1(ς
′) = {x(1)

n0
, . . . , x(l)

n0
}.

Similarly,
{x(1)

n0+1, . . . , x
(l)
n0+1} ⊂ C(A+

2 ) \ C(A−
2 ),

and, therefore, it is an extreme set, i.e.

ext C({x(1)
n0+1, . . . , x

(l)
n0+1}) = {x(1)

n0+1, . . . , x
(l)
n0+1}.

It is evident that
ext C2(ς

′) = {x(1)
n0+1, . . . , x

(l)
n0+1}.

Continuing in this way we obtain the kth convex hull Ck(ς
′) such that

ext Ck(ς
′) = {x(1)

n0+k−1, . . . , x
(l)
n0+k−1} ⊂ C(A+

k ) \ C(A−
k ).

The last inclusion implies that

dH ((k + n0 − 1)1/αCk(ς
′), C∞) ≤ εk,
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where C∞ is the convex hull generated by A = {ν1/α
1 e(1), . . . , ν

1/α
l e(l)}. From (8), it follows

that
Ck+m(ς ′) ⊂ Ck+m(πα,ν) ⊂ Ck(ς

′) with m = (n0 − 1)l.

Therefore,

ext Ck+m(πα,ν) ⊂ C(A+
k ) \ C(A−

k+m′) with m′ = (n0 − 1)(l − 1).

So, for all sufficiently large k,

dH ((k + m)1/αCk+m(πα,ν), C∞) ≤ 2εk.

Since m is fixed, the theorem follows.

3.3. Proof of Theorem 2

Let ε be an arbitrary positive real. Hereafter, we denote by A(ε) the ε-neighborhood of a
set A:

A(ε) = {x : d(x, A) < ε}.
The set A1 = A ∩ ∂C(A)={ν1/α

j e(j), j ∈ J } is extreme. From the process πα,ν , we con-
struct a new PPP π1 obtained by deleting all points on the rays Lj = {x | x = te(i), t > 0},
j ∈ J . By Lemma 1 we have, for all n ∈ N,

Cn(π1) ⊂ Cn(πα,ν). (13)

Since A1 is extreme and C∞ = C(A) = C(A1), Theorem 1 yields the convergence

dH (n1/αCn(π1), C∞) → 0 a.s. as n → ∞. (14)

From (13) and (14), there exists n1 ∈ N such that, for all n > n1,

C∞ ⊂ n1/αCn(π1)
(ε) ⊂ n1/αCn(πα,ν)

(ε). (15)

It is easy to see that there exists ν̃i , i ∈ I , such that the set

A2 = {ν1/α
j e(j), j ∈ J ; ν̃

1/α
i e(i), i ∈ {1, . . . , l} \ J }

is extreme and satisfies the relation

C∞ ⊂ C(A2) ⊂ C(ε)∞ . (16)

From πα,ν we construct a second PPP π2 by adding the independent point processes (π̃i)i∈J

such that (π̃i)i∈J are independent of πα,ν , and, for each i ∈ J , the spectral measure of π̃i is
supported by Li and the intensity measure is µ̃i(A) = (ν̃i − νi)α

∫
A

r−α−1dr .
According to Theorem 1 we have

dH (n1/αCn(π2), C(A2)) → 0 a.s., (17)

and using Lemma 1, we obtain, for all n ∈ N,

Cn(πα,ν) ⊂ Cn(π2). (18)

From (16), (17), and (18), there exists n2 ∈ N such that, for all n > n2,

n1/αCn(πα,ν) ⊂ n1/αCn(π2) ⊂ C(A2)
(ε) ⊂ C(2ε)∞ . (19)

According to (15) and (19), for all n ≥ max(n1, n2), we have

n1/αCn(πα,ν) ⊂ C(2ε)∞ and C∞ ⊂ n1/αCn(πα,ν)
(2ε).

By the definition of dH , this means that dH (n1/αCn(πα,ν), C∞) ≤ 2ε, and we obtain (5).

https://doi.org/10.1239/aap/1282924056 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1282924056


628 • SGSA Y. DAVYDOV ET AL.

4. Simulation and conjectures

We now present the results of some simulations to investigate the limit shape and the
asymptotic behavior of basic functionals in the case of continuous (namely uniform) spectral
measures.

The point processes {x(j), j ∈ N} are simulated using representation (3). Let C1,n be the
convex hull generated by the first n points x(1), x(2), . . . , x(n), and let κn,1 = minx∈∂C1,n |x|.
Since the points of the simulated PPP are ordered by their distances from the origin, it is evident
that C1,n′ = C1 with n′ = min{n : κn,1 > |x(n+1)|}. This fact is used to construct the successive
convex hulls (Ck)k∈N.

Figure 1 illustrates the behavior of the peels. The observed closeness of the peels to the unit
circle also supports our conjecture that the limit shape exists, and is a circle.

It is of great interest to gain some insight into the possible behavior of the perimeter L, the
area A, and the total number of vertices N of the convex polygons Ck, k = 1, 2, . . . . It seems
evident that L(Ck) and A(Ck) tend to 0 as k → ∞. Intuitively, we expect that N (Ck) → ∞
as k → ∞.

Figure 2(a)–(c) represent the logarithm of L(Ck), A(Ck), and N (Ck) as functions of ln(k),
calculated on a simulated PPP for different values of α. The observed closeness of the points
to straight lines makes it reasonable to expect that, in a sense,

L(Ck) � k−γl , A(Ck) � k−γa , N (Ck) � kγn, (20)

with γl and γa depending on α, whereas it seems that γn does not dependent on α.
The next step consists in estimating the exponents and possibly the dependence on α. Using

independent replications of PPPs, we estimate the three exponents defined in (20) for different
values of α. Figure 2(d) represents the logarithm of estimated exponents versus ln(α). For the
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Figure 1: The normalized simulated shapes of Ĉ25, Ĉ50, Ĉ100, and Ĉ150 for the case in which α = 3
2 and

the spectral measure is uniform (dotted lines). The unit circles are denoted by solid lines.
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Figure 2: Log-log representations of the values of (a) L(Ck), (b) A(Ck), and (c) N (Ck) as functions
of k. The functionals are calculated on a simulated PPP for different values of α, α = 0.5, 1.0, 1.5, and
the uniform spectral measure. (d) The estimated values of the logarithm of exponents defined in (20)
versus ln(α) and the best linear fittings ln γ̂a = −0.97 ln α + ln 2.95, ln γ̂l = −0.97 ln α + ln 1.48, and
ln γ̂n = 0.06 ln α + ln 0.48. Three exponents are estimated for each α on 1000 independent replications.

three cases, the linear approximation seems reasonable. According to the estimated coefficients
of the straight lines (see the equations in the caption of Figure 2), it looks very credible that the
true values are

γl = 3

2α
, γa = 3

α
, and γn = 1

2
. (21)

The next plausible reasoning may confirm this conclusion. If we admit the value γn = 1
2 then,

after the kth iterative step of the peeling procedure, the number of deleted points should be of
the order of

∑k
j=1 N (Cj ) � k3/2 and

ρk � max
x∈Ck

|x| � (k3/2)−1/α.

By Remark 2, this convergence would lead to L(Ck) � ρk � k−3/(2α) and A(Ck) � ρ2
k �

k−3/α , which is in agreement with the estimated values of αl and αa obtained in (21).
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