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1. Introduction. In his celebrated paper [3] Gaschiitz proved that any finite
non-cyclic p-group always admits non-inner automorphisms of order a power of p. In
particular this implies that, if G is a finite nilpotent group of order bigger than 2, then
Out(G) = Aut(G)/Inn(G) # 1. Here, as usual, we denote by Aut(G) the full group of
automorphisms of G while Inn(G) stands for the group of inner automorphisms, that is
automorphisms induced by conjugation by elements of G. After Gaschiitz proved this
result, the following question was raised: “if G is an infinite nilpotent group, is it always
true that Out(G)=1?”

This question was answered in the negative by Zalesskil in [8] where he constructed a
torsion-free nilpotent group of nilpotency class 2, without non-inner automorphisms.
Hence, in the infinite case, the hypothesis of nilpotency is not sufficient to ensure the
existence of automorphisms which are non-inner. Nevertheless these automorphisms exist
if the infinite nilpotent group is a p-group, as was proved by Zalesskil himself in [9]. But,
after Buckley and Wiegold determined the cardinality of Aut(G) for G an infinite
nilpotent p-group in [1], a sharper result was achieved by Menegazzo and Stonehewer [4].
They proved that, apart from a finite number of cases, an infinite nilpotent p-group has
non-inner automorphisms of order a power of p, thus generalizing Gaschiitz’s theorem to
the infinite case.

Hence, in the case of infinite groups, the hypothesis of being a p-group seems to play
a decisive role in questions related to existence of non-inner automorphisms so that, at
this point, it is natural to ask to what extent the nilpotency of the p-group G is needed to
ensure Out(G)#1. Further investigations showed that, in a suitable setting, the
hypothesis on the nilpotency of G can be dropped. In fact the following theorem was
proved in [6].

THEOREM. Let G be a locally finite p-group of cardinality Xy. Then Aut(G) has
cardinality 2%.

It is worth noting that M. Dixon obtained, by a clever examination of the proof of the
above theorem, the following more precise result:

THEOREM [2]. Suppose that G is an infinite countable locally finite p-group. If G is not
divisible-by-finite, then Out(G) contains an uncountable elementary abelian p-subgroup.

Is there any hope of extending the above results to p-groups of higher cardinality?
The answer to this question is known to be negative. In his paper [7], Thomas showed
that complete (that is {;(G) =1 and Out(G) = 1) uncountable groups do exist. So, if we
want to find classes of locally finite p-groups which admit non-inner automorphisms, some
extra hypotheses are needed. Since hypercentrality is a natural generalization of
nilpotency, hypercentral p-groups seems to be a sensible class to investigate. The
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question of whether every hypercentral p-group has non-inner automorphisms was raised
by M. Dixon during the 1993 meeting in Galway. Unfortunately hypercentral p-groups
can have a fairly complicated structure so that, even though no examples of such groups
admitting only inner automorphisms are known (at least to the author), a definitive result
in this direction seems to be far out of reach. This note is meant as a first step in this
investigation. What we can prove is the following result:

THeOREM 1. Let G be a hypercentral p-group of height at most w. If G is not cyclic of
order 2 then Out(G) # 1.

However the arguments used in the proof of Theorem 1 can give some information
on the size of Out(G). This is the subject of our Theorem 2.

THEOREM 2. Let G be an infinite hypercentral p-group of height at most @. Then
Out(G) is uncountable.

It would have been nice to be able to prove some similar result for groups of height
w + k (k a natural number) but the attempts we made in this direction were unsuccessful.

2. The results. Before we start proving our theorems, let us make some remarks.

Let G be any (infinite) group and assume that X = {N;|i e N} is an infinite set of
normal subgroups of G, such that

(a) N;<N,, whenever j <i,

(b) NN, =1

ieN
Then there is a unique topology 7 on G such that (G, t) is a topological group and X is a
base for the filter of neighborhoods of 1. The group (G, 7) is Hausdorff and its topological
completion G is isomorphic with l(iEG/N,-. Of course any infinite subset of X defines the
same topology on G so that, if & = {M; ] i € N} is such a subset, we have

lim G/N;=1lim G/M,.
“«— —

As usual {,(G) will indicate the nth term of the upper central series of the group G
while v, (G) stands for the kth term of the lower central series.
We are now in a position to give the proof of our main result.

Proof of Theorem 1. Since the result is true when G is finite, we may assume
|G|=Ry. Let C, = C;(£,(G)). Notice that, since G/C, stabilizes the chain

{1(G)=0(G) =... [,(G),

it is a nilpotent group of class smaller than n. Assume for a moment that there exists n
such that C, = C,,, for all k e N. Recall, that, in our setting, we have

G=4.(6)= U 4(G)

so that C, is the centre of G. Thus G turns out to be nilpotent and, in this case, it is well
known that Out(G) # 1 (see [9]). For this reason we shall suppose, from now onward, that
G is not a nilpotent group. There is therefore a subset

§={B,-|ieN}
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of {C,|n e N} such that B, <B; whenever i>j. Each of the B, is the centralizer of a
suitable element of the ascendlng central series of G, say B;=Cg({,(G)). Set
G = hm G/B;. We have that G is the completion of G/{,(G) in the topology defined by
the subgroups {B,/{{(G) | n e N}. For every element § = (g;B,);.n € G we define the map

$(8):G->G
x—>x8 if x e {,(G).

It is readily seen that ¢(g) is well defined and that it is actually an automorphism of G.
We want now to show that some of the ¢(g) are non-inner. Let 7 be an inner
automorphism induced by the element g. Since g is contained in {;(G) for some i, we have
[G, 7] = {,(G). Hence, to prove our claim, it will be sufficient to find ¢$(g) such that
[G, #(g)] is not contained in any of the {;(G). From now on let H; = {,(G).

Let g, be any element in G\B, and assume that g, belongs to H, . Define, for n>1,
the set

%.. = {x € B,\B, | there exists an element a € H, such that [a,x] ¢ H,}.

If 4,=0 for all neN we have [B)\B,,H,]<H,. But [B,,H,]=1 so that
(By, H,] = H,, for all n. Since G is the union of the H, we obtain [B;, G] = H, . We recall
now that H, 1s a term of the upper central series so that [B,,.G] =1, for a sultable integer
c. Moreover G/B, is nilpotent of class s, say; hence B, contains yS(G) This implies that
G is nilpotent of class at most ¢ + 5. Since G is assumed to be non-nilpotent, we end up
with an element x € B,\B,, satisfying the following property

there is an element a, € H,, such that [a,,x] € H,\H, ,

for suitable integers l,,n,. We set g, =g;x and note that g, also satisfies the above
condition. Moreover g,g5" € B;.

Assume now that we have already found elements g,,85,...,8—1 in G and integers
n;, l;, 1<i<r, such that

Q) ggiheB,l=i<r-—1,

(2) for each 1 =i<r, there exists a; € H, such that [a,,g;] € H,\H,,,_,.
As before we define, for n>1,_,,

%-1,={x e B,_\B,|3a e H,such that [a,x] ¢ H, _}.

The same argument used above applies and, if 4, = for all n, it turns out that
[B,_,, G] is contained in some term of the upper central series. Since B, _ contains v,(G)
for a suitable integer k&, G would be nilpotent, a contradiction. Thus we can find integers
l,,n, and elements a,, x, such that

(i) a,e H andx e B, \B,,

(i) [a,,x]) € H,\H, _..
If we set g,=g,_;x it is easy to prove that the elements gi,...,g, and the integers
n;, I, 1 <i=<r, satisfy conditions (1) and (2). Continuing this process we eventually find
two sequences of integers, {, |i e N} and {n;|i e N}, and two infinite subsets of G,
{a;|i e N} and {g; | i € N}, satisfying the following

(1) ggih € By, foralli e N,

(2) a;e H, and [a;, 8] € H,\H,_..
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Consider now the element g = (g;B,) in Cr;.y G/B,, the cartesian product of the
groups G/B,. Condition (1) ensures that g is actually an element of lxm G/B,, thus we can
define the automorphism ¢(g) of G. We shall show that [G, ¢(8)] cannot be contained in
any of the H,. Fix an index n and let / be any index such that n;_, > n. The image of the
element g; under the action of ¢(g) is af. Hence [a;, ¢(§)] = [a:, &:] ¢ H,,_, and, a fortiori
[a;, ¢(¢)] ¢ H,. As we pointed out before, this is sufficient to show that ¢(g) is
non-inner.

Now we know that Out(G) is not trivial when G is hypercentral of height at most w
(and not cyclic of order 2) so we can concentrate on the study of its cardinality.

Proof of Theorem 2. Again let G = lim G/B,. The first fact we want to point out is
that if § = (g;B;) # h = (;B;) are different elements of G, then the automorphisms ¢(g)
and ¢(h) are different too. If $(2) = ¢(h), we would have x5 = x" for all the elements x
in H;. Thus g;B; = h;B; and, since this holds for all indices i, this means g = h.

Without loss of generality, we may assume that all the sets %, ,.,; are not empty
since, as pointed out in the introduction, every infinite subset of {B;/{(G) [ i e N} gives
rise to the same completion of G/{,(G).

Assume, for the moment, B, /B, ., is non-cyclic for infinitely many n. By the previous
remark we may suppose that this actually holds for all n.

The group B;/B, has at least three non-identity elements. We want to show that
there are at least two distinct cosets of B, in B, intersecting % ,. Pick x € 4, so that
xB,N%,#. Let yB, be any other coset distinct from B,, xB, and x 'B,. If
yB,N %, there is nothing to prove. Otherwise yB, N %, = but then the element
xy belongs to % , and xB, # xyB,. Obviously this argument works for all the sets 4, ,; so
that we can select two elements x,, y, in each 4, ,,,,, with the property that x,y;" ¢ B, .
For every element € € {0,1}" we construct a sequence ¥(e) of elements in G in the
following way:

(i) gi(e) is any element of G,

(ll) gn(e) = gn—l(e)xn if e(n) = 0’ and g,,(E) = gn—l(e)yn if E(n) =1
It is easily seen that ©={(g,(¢)B;)| € € {0,1}"} is an uncountable subset of G whose
elements induce non-inner automorphisms of G.

The only case we have to deal with is, therefore, B,,/B,.; non-cyclic for only finitely
many n. As above, we may assume B,/B, ., is cyclic for all n e N.

Let, for each n e N, i(n) be defined as

i(n) = min{r >n | B,/B, is not cyclic}

if {r >n | B,/B, is not cyclic} is not empty, or i(n) = n otherwise. Define m, =1, m, = i(1)
and, by induction, m, ., = i(m,). The set {m, ] k e N} is infinite. Otherwise there exists n
such that B,/B, is cyclic for all r >n. Thus B,/{,(G) can be embedded in an infinite
pro- cyclic pro-p-group (the group of p-adic integers), and this cannot happen since such a
group is torsion-free, while B, is a p-group. Using the subsequence {B,, /{,(G) | k € N}
instead of {B,/{,(G) | n e N} and the first part of this proof, we get the claim.

Finally we point out that, in a particular situation, something can be said about the
existence of non-inner automorphisms of p-power order. The next corollary is really a
straightforward consequence of the previous theorems.
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CoroLLARY. With the same hypotheses as Theorem 2, if G/{,(G) has finite exponent,
then Out(G) has an uncountable normal p-subgroup.

Proof. G has the same exponent as G/{;(G), and since the B, are characteristic
subgroups of G, G is normal in Aut(G).

Unfortunately we could not prove the above corollary for all hypercentral p-groups
of height w, nor were we able to produce any example of such a group G, for which
G /(G/{1(G)) is torsion-free. What is true is that the result is already false for p-groups
of height w + 1 even if we ask only for the existence of one non-inner p-automorphism
(some examples are contained in Section 3 of [5]). For this reason it would be interesting
to know whether or not the hypothesis on the boundedness of the exponent of G/¢,(G)
in the above Corollary could be relaxed.
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