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On Mœglin’s Parametrization of Arthur
Packets for p-adic Quasisplit Sp(N) and
SO(N)
Bin Xu

Abstract. We give a survey onMœglin’s construction of representations in the Arthur packets for p-
adic quasisplit symplectic and orthogonal groups. _e emphasis is on comparing Mœglin’s parame-
trization of elements in the Arthur packets with that of Arthur.

1 Introduction

Let F be a number ûeld and G be a quasisplit connected reductive group over F. _e
local components of the automorphic representations of G belong to a very special
class of irreducible smooth representations, which is usually referred to as the Arthur
class. In the archimedean case, there is a geometric theory of irreducible smooth rep-
resentations (see [ABV92]), which suggests a possible way to characterize the Arthur
class. In the p-adic case, the general characterization of the Arthur class remains a
mystery. Nonetheless, when G is a general linear group, the Arthur class is known in
both cases due toMœglin andWaldspurger’s classiûcation of the discrete spectrum of
automorphic representations of general linear groups [MW89]. In this paper, we will
only consider the p-adic case. So from now on, let us assume F is a p-adic ûeld, and
we will also denote G(F) by G, which should not cause any confusion in the context.
To describe the Arthur class for general linear groups, we need to introduce some no-
tation ûrst. If G = GL(n), let us take B to be the group of upper-triangular matrices
and T to be the group of diagonal matrices, then the standard Levi subgroup M can
be identiûed with

GL(n1) × ⋅ ⋅ ⋅ ×GL(nr)
for any partition of n = n1 + ⋅ ⋅ ⋅ + nr as follows:

⎛
⎜⎜
⎝

GL(n1)
. . .

GL(nr)

⎞
⎟⎟
⎠

(g1 , . . . , gr) Ð→ diag{g1 , . . . , gr}.
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For π = π1 ⊗ ⋅ ⋅ ⋅ ⊗ πr , where π i is a ûnite-length smooth representation of GL(n i) for
1 ⩽ i ⩽ r, we denote the normalized parabolic induction IndG

P (π) by π1×⋅ ⋅ ⋅×πr . More-
over, we denote the direct sum of its irreducible subrepresentations by ⟨π1 × ⋅ ⋅ ⋅ × πr⟩.
An irreducible supercuspidal representation of a general linear group can always be
written in a unique way as ρ∣∣x ∶= ρ ⊗ ∣det( ⋅ )∣x for an irreducible unitary supercus-
pidal representation ρ and a real number x. To ûx notation, we will always denote
by ρ an irreducible unitary supercuspidal representation of GL(dρ). Now for a û-
nite length arithmetic progression x , . . . , y of real numbers of step size one and an
irreducible unitary supercuspidal representation ρ of GL(dρ), it is a general fact that

ρ∣∣x × ⋅ ⋅ ⋅ × ρ∣∣y

has a unique irreducible subrepresentation, denoted by ⟨ρ; x , . . . , y⟩ or ⟨x , . . . , y⟩. If
x ⩾ y, it is called a Steinberg representation; if x < y, it is called a Speh representation.
Such sequence of ordered numbers is called a segment, and we denote it by [x , y] or
{x , . . . , y}. In particular, when x = −y > 0, we can let a = 2x + 1 ∈ Z and write

St(ρ, a) ∶= ⟨ a − 1
2

, . . . ,− a − 1
2

⟩ ,

which is an irreducible smooth representation of GL(adρ). It follows from Zele-
vinksy’s classiûcation theory that all discrete series of GL(n) can be given by St(ρ, a)
for pairs (ρ, a) satisfying n = adρ , and this is a bijection. We deûne a generalized
segment to be a matrix

⎡⎢⎢⎢⎢⎢⎢⎣

x11 ⋅ ⋅ ⋅ x1n
...

...
xm1 ⋅ ⋅ ⋅ xmn

⎤⎥⎥⎥⎥⎥⎥⎦
such that each row is a decreasing (resp. increasing) segment and each column is an
increasing (resp. decreasing) segment. _e normalized induction

×i∈[1,m]⟨ρ; x i1 , . . . , x in⟩

has a unique irreducible subrepresentation, andwe denote it by ⟨ρ;{x i j}m×n⟩. If there
is no ambiguity with ρ, we will also write it as ⟨{x i j}m×n⟩ or

⎛
⎜⎜
⎝

x11 ⋅ ⋅ ⋅ x1n
...

...
xm1 ⋅ ⋅ ⋅ xmn

⎞
⎟⎟
⎠
.

Moreover,
⟨ρ;{x i j}m×n⟩ ≅ ⟨ρ;{x i j}T

m×n⟩,

where {x i j}T
m×n is the transpose of {x i j}m×n . Let a, b be positive integers; we deûne

Sp(St(ρ, a), b) to be the unique irreducible subrepresentation of

St(ρ, a)∣∣−(b−1)/2 × St(ρ, a)∣∣−(b−3)/2 × ⋅ ⋅ ⋅ × St(ρ, a)∣∣(b−1)/2 .
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_en one can see that Sp(St(ρ, a), b) is given by the generalized segment
⎡⎢⎢⎢⎢⎢⎢⎣

(a − b)/2 ⋅ ⋅ ⋅ 1 − (a + b)/2
...

...
(a + b)/2 − 1 ⋅ ⋅ ⋅ −(a − b)/2

⎤⎥⎥⎥⎥⎥⎥⎦

.

_e Arthur class for GL(n) consists of irreducible representations
r
⨉
i=1

( Sp(St(ρ i , a i), b i) × ⋅ ⋅ ⋅ × Sp(St(ρ i , a i), b i)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

l i

)(1.1)

for any set of triples (ρ i , a i , b i) with multiplicities l i such that∑r
i=1 l ia ib idρ i = n. In

particular, it contains all the discrete series. _e local Langlands correspondence for
general linear groups gives a bijection between the set of equivalence classes of irre-
ducible unitary supercuspidal representations of GL(d) with the equivalence classes
of d-dimensional irreducible unitary representations of the Weil group WF . If we
identify ρ i in (1.1) with the corresponding dρ i -dimensional representations of WF ,
then we get an equivalence class of n-dimensional representations ofWF ×SL(2,C)×
SL(2,C) by taking

r
⊕
i=1

l i(ρ i ⊗ νa i ⊗ νb i ),

where νa i (resp. νb i ) is the (a i − 1)-th (resp. (b i − 1)-th) symmetric power represen-
tation of SL(2,C). So the Arthur class for GL(n) can be parameterized by the set of
equivalence classes of n-dimensional representations of

ψ∶WF × SL(2,C) × SL(2,C) Ð→ GL(n,C)
such that ψ∣WF is unitary and ψ∣SL(2,C)×SL(2,C) is algebraic. We call such ψ an Arthur
parameter for GL(n). _e two copies of SL(2,C) in the deûnition of Arthur param-
eters have their own meanings. _e ûrst one, introduced by Deligne, corresponds to
some monodromy operator, and is usually integrated with the Weil group as LF ∶=
WF × SL(2,C), named Weil–Deligne group (or local Langlands group). _e second
SL(2,C) is introduced by Arthur, and it corresponds to the non-temperedness of the
associated irreducible smooth representation of GL(n) (cf. (1.1)).
For general G, we can deûne an Arthur parameter to be a Ĝ-conjugacy class of

admissible homomorphisms from LF × SL(2,C) to LG that are bounded on their
restrictions toWF . We denote the set of Arthur parameters by Ψ(G). It is conjectured
that the Arthur class for G should be parameterized by Ψ(G). To be more precise,
for any ψ ∈ Ψ(G), we are expecting to be able to associate it with a ûnite set Πψ
of irreducible smooth representations of G, which is called an Arthur packet. _e
structure of Πψ can be very delicate in general; for example, we would expect these
packets to have nontrivial intersections with each other. When G is a classical group,
Mœglin has developed a theory to characterize the elements in Πψ (cf. [Mœg06b,
Mœg09], etc.). _e main goal of this paper is to present her results in the case of
quasisplit symplectic and orthogonal groups. First of all, we need to give the deûnition
of Πψ in these cases.

To simplify the discussion in the introduction, we assume that G = Sp(2n) unless
otherwise speciûed. We should point out all the theorems and propositions that we
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state for symplectic groups below also have their analogues for orthogonal groups.
For ψ ∈ Ψ(G), there is a natural GL(N ,C)-conjugacy class of embeddings LG ↪
GL(N ,C) for N = 2n + 1. So we can view ψ as an equivalence class of represen-
tations of LF × SL(2,C), or an Arthur parameter for GL(N). Moreover, such ψ is
necessarily self-dual. So by the previous discussion we can associate it with an irre-
ducible smooth representation πψ of GL(N) (cf. (1.1)) that is also self-dual. Arthur
[Art13] showed that one can associate ψ with a “multi-set” Πψ of irreducible smooth
representations of G such that the spectral transfer of some linear combination of
characters in Πψ is the twisted character of πψ . If we deûne Sψ to be the component
group of the centralizer of the image ofψ in Ĝ (which can bemade independent of the
choice of representatives of ψ, and shown to be abelian), then Arthur further showed
that there is a “canonical” map from Πψ to the characters Ŝψ of Sψ . So for any element
ε ∈ Ŝψ , we can write π(ψ, ε) for the direct sum of elements in Πψ that are associated
with ε; then π(ψ, ε) is a ûnite-length smooth representation of G. _e possibility for
Πψ being a multi-set rather than a set suggests the irreducible constituents in π(ψ, ε)
may have multiplicities, and also π(ψ, ε) may have common irreducible constituents
for diòerent ε ∈ Ŝψ . But these possibilities are all ruled out by the following deep
theorem of Mœglin.

_eorem 1.1 (Mœglin, [Mœg11c]) For G = Sp(2n) and ψ ∈ Ψ(G),Πψ is multiplicity
free.

In fact, for ψ ∈ Ψ(G) and ε ∈ Ŝψ , Mœglin constructed a ûnite-length semisimple
smooth representation πM(ψ, ε) ofG. She showed that Πψ consists of πM(ψ, ε) for all
ε ∈ Ŝψ , and by studying their properties she was able to conclude_eorem 1.1. A sub-
tle point here is π(ψ, ε) in Arthur’s parametrization can be diòerent from πM(ψ, ε).
_is point has been emphasized in various works of Mœglin, and she also gave the
relation between these two. Our second goal in this paper is to make that relation
more transparent, and in the meantime we are able to clarify the fact that the repre-
sentations πM(ψ, ε) constructed byMœglin are indeed elements in the Arthur packet
Πψ . For this purpose, we would like to rewrite Arthur’s parametrization π(ψ, ε) by
πW(ψ, ε) to emphasize its dependence on certain kind of Whittaker normalization
(see Section 4). And the relation between πW(ψ, ε) and πM(ψ, ε) can be given in the
following theorem.

_eorem 1.2 For G = Sp(2n) and ψ ∈ Ψ(G), there exists a character εM/W
ψ ∈ Ŝψ ,

such that for any ε ∈ Ŝψ , πM(ψ, ε) = πW(ψ, εεM/W
ψ ).

For the statement in this theorem to be true, we have implicitly put some restric-
tions on Mœglin’s parametrization πM(ψ, ε). In the most general setting, we will at-
tach πM(ψ, ε) to characters ε in Ŝψ> , which contains Ŝψ (see Section 2), and we will
also deûne εM/W

ψ in Ŝψ> . _e starting point of this comparison theorem is in the case
of discrete series. Let us deûne

Φ2(G) ∶= {ϕ ∈ Ψ(G) ∶ ϕ =
r
⊕
i=1

ρ i ⊗ νa i ⊗ ν1 , and ρ∨i = ρ i}.
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_en the following theorem of Arthur showedΦ2(G) parametrizes the discrete series
of G.

_eorem 1.3 (Arthur) For G = Sp(2n), the set of irreducible discrete series represen-
tations of G admits a disjoint decomposition

Π2(G) = ⊔
ϕ∈Φ2(G)

Πϕ .

Moreover, for any ϕ ∈ Φ2(G) and ε ∈ Ŝϕ , πW(ϕ, ε) is an irreducible representation.

For ϕ ∈ Φ2(G) and ε ∈ Ŝϕ , we can simply deûne

πM(ϕ, ε) ∶= πW(ϕ, ε).
To justify this deûnition, we need to recall Mœglin’s construction (joint with Tadić)
of discrete series ofG. We start by introducing somemore notations, and here we will
also include the case of special orthogonal groups.

If G = Sp(2n), let us deûne it with respect to ( 0 −Jn
Jn 0 ) , where

Jn =
⎛
⎜⎜
⎝

1

. . .

1

⎞
⎟⎟
⎠
.

Let us take B to be subgroup of upper-triangular matrices in G and T to be subgroup
of diagonal matrices in G; then the standard Levi subgroup M can be identiûed with

GL(n1) × ⋅ ⋅ ⋅ ×GL(nr) ×G−

for any partition n = n1 + ⋅ ⋅ ⋅ + nr + n− and G− = Sp(2n−) as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

GL(n1) 0
. . .

GL(nr)
G−

GL(nr)
. . .

0 GL(n1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(g1 , ⋅ ⋅ ⋅ gr , g) Ð→ diag{g1 , . . . , gr , g , t g−1
r , . . . , t g

−1
1 },(1.2)

where t g i = Jn i
t g i J−1

n i
for 1 ⩽ i ⩽ r. Note n− can be 0, in which case we simply write

Sp(0) = 1. For π = π1⊗⋅ ⋅ ⋅⊗πr ⊗ σ , where π i is a ûnite-length smooth representation
of GL(n i) for 1 ⩽ i ⩽ r and σ is a ûnite-length smooth representation of G−, we
denote the normalized parabolic induction IndG

P (π) by π1 × ⋅ ⋅ ⋅ × πr ⋊ σ . Moreover,
we denote the direct sum of its irreducible subrepresentations by ⟨π1 × ⋅ ⋅ ⋅ × πr ⋊ σ⟩.
_is notation can be easily extended to special orthogonal groups. If G = SO(N)
split, we deûne it with respect to JN . When N is odd, the situation is exactly the same
as the symplectic case. When N = 2n, there are two distinctions. First, the standard
Levi subgroups given through the embedding (1.2) do not exhaust all standard Levi
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subgroups of SO(2n). To get all of them, we need to take the θ0-conjugate ofM given
in (1.2), where

θ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
. . .

1
1

. . .
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Note that Mθ0 /= M only when n− = 0 and nr > 1. In order to distinguish the θ0-
conjugate standard Levi subgroups of SO(2n), we will only identify those Levi sub-
groups M in (1.2) withGL(n1)×⋅ ⋅ ⋅×GL(nr)×G−, andwe denote the other one simply
by Mθ0 . Second, if the partition n = n1 + ⋅ ⋅ ⋅ + nr + n− satisûes nr = 1 and n− = 0,
then we can rewrite it as n = n1 + ⋅ ⋅ ⋅ + nr−1 + n′− with n′− = 1, and the corresponding
Levi subgroup is the same. _is is because GL(1) ≅ SO(2). To ûx notation, we will
always write it as SO(2). In this paper, we will also consider G = SO(2n, η), which
is the outer form of the split SO(2n) with respect to a quadratic extension E/F and
θ0. Here η is the associated quadratic character of E/F by the local class ûeld the-
ory. _en the standard Levi subgroups of SO(2n, η) will be the outer form of those
θ0-stable standard Levi subgroups of SO(2n). In particular, they can be identiûed
with GL(n1) × ⋅ ⋅ ⋅ ×GL(nr) × SO(n− , η) and n− /= 0. Note that in the case of SO(8),
there is another outer form, but we will not consider it in this paper.

Nowwe are back to the case whereG = Sp(2n). For ϕ = ⊕r
i=1 ρ i⊗νa i⊗ν1 ∈ Φ2(G),

we deûne

Jord(ϕ) ∶= {(ρ i , a i) ∶ 1 ⩽ i ⩽ q}, and Jordρ(ϕ) ∶= {a i ∶ ρ = ρ i}.

_en we can identify Ŝϕ with the subspace of Z2-valued functions ε( ⋅ ) on Jord(ϕ)
such that

∏
(ρ ,a)∈Jord(ϕ)

ε(ρ, a) = 1

(see Section 2). _e following theorem gives a parametrization of irreducible super-
cuspidal representations of G.

_eorem 1.4 ([Mœg11b, _eorem 1.5.1]) For G = Sp(2n), the irreducible supercus-
pidal representations of G are parametrized by ϕ ∈ Φ2(G) and ε ∈ Ŝϕ , satisfying the
following properties:
(i) if (ρ, a) ∈ Jord(ϕ), then (ρ, a − 2) ∈ Jord(ϕ) as long as a − 2 > 0;
(ii) if (ρ, a), (ρ, a − 2) ∈ Jord(ϕ), then ε(ρ, a)ε(ρ, a − 2) = −1;
(iii) if (ρ, 2) ∈ Jord(ϕ), then ε(ρ, 2) = −1.

For non-supercuspidal irreducible representations of G, we can characterize their
cuspidal supports by the following proposition.

Proposition 1.5 ([Xu15, Proposition 9.3]) For G = Sp(2n), suppose ϕ ∈ Φ2(G),
and ε ∈ Ŝϕ . For any (ρ, a) ∈ Jord(ϕ), we denote by a− the biggest positive integer
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smaller than a in Jordρ(ϕ). And we also write amin for the minimum of Jordρ(ϕ). If
a = amin, we let a− = 0 if a is even, and −1 otherwise. In this case, we always assume
ε(ρ, a)ε(ρ, a−) = −1.
(i) If ε(ρ, a)ε(ρ, a−) = −1 and a− < a − 2, then

πW(ϕ, ε) ↪ ⟨(a − 1)/2, . . . , (a− + 3)/2⟩ ⋊ πW(ϕ′ , ε′)(1.3)
as the unique irreducible subrepresentation, where

Jord(ϕ′) = Jord(ϕ) ∪ {(ρ, a− + 2)}/{(ρ, a)},
and

ε′( ⋅ ) = ε( ⋅ ) over Jord(ϕ)/{(ρ, a)}, ε′(ρ, a− + 2) = ε(ρ, a).
(ii) If ε(ρ, a)ε(ρ, a−) = 1, then

πW(ϕ, ε) ↪ ⟨(a − 1)/2, . . . ,−(a− − 1)/2⟩ ⋊ πW(ϕ′ , ε′),(1.4)
where

Jord(ϕ′) = Jord(ϕ)/{(ρ, a), (ρ, a−)},
and ε′( ⋅ ) is the restriction of ε( ⋅ ). In particular, suppose ε1 ∈ Ŝϕ satisfying ε1( ⋅ ) =
ε( ⋅ ) over Jord(ϕ′) and

ε1(ρ, a) = −ε(ρ, a), ε1(ρ, a−) = −ε(ρ, a−).
_en the induced representation in (1.4) has two irreducible subrepresentations,
namely

πW(ϕ, ε) ⊕ πW(ϕ, ε1).
(iii) If ε(ρ, amin) = 1 and amin is even, then

πW(ϕ, ε) ↪ ⟨(amin − 1)/2, . . . , a0⟩ ⋊ πW(ϕ′ , ε′)(1.5)
as the unique irreducible subrepresentation, where

Jord(ϕ′) = Jord(ϕ)/{(ρ, amin)},
and ε′( ⋅ ) is the restriction of ε( ⋅ ).

_econstruction of discrete series byMœglin and Tadić can be obtained by revers-
ing steps (1.3), (1.4), and (1.5) in this proposition. Finally, in the general construction
of πM(ψ, ε), one requires various reducibility results, which are all based on the fol-
lowing basic criterion.

Proposition 1.6 ([Xu15], Corollary 9.1) For G = Sp(2n), suppose π is a supercuspidal
representation of G and π ∈ Πϕ for some ϕ ∈ Φ2(G). _en for any unitary irreducible
supercuspidal representation ρ of GL(dρ), the parabolic induction

ρ∣∣±(aρ+1)/2 ⋊ π

reduces exactly for

aρ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

max Jordρ(ϕ), if Jordρ(ϕ) /= ∅,
0, if Jordρ(ϕ) = ∅, ρ is self-dual and is of opposite type to Ĝ ,
−1, otherwise.
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_e main tool in Mœglin’s construction of elements in the Arthur packets of clas-
sical groups is the Jacquet module. Here we would like to summarize the relevant no-
tation about Jacquet modules used in her work. For general G, we denote by Rep(G)
the category of ûnite-length smooth representations of G. We include the zero space
in Rep(G), and by an irreducible representation we always mean it is nonzero. Now
let G be a quasisplit symplectic or special orthogonal group of F-rank n. We ûx a
unitary irreducible supercuspidal representation ρ of GL(dρ), and we assume M =
GL(dρ) × G− is the Levi component of a standard maximal parabolic subgroup P of
G. Note that in case G− = 1 and G is special even orthogonal, we require P to be con-
tained in the standard parabolic subgroup of GL(2n) by our convention. _en for
π ∈ Rep(G), we can decompose the semisimpliûcation of the Jacquet module

s.s. JacP(π) = ⊕
i
τ i ⊗ σi ,

where τ i ∈ Rep(GL(dρ)) and σi ∈ Rep(G−), both of which are irreducible. We deûne
Jacx π for any real number x to be

Jacx(π) = ⊕
τ i=ρ∣∣x

σi .

If we have an ordered sequence of real numbers {x1 , . . . , xs}, we can deûne
Jacx1 , . . . ,xs π = Jacxs ○ ⋅ ⋅ ⋅ ○ Jacx1 π.

Moreover, let

Jacx =
⎧⎪⎪⎨⎪⎪⎩

Jacx + Jacx ○θ0 , if G = SO(2n) and n = dρ /= 1,
Jacx , otherwise.

_en Jacx deûnes a functor on the category of O(2n)-conjugacy classes of ûnite-
length smooth representations of SO(2n). It is not hard to see Jacx can be deûned
for GL(n) in a similar way by replacing G− by GL(n−). Furthermore, we can de-
ûne Jacop

x analogously to Jacx but with respect to ρ∨ and the standard Levi subgroup
GL(n−) × GL(dρ∨). So let us deûne Jacθx = Jacx ○ Jac

op
−x for GL(n). _ere are some

explicit formulas for computing these Jacquet modules, and we refer the readers to
[Xu15, Section 5].

2 Arthur Parameters

Let F be a p-adic ûeld and letG be a quasisplit symplectic or special orthogonal group.
We deûne the local Langlands group as LF = WF × SL(2,C), whereWF is the usual
Weil group. We write ΓF = ΓF/F for the absolute Galois group over F. Let Ĝ be the
complex dual group of G, and let LG be the Langlands dual group of G. An Arthur
parameter of G is a Ĝ-conjugacy class of admissible homomorphisms

ψ∶ LF × SL(2,C) Ð→ LG ,

such that ψ∣WF is bounded. If ψ∣SL(2,C) = 1, we say the parameter is tempered. We de-
note by Ψ(G) the set of Arthur parameters of G. Here we can simplify the Langlands
dual groups as in the following table:
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G LG

Sp(2n) SO(2n + 1,C)

SO(2n + 1) Sp(2n,C)

SO(2n, η) SO(2n,C) ⋊ ΓE/F

In the last case, η is a quadratic character associated with a quadratic extension E/F
and ΓE/F is the associated Galois group. We ûx an isomorphism SO(2n,C) ⋊ ΓE/F ≅
O(2n,C). So in either of these cases, there is a natural embedding ξN of LG into
GL(N ,C) up to GL(N ,C)-conjugacy, where N = 2n + 1 if G = Sp(2n) or N = 2n
otherwise. We ûx an outer automorphism θ0 of G preserving an F-splitting. If G is
symplectic or special odd orthogonal, we let θ0 = id. If G is special even orthogonal,
we let θ0 be induced from the conjugate action of the nonconnected component of the
full orthogonal group. Let θ̂0 be the dual automorphism of θ0. We write Σ0 = ⟨θ0⟩,
GΣ0 = G ⋊ ⟨θ0⟩, and ĜΣ0 = Ĝ ⋊ ⟨θ̂0⟩. So in the special even orthogonal case, GΣ0

(resp. ĜΣ0 ) is isomorphic to the full (resp. complex) orthogonal group. Let ω0 be the
character of GΣ0/G, which is nontrivial when G is special even orthogonal.
By composing ψ with ξN , we can view ψ as an equivalence class of N-dimensional

self-dual representation of LF × SL(2,C). So we can decompose ψ as follows:

ψ =
r
⊕
i=1

l iψ i =
r
⊕
i=1

l i(ρ i ⊗ νa i ⊗ νb i ).(2.1)

Here ρ i are equivalence classes of irreducible unitary representations of WF , which
can be identiûed with irreducible unitary supercuspidal representations of GL(dρ i )
under the local Langlands correspondence (cf. [HT01,Hen00,Sch13]). And νa i (resp.
νb i ) are the (a i−1)-th (resp. (b i−1)-th) symmetric power representations of SL(2,C).
_e irreducible constituent ρ i ⊗ νa i ⊗ νb i has dimension n i = n(ρ i ,a i ,b i) and multi-
plicity l i . We deûne the multi-set of Jordan blocks for ψ as follows:

Jord(ψ) ∶= {(ρ i , a i , b i) with multiplicity l i ∶ 1 ⩽ i ⩽ r}.
For any ρ, let us deûne

Jordρ(ψ) ∶= {(ρ′ , a′ , b′) ∈ Jord(ψ) ∶ ρ′ = ρ}.
Fix a representative ψ; we deûne for any subgroup Σ ⊆ Σ0

SΣ
ψ = Cent(Imψ, ĜΣ),

S
Σ
ψ = SΣ

ψ/Z(Ĝ)ΓF ,

SΣ
ψ = S

Σ
ψ/S

0
ψ = SΣ

ψ/S0ψZ(Ĝ)ΓF .

We denote by sψ the image of the nontrivial central element of SL(2,C) in Sψ .
To characterize the centralizer groups Sψ and SΣ0

ψ , we need to introduce a parity
condition on the set of Jordan blocks Jord(ψ). _ere is a common way to deûne the
parity for self-dual irreducible representations ρ of WF (see [Xu15, Section 3]). We
say (ρ i , a i , b i) is of orthogonal type if ρ i ⊗ νa i ⊗ νb i factors through an orthogonal
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group, or equivalently a i + b i is even when ρ i is of orthogonal type and a i + b i is
odd when ρ i is of symplectic type. Similarly we say (ρ i , a i , b i) is of symplectic type if
ρ i ⊗ νa i ⊗ νb i factors through a symplectic group, or equivalently a i + b i is odd when
ρ i is of orthogonal type and a i + b i is even when ρ i is of symplectic type. Let ψp be
the parameter whose Jordan blocks consists of those in Jord(ψ) with the same parity
as Ĝ, and let ψnp be any Arthur parameters of general linear group such that

ψ = ψnp ⊕ ψp ⊕ ψ∨np .

We denote by Jord(ψ)p the set of Jordan blocks in Jord(ψp) without multiplicity. Af-
ter this preparation, we can identify those centralizer groups above with certain quo-
tient space of Z2-valued functions on Jord(ψ)p . To be more precise, let s0 = (s0, i) ∈
ZJord(ψ)p

2 be deûned as s0, i = 1 if l i is even and s0, i = −1 if l i is odd. _en

SΣ0
ψ ≅ {s = (s i) ∈ ZJord(ψ)p

2 }/⟨s0⟩
and

Sψ ≅ { s = (s i) ∈ ZJord(ψ)p
2 ∶ ∏

i
(s i)n i = 1}/⟨s0⟩

if G is special even orthogonal. Under these identiûcations,

sψ = sψ ∶= (sψ , i) ∈ ZJord(ψ)p
2

with sψ , i = (−1)l i if b i is even and sψ , i = 1 if b i is odd. Let us denote by Sψ (resp.
SΣ0
ψ ) the corresponding quotient space of Z2-valued functions on Jord(ψ)p such that

Sψ ≅ Sψ (resp. SΣ0
ψ ≅ SΣ0

ψ ).
_ere is a natural inner product on ZJord(ψ)p

2 that identiûes its dual with itself. Let
ε = (ε i) and s = (s i) be two elements in ZJord(ψ)p

2 ; then their inner product is deûned
by ε(s) = ∏i(ε i ∗ s i), where

ε i ∗ s i =
⎧⎪⎪⎨⎪⎪⎩

−1, if ε i = s i = −1,
1, otherwise.

So on the dual side,

ŜΣ0
ψ = { ε = (ε i) ∈ ZJord(ψ)p

2 ∶ ∏
i
ε l ii = 1} .

When G is special even orthogonal, let ε0 = (ε0, i) ∈ ZJord(ψ)p
2 be deûned as ε0, i = 1

if n i is even, or ε0, i = −1 if n i is odd then ε0 ∈ ŜΣ0
ψ is always trivial when restricted to

Sψ , and
Ŝψ = { ε = (ε i) ∈ ZJord(ψ)p

2 ∶ ∏
i
ε l ii = 1}/⟨ε0⟩.

In general, we can let ε0 = 1 if G is not special even orthogonal. In this paper, we will
always denote elements in ŜΣ0

ψ by ε and denote its image in Ŝψ by ε.
For computational purposes, it is more convenient to view SΣ0

ψ as functions on
Jord(ψp). In fact there is a natural projection

ZJord(ψp)
2

ContÐÐ→ ZJord(ψ)p
2

s z→ s′
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such that
s′(ρ, a, b) = ∏

(ρ′ ,a′ ,b′)∈Jord(ψp)
(ρ′ ,a′ ,b′)=(ρ ,a ,b) in Jord(ψ)p

s(ρ′ , a′ , b′)

for (ρ, a, b) ∈ Jord(ψ)p . In particular, s0 has a natural representative s>0 in ZJord(ψp)
2

given by s>0(ρ, a, b) = −1 for all (ρ, a, b) ∈ Jord(ψp). When G is special even orthog-
onal, the determinant condition for deûning Sψ becomes

∏
(ρ ,a ,b)∈Jord(ψp)

s(ρ, a, b)n(ρ ,a ,b) = 1.(2.2)

Moreover, sψ also has a natural representative s>ψ inZJord(ψp)
2 given by s>ψ(ρ, a, b) = −1

if b is even or 1 if b is odd. We deûne
SΣ0
ψ> = { s( ⋅ ) ∈ ZJord(ψp)

2 }/⟨s>0 ⟩,
and

Sψ> = { s( ⋅ ) ∈ ZJord(ψp)
2 ∶ ∏

(ρ ,a ,b)∈Jord(ψp)
s(ρ, a, b)n(ρ ,a ,b) = 1}/⟨s>0 ⟩

if G is special even orthogonal. _en there are surjections SΣ0
ψ> → SΣ0

ψ and Sψ> → Sψ .
On the dual side, we have a natural inclusion

ZJord(ψ)p
2

Ext
↪Ð→ ZJord(ψp)

2

ε z→ ε′

such that ε′(ρ, a, b) = ε(ρ, a, b) for (ρ, a, b) ∈ Jord(ψp). We can deûne an inner
product on ZJord(ψp)

2 as for ZJord(ψ)p
2 . _en this inclusion is adjoint to the previous

projection in the sense that
ε(Cont(s)) = Ext(ε)(s)

for ε ∈ ZJord(ψ)p
2 and s ∈ ZJord(ψp)

2 . _erefore, ε0 can also be viewed as a function
on Jord(ψp) through the inclusion map, and the condition imposed on deûning ŜΣ0

ψ
becomes

∏
(ρ ,a ,b)∈Jord(ψp)

ε(ρ, a, b) = 1.

We also deûne

ŜΣ0
ψ> = { ε( ⋅ ) ∈ ZJord(ψp)

2 ∶ ∏
(ρ ,a ,b)∈Jord(ψp)

ε(ρ, a, b) = 1} ,

Ŝψ> = { ε( ⋅ ) ∈ ZJord(ψp)
2 ∶ ∏

(ρ ,a ,b)∈Jord(ψp)
ε(ρ, a, b) = 1}/⟨ε0⟩

if G is special even orthogonal. _en there are inclusions ŜΣ0
ψ ↪ ŜΣ0

ψ> and Ŝψ ↪ Ŝψ> .
For ε ∈ ŜΣ0

ψ> , we denote its image in Ŝψ> by ε.
In the end, we are going to associate any Arthur parameter ψ ∈ Ψ(G) with two

Langlands parameters of G naturally. For the ûrst one, we deûne

ϕψ(u) = ψ (u, (∣u∣
1
2 0

0 ∣u∣− 1
2
)) , u ∈ LF .
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Note that ϕψ is nontempered in general, and in the notation of (2.1) we can write it as

ϕψ =
r
⊕
i=1

l i(
b i−1
⊕
j=0

(ρ i ∣∣(b i−1)/2− j ⊗ νa i )) .

For the second one, we can compose ψ with

∆∶WF × SL(2,C) Ð→WF × SL(2,C) × SL(2,C),
which is the diagonal embedding of SL(2,C) into SL(2,C)×SL(2,C)when restricted
to SL(2,C), and is the identity on WF . Note that the composition ψd ∶= ψ ○ ∆ is
tempered. To expand ψd , we need to introduce some more notation. For (ρ, a, b) ∈
Jord(ψ), let us write A = (a + b)/2 − 1, B = ∣a − b∣/2, and set ζ = ζa ,b = Sign(a − b)
if a /= b and arbitrary otherwise. _en we can replace (ρ, a, b) by (ρ,A, B, ζ). Under
this new notation, we have

ψd =
r
⊕
i=1

l i( ⊕
j∈[A i ,B i]

ρ i ⊗ ν2 j+1) ,

where j is taken over half-integers in the segment [A i , B i].
Finally, Σ0 acts on Ψ(G) through θ̂0, and we denote the corresponding set of

Σ0-orbits by Ψ(G). It is clear that for ψ ∈ Ψ(G), Jord(ψ) only depends on its im-
age in Ψ(G). It is for this reason that we will also denote the elements in Ψ(G) by
ψ. Moreover, through the natural embedding ξN , we can view Ψ(G) as a subset of
equivalence classes of N-dimensional self-dual representations of LF × SL(2,C).

3 Endoscopy

Before we can introduce the Arthur packets, we need to talk about the relevant cases
of endoscopy in this paper. _e discussion here will be parallel to that in [Xu15, Sec-
tion 4]. Suppose ψ ∈ Ψ(G) and s ∈ Sψ is semisimple. In our case, there is a quasisplit
reductive group H with the property that

Ĥ ≅ Cent(s, Ĝ)0 ,
and the isomorphism extends to an embedding

ξ∶ LH Ð→ LG

such that ξ(LH) ⊆ Cent(s, LG) and ψ factors through LH. So from ψ we get a pa-
rameter ψH ∈ Ψ(H). We say (H,ψ

H
) corresponds to (ψ,s) through ξ, and denote

this relation by (H,ψ
H
) → (ψ, s). Such H is called an endoscopic group of G. In the

following examples we will always assume ψ = ψp .

Example 3.1 (i) If G = Sp(2n), then LG = SO(2n + 1,C). For s ∈ Sψ> , it gives a
partition on Jord(ψ) depending on s(ρ, a, b) = 1 or −1, i.e.,

Jord(ψ) = Jord+ ⊔ Jord− .

Without loss of generality, let us assume

∑
(ρ ,a ,b)∈Jord+

n(ρ ,a ,b) = 2nI + 1 = NI and ∑
(ρ ,a ,b)∈Jord−

n(ρ ,a ,b) = 2nII = NII .
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Deûne
ηI = ηII = ∏

(ρ ,a ,b)∈Jord−
η(ρ ,a ,b) ,

where η(ρ ,a ,b) is the quadratic character dual to det(ρ ⊗ νa ⊗ νb). Let
GI = Sp(2nI) and GII = SO(2nII , ηII).

_en we have

H = GI ×GII and LH = (ĜI × ĜII) ⋊ ΓEII/F ,

where EII is the quadratic extension of F associated with ηII . Let

ξ i ∶ LG i ↪Ð→ GL(N i ,C)
be the natural embedding for i = I, II. _en ξ ∶= (ξI ⊗ ηI) ⊕ ξII factors through LG
and deûnes an embedding LH ↪ LG. We deûne ψI ∈ Ψ(GI) by

Jord(ψI) ∶= {(ρ ⊗ ηI , a, b) ∶ (ρ, a, b) ∈ Jord+} ,

and ψII ∈ Ψ(GII) by
Jord(ψII) ∶= {(ρ, a, b) ∈ Jord−} .

Let ψH = ψI × ψII .
(ii) If G = SO(2n + 1), then LG = Sp(2n,C). For s ∈ Sψ> , it gives a partition on

Jord(ψ) depending on s(ρ, a, b) = 1 or −1, i.e.,
Jord(ψ) = Jord+ ⊔ Jord− .

We can assume

∑
(ρ ,a ,b)∈Jord+

n(ρ ,a ,b) = 2nI = NI and ∑
(ρ ,a ,b)∈Jord−

n(ρ ,a ,b) = 2nII = NII .

Deûne ηI = ηII = 1. Let

GI = SO(2nI + 1) and GII = SO(2nII + 1).
_en we have

H = GI ×GII and LH = ĜI × ĜII

Let ξ i ∶ LG i ↪ GL(N i ,C) be the natural embedding for i = I, II. _en ξ ∶= ξI ⊕ ξII
factors through LG and deûnes an embedding LH ↪ LG. We deûne ψI ∈ Ψ(GI) by

Jord(ψI) ∶= {(ρ, a, b) ∈ Jord+} ,

and ψII ∈ Ψ(GII) by
Jord(ψII) ∶= {(ρ, a, b) ∈ Jord−} .

Let ψH = ψI × ψII .
(iii) If G = SO(2n, η), then LG = SO(2n,C) ⋊ ΓE/F . For s ∈ Sψ> , there is a

partition on Jord(ψ) depending on s(ρ, a, b) = 1 or −1, i.e.,
Jord(ψ) = Jord+ ⊔ Jord− .

By condition (2.2), we can assume

∑
(ρ ,a ,b)∈Jord+

n(ρ ,a ,b) = 2nI = NI and ∑
(ρ ,a ,b)∈Jord−

n(ρ ,a ,b) = 2nII = NII .
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Deûne
ηI = ∏

(ρ ,a ,b)∈Jord+
η(ρ ,a ,b) and ηII = ∏

(ρ ,a ,b)∈Jord−
η(ρ ,a ,b) ,

where η(ρ ,a ,b) is the quadratic character dual to det(ρ ⊗ νa ⊗ νb). We also denote by
E i the quadratic extension of F associated with η i for i = I, II. Let

GI = SO(2nI , ηI) and GII = SO(2nII , ηII).
_en we have

H = GI ×GII and LH = (ĜI × ĜII) ⋊ ΓL/F ,
where L = EIEII . Let

ξ i ∶ LG i ↪Ð→ GL(N i ,C)
be the natural embedding for i = I, II. _en ξ ∶= ξI ⊕ ξII factors through LG and
deûnes an embedding LH ↪ LG. We deûne ψI ∈ Ψ(GI) by

Jord(ψI) ∶= {(ρ, a, b) ∈ Jord+} ,

and ψII ∈ Ψ(GII) by
Jord(ψII) ∶= {(ρ, a, b) ∈ Jord−} .

Let ψH = ψI × ψII .

In the examples above, H is called an elliptic endoscopic group of G. We can de-
ûne Ψ(H) = Ψ(GI) × Ψ(GII); then ψH ∈ Ψ(H). For s ∈ Sψ> , we still say (H,ψH)
correspond to (ψ, s) through ξ, and denote this relation by (H,ψH) → (ψ, s).

In part (iii), it is possible to also choose s ∈ SΣ0
ψ> but not in Sψ> , and then we get a

partition on Jord(ψ), i.e.,
Jord(ψ) = Jord+ ⊔ Jord−

so that

∑
(ρ ,a ,b)∈Jord+

n(ρ ,a ,b) = 2nI + 1 = NI and ∑
(ρ ,a ,b)∈Jord−

n(ρ ,a ,b) = 2nII + 1 = NII .

Deûne
ηI = ∏

(ρ ,a ,b)∈Jord+
η(ρ ,a ,b) and ηII = ∏

(ρ ,a ,b)∈Jord−
η(ρ ,a ,b) ,

where η(ρ ,a ,b) is the quadratic character dual to det(ρ ⊗ νa ⊗ νb). Let
GI = Sp(2nI) and GII = Sp(2nII).

_en we can deûne ψI ∈ Ψ(GI) by
Jord(ψI) ∶= {(ρ ⊗ ηI , a, b) ∈ Jord+} ,

and ψII ∈ Ψ(GII) by
Jord(ψII) ∶= {(ρ ⊗ ηII , a, b) ∈ Jord−} .

Let
H = GI ×GII and LH = ĜI × ĜII .

In this case, H is called a twisted elliptic endoscopic group of G. Let

ξ i ∶ LG i ↪Ð→ GL(N i ,C)
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be the natural embedding for i = I, II. _en
ξ ∶= (ξI ⊗ ηI) ⊕ (ξII ⊗ ηII)

factors through LG and deûnes an embedding LH ↪ LG. Let ψH = ψI × ψII . We say
(H,ψH) corresponds to (ψ, s) through ξ, and write (H,ψH) → (ψ, s).

In this paper, we also want to consider the twisted elliptic endoscopic groups of
GL(N), but we will only need the simplest case here. Recall that forψ ∈ Ψ(G), we can
view ψ as a self-dual N-dimensional representation through the natural embedding

ξN ∶ LG Ð→ GL(N ,C),
and in this way we get a self-dual Arthur parameter for GL(N). We ûx an outer
automorphism θN of GL(N) preserving an F-splitting, and let θ̂N be the dual auto-
morphism on GL(N ,C); then

ξN(LG) ⊆ Cent(s,GL(N ,C)) and Ĝ = Cent(s,GL(N ,C))0

for some semisimple s ∈ GL(N ,C) ⋊ θ̂N . So we call G a twisted elliptic endoscopic
group of GL(N).

What lies at the heart of endoscopy theory is a (twisted) transfer map on the spaces
of smooth compactly supported functions from G to its (twisted) elliptic endoscopic
group H (similarly from GL(N) to its twisted elliptic endoscopic group G). _e ex-
istence of the (twisted) transfer map is quite deep, and it was conjectured by Lang-
lands, Shelstad, andKottwitz. In a series of papersWaldspurger [Wal95,Wal97,Wal06,
Wal08] was able to reduce it to the Fundamental Lemma for Lie algebras over the
function ûelds. Finally, it is in this particular form of the fundamental lemma, Ngo
[Ngô10] gave his celebrated proof. Let us denote such transfers by

C∞c (G) Ð→ C∞c (H)(3.1)

f z→ f H ,
and similarly

C∞c (GL(N)) Ð→ C∞c (G)(3.2)

f z→ f G .
In the deûnition of the (twisted) transfer maps, there is a normalization issue. To
resolve that, we will always ûx a Σ0-stable (resp. θN -stable) Whittaker datum for G
(resp. GL(N)) in this paper, and we will take the so-called Whittaker normalization
on the transfer maps. We should also point out these transfer maps are only well
deûned a�er we pass to the space of (twisted) orbital integrals on the source and the
space stable orbital integralson the target. Note that the space of (twisted) (resp. stable)
orbital integrals are dual to the space of (twisted) (resp. stable) invariant distributions
on G; i.e., one can view the (twisted) (resp. stable) invariant distributions of G as
linear functionals of the space of (twisted) (resp. stable) orbital integrals. So, dual
to these transfer maps, the stable distributions on H (resp. G) will map to (twisted)
invariant distributions on G (resp. GL(N)). We call this map the (twisted) spectral
endoscopic transfer. Since we can identify C∞c (G⋊θ0) (resp. C∞c (GL(N)⋊θN)) with
C∞c (G) (resp. C∞c (GL(N))) by sending g ⋊ θ0 (resp. gN ⋊ θN ) to g (resp. gN ), we
can deûne the twisted transfer map also for C∞c (G ⋊ θ0) (resp. C∞c (GL(N) ⋊ θN)).
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If π is an irreducible smooth representation of G, then it deûnes an invariant dis-
tribution on G by the trace of

π( f ) = ∫
G
f (g)π(g)dg

for f ∈ C∞c (G). We call this the character of π and denote it by fG(π). For any
irreducible representation πΣ0 of GΣ0 , which contains π in its restriction to G, we
deûne a twisted invariant distribution on G by the trace of

πΣ0( f ) = ∫
G⋊θ0

f (g)πΣ0(g)dg

for f ∈ C∞c (G⋊θ0). We call this the twisted character ofG, and denote it by fG(πΣ0).
We can also deûne the twisted characters for GL(N) similarly, but we will write it
in a slightly diòerent way. Let π be a self-dual irreducible smooth representation of
GL(N); we can deûne a twisted invariant distribution on GL(N) by taking the trace
of π( f ) ○ Aπ(θN) for f ∈ C∞c (GL(N)), where Aπ(θN) is an intertwining operator
between π and πθN . We call this the twisted character of π and denote it by fN θ (π).
Since the (twisted) elliptic endoscopic groups H in our case are all products of qua-
sisplit symplectic and special orthogonal groups, we can deûne a group of automor-
phisms of H by taking the product of Σ0 on each factor, and we denote this group
again by Σ0. Let H(G) (resp. H(H)) be the subspace of Σ0-invariant functions in
C∞c (G) (resp. C∞c (H)). _en it follows from a simple property of the transfer map
(which we will not explain here) that we can restrict both (3.1) and (3.2) toH(G) and
H(H).

4 Arthur Packets

For ψ ∈ Ψ(G), we deûne

πψ = ×(ρ ,a ,b)∈Jord(ψ) Sp(St(ρ, a), b) .

From [Tad86], we know πψ is a unitary self-dual irreducible representation ofGL(N),
and there is a Whittaker normalization of the intertwining operator Aπψ(θN) on πψ
(see [Art13, 2.2]). Now we can state Arthur’s local theory for G.

_eorem 4.1 (Arthur) For any ψ ∈ Ψ(G) and ε ∈ Ŝψ , there is a canonical way
to associate a ûnite-length semisimple unitary representation viewed as H(G)-module
π(ψ, ε) (which can be zero), satisfying the following properties.

(i)
f (ψ) ∶= ∑

ε∈Ŝψ

ε(sψ) fG(π(ψ, ε))

deûnes a stable distribution for f ∈H(G). Moreover,

f G(ψ) = fN θ (πψ), f ∈ C∞c (GL(N)),(4.1)

a�er we normalize the Haar measures on G and GL(N) in a compatible way.
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(ii) Suppose ψ = ψp and s ∈ Sψ> . Let (H,ψH) → (ψ, s), and we deûne a stable
distribution f (ψH) for f ∈H(H) as in (i). _en, a�er we normalize the Haarmeasures
on G and H in a compatible way, the following identity holds

f H(ψH) = ∑
ε∈Ŝψ

ε(ssψ) fG(π(ψ, ε)), f ∈H(G),(4.2)

where we denote the image of s in Sψ again by s.

When G is special even orthogonal, we have an additional character relation.

_eorem 4.2 (Arthur) Suppose G is special even orthogonal, ψ = ψp ∈ Ψ(G) and
ε ∈ ŜΣ0

ψ , for any irreducible representation π viewed as H(G)-module [π] in π(ψ, ε)
such that πθ0 ≅ π, one can associate it with an extension πΣ0 to GΣ0 . _en for any
s ∈ SΣ0

ψ> but not in Sψ> and (H,ψH) → (ψ, s) the following identity holds:

f H(ψH) = ∑
ε∈Ŝψ , [π]∈π(ψ ,ε)∶

πθ0≅π

ε(ssψ) fG(πΣ0), f ∈ C∞c (G ⋊ θ0),

where ε ∈ ŜΣ0
ψ is in the preimage of ε, and it depends on the extension πΣ0 . We denote

the image of s in SΣ0
ψ again by s, and we normalize the Haar measures on G and H in a

compatible way.

We denote the set of H(G)-modules π(ψ, ε) for ûxed ψ ∈ Ψ(G) and all ε ∈ Ŝψ

by Πψ . One can see from both (4.1) and (4.2) that the parametrization inside Πψ by
Ŝψ depends on the normalization of Aπψ(θN) and as well as those of intertwining
operators related to ψH (i.e., Aπψi

(θN i ) for i = I, II). In Arthur’s theory, we always
use the Whittaker normalization, as it is the most natural normalization from the
global point of view, and it is in this sense that we say the association of π(ψ, ε) with
ε ∈ Ŝψ is canonical. But as it has been pointed out in [MW06], locally there is no
reason to privilege the Whittaker normalization. Later on we will discuss another
normalization used by Mœglin and Waldspurger in [MW06], which is critical for
studying the structure of π(ψ, ε). So in order to distinguish diòerent parametrizations
with respect to various normalizations, we will denote π(ψ, ε) in Arthur’s theory by
πW(ψ, ε), and similarly denote f (ψ) by fW(ψ) and denote fN θ (πψ) by fN θ ,W(πψ).

Unlike the tempered case where all πW(ψ, ε) are distinct and irreducible (see_e-
orem 1.3 and [Xu15, _eorem 2.2]), Arthur’s theory says little about πW(ψ, ε) except
for its unitarity. In fact, πW(ψ, ε) can be reducible or even zero in general, and it is
the main goal of this paper to explore the inner structure of πW(ψ, ε). To do so, we
will mainly follow [Mœg06b,Mœg09,MW06].
As a consequence of Mœglin’s results about πW(ψ, ε), we will be able to deûne

the Arthur packet for GΣ0 and describe its structure (see Section 8). To begin with,
we deûne ΠΣ0

ϕ for ϕ ∈ Φ2(G) to be set of irreducible representations of GΣ0 , whose
restriction toG belong to Πϕ . _en_eorem 4.2 allows us to parametrize ΠΣ0

ϕ by ŜΣ0
ϕ ,

and we have the following result.
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_eorem 4.3 (Arthur) Suppose ϕ ∈ Φ2(G), there is a canonical bijection between
ΠΣ0

ϕ and ŜΣ0
ϕ :

ŜΣ0
ϕ Ð→ ΠΣ0

ϕ

ε z→ πΣ0
W (ϕ, ε),

such that
● πΣ0

W (ϕ, εε0) ≅ πΣ0
W (ϕ, ε) ⊗ ω0 ,

● [πΣ0
W (ϕ, ε)∣G] = 2πW(ϕ, ε) if G is special even orthogonal and SΣ0

ϕ = Sϕ , or πW(ϕ, ε)
otherwise,

● for any s ∈ SΣ0
ϕ but not in Sϕ and (H, ϕH) → (ϕ, s), the following identity holds

f HW(ϕH) = ∑
ε∈Ŝϕ

ε(s) fG(πΣ0
W (ϕ, ε)) , f ∈ C∞c (G ⋊ θ0).

5 The Mœglin–Waldspurger Normalization

_e main reference for this section is [MW06]. Suppose ψ ∈ Ψ(G); we denote the
normalized action of θN on πψ by θ(ψ) for simplicity. If it is the Whittaker normal-
ization, we denote it by θW(ψ). Our aim is to introduce the normalization used by
Mœglin and Waldspurger, which we denote by θMW(ψ), and to calculate explicitly
the diòerence θMW(ψ)/θW(ψ).

To give the deûnition, we need to specify a class of parameters in Ψ(G) called pa-
rameters with “discrete diagonal restriction”. To be more precise, ψ ∈ Ψ(G) is said
to have discrete diagonal restriction if ψd ∈ Φ2(G). It is an easy exercise to see that
this is equivalent to requiring ψ = ψp and that for any ûxed ρ, the segments [A, B]
for (ρ,A, B, ζ) ∈ Jordρ(ψ) are disjoint. In particular this implies Jord(ψ) is multi-
plicity free. Among this class of parameters, we call ψ is elementary if A = B for all
(ρ,A, B, ζ) ∈ Jord(ψ), or equivalently inf(a, b) = 1 for all (ρ, a, b) ∈ Jord(ψ). Note
that in the original terminology of Mœglin andWaldspurger, elementary parameters
are not required to have discrete diagonal restriction; nevertheless, whenever they
treat the elementary parameters, they include the condition of discrete diagonal re-
striction. _is is the reason that we include the condition of discrete diagonal restric-
tion in our deûnition of elementary parameters. For simplicity, if ψ is elementary we
also denote by Jordρ(ψd) the set of integers α such that (ρ, α, 1) ∈ Jord(ψd), and we
write (ρ, α, δα) for (ρ, (α − 1)/2, (α − 1)/2, δα) ∈ Jord(ψ).

We ûrst give the deûnition of θMW(ψ) for those elementary parameters. Suppose
for all (ρ, B, B, ζ) ∈ Jord(ψ), we have B = 0; then simply let θMW(ψ) = θW(ψ).
Otherwise, we ûx ρ and let B0 be the smallest number with (ρ, B0 , B0 , ζ0) ∈ Jord(ψ).
If B0 /= 0, we have

πψ ↪Ð→ ρ∥ζ0B0 × πψ′ × ρ∥−ζ0B0

as the unique irreducible subrepresentation, where Jord(ψ′) is obtained from Jord(ψ)
by changing (ρ, B0 , B0 , ζ0) to (ρ, B0 − 1, B0 − 1, ζ0) when B0 ⩾ 1, or removing
(ρ, B0 , B0 , ζ0) otherwise. _en we take θMW(ψ) to be induced from θMW(ψ′). If
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B0 = 0, let B1 be the next smallest number with (ρ, B1 , B1 , ζ1) ∈ Jord(ψ), and we have

πψ ↪Ð→ ⟨ζ1B1 , . . . , 0⟩ × πψ′ × ⟨0, . . . ,−ζ1B1⟩,

where we get Jord(ψ′) by removing (ρ, B0 , B0 , ζ0) and (ρ, B1 , B1 , ζ1) from Jord(ψ).
Note that πψ appears with multiplicity one in the induced representation; then again
we take θMW(ψ) to be induced from θMW(ψ′). _is ûnishes the case of elementary
parameters.

Next we consider the case of parameters with discrete diagonal restriction. We
choose (ρ,A, B, ζ) with A > B, then

πψ ↪Ð→ ⟨ζB, . . . ,−ζA⟩ × πψ′ × ⟨ζA, . . . ,−ζB⟩,

as the unique irreducible subrepresentation, where

Jord(ψ′) = Jord(ψ) ∪ {(ρ,A− 1, B + 1, ζ)}/{(ρ,A, B, ζ)} .

_en we take θMW(ψ) to be induced from θMW(ψ′).

Lemma 5.1 In the set-up above, θMW(ψ) is independent of the choice of (ρ,A, B, ζ).

_e proof of this Lemma can be found in [MW06, Lemmas 1.12.1 and 1.12.2].
Now we can consider the general case. If ψ /= ψp , we can write

πψ ≅ ( ⨉
(ρ ,a ,b)

Sp(St(ρ, a), b)) × πψp × ( ⨉
(ρ ,a ,b)

Sp(St(ρ, a), b)∨) ,

where (ρ, a, b) are taken over Jord(ψnp), and hence deûne θMW(ψ) to be induced
from θMW(ψp). So without loss of generality, we assume ψ = ψp . _e general case
requires us to put some total order >ψ on Jord(ψp) satisfying the following condition.
(P): If (ρ,A, B, ζ), (ρ,A′ , B′ , ζ′) ∈ Jord(ψp) with A > A′ , B > B′ and ζ = ζ′, then

(ρ,A, B, ζ) >ψ (ρ,A′ , B′ , ζ′).
_e necessity of this conditionwill be discussed in amoment. _e point is there are

many orders satisfying this condition, and we do not have a privileged one in general.
Nonetheless, for parameters with discrete diagonal restriction, we can always choose
an order such that for any ρ, (ρ,A, B, ζ) >ψ (ρ,A′ , B′ , ζ′) if and only if A > A′. We
call such orders the natural orders for parameters with discrete diagonal restriction.
For ψ ∈ Ψ(G) with order >ψ , we say that ψ≫ ∈ Ψ(G≫) with order >ψ≫ dominates
ψ with respect to >ψ if there is an order preserving bijection between Jord(ψ≫) and
Jord(ψ) that sends (ρ,A≫ , B≫ , ζ≫) to (ρ,A, B, ζ) satisfying A≫ − A = B≫ − B ⩾ 0
and ζ≫ = ζ .

Suppose (ψ≫ , >ψ≫) dominates (ψ, >ψ) with both orders satisfying condition (P),
and ψ≫ has discrete diagonal restriction. _en we have

πψ = ○(ρ ,A,B ,ζ)∈Jord(ψ) Jacθ(ρ ,A≫ ,B≫ ,ζ)↦(ρ ,A,B ,ζ) πψ≫ ,(5.1)

where the composition is taken in the decreasing order with respect to >ψ . Note that if
the condition (P) is not satisûed, this may not be true. To describe the Jacquet functor

https://doi.org/10.4153/CJM-2016-029-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-029-3


On Mœglin’s Parametrization of Arthur Packets 909

in (5.1), we consider the following generalized segment:

X≫
(ρ ,A,B ,ζ) =

⎡⎢⎢⎢⎢⎢⎢⎣

ζB≫ ⋅ ⋅ ⋅ ζ(B + 1)
...

...
ζA≫ ⋅ ⋅ ⋅ ζ(A+ 1)

⎤⎥⎥⎥⎥⎥⎥⎦

.(5.2)

_en the Jacquet functor in (5.1) means applying Jacθx consecutively for x ranges over
X≫

(ρ ,A,B ,ζ) from top to bottom and from le� to right. Now it is clear how to deûne
θMW(ψ). We ûrst choose an order >ψ satisfying condition (P), and then we choose
a dominating parameter ψ≫ with discrete diagonal restriction and natural order. We
deûne θMW(ψ) to be the one induced from θMW(ψ≫) through the Jacquet module.
_e upshot is that θMW(ψ) only depends on the order >ψ , and not on the dominating
parameterψ≫. _is is explained in [MW06], and one can also see this whenwe derive
the formula for θMW(ψ)/θW(ψ).

Suppose ψ ∈ Ψ(G) and we ûx an order >ψ on Jord(ψp) satisfying (P); then we can
deûne a set ZMW/W(ψ) of unordered pairs of Jordan blocks from Jord(ψp) as follows.

Deûnition 5.2 Apair {(ρ, a, b), (ρ′ , a′ , b′) ∈ Jord(ψp)} is contained inZMW/W(ψ)
if and only if ρ = ρ′, and it is in one of the following situations.
(i) Case: a, b are even and a′ , b′ are odd.

(a) If ζa ,b = −1 and
⎧⎪⎪⎨⎪⎪⎩

ζa′ ,b′ = −1⇒ (ρ, a, b) >ψ (ρ, a′ , b′), a > a′ .
ζa′ ,b′ = +1⇒ a > a′ .

(b) If ζa ,b = ζa′ ,b′ = +1 and
⎧⎪⎪⎨⎪⎪⎩

(ρ, a, b) >ψ (ρ, a′ , b′) ⇒ a′ > a, b > b′ .
(ρ, a, b) <ψ (ρ, a′ , b′) ⇒ a > a′ , b > b′ .

(ii) Case : a is odd, b is even and a′ is even, b′ is odd.
(a) If ζa ,b = −1 and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ζa′ ,b′ = −1⇒ (ρ, a, b) >ψ (ρ, a′ , b′), a < a′ .

ζa′ ,b′ = +1 and
⎧⎪⎪⎨⎪⎪⎩

(ρ, a, b) >ψ (ρ, a′ , b′) ⇒ a < a′ .
(ρ, a, b) <ψ (ρ, a′ , b′) ⇒ a > a′ .

(b) If ζa ,b = ζa′ ,b′ = +1 and
⎧⎪⎪⎨⎪⎪⎩

(ρ, a, b) >ψ (ρ, a′ , b′) ⇒ a < a′ , b > b′ .
(ρ, a, b) <ψ (ρ, a′ , b′) ⇒ a > a′ , b > b′ .

_eorem 5.3 For ψ ∈ Ψ(G), θMW(ψ)/θW(ψ) = (−1)∣ZMW/W(ψ)∣.

Proof By our deûnition it suõces to prove the theorem forψ = ψp , sowewill assume
ψ = ψp from now on. _e proof we give here is incomplete, because we will need to
refer to ([MW06], Section 5) for several ingredients. First, we would like to assume
this theorem forψ having discrete diagonal restriction and natural order, and we refer
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interested readers to [MW06, _eorem 5.6.1]). Secondly, we need to use the “unipo-
tent normalization” θU(ψ) introduced in [MW06, Section 5], and we will recall two
of its most important properties. _e ûrst property of θU(ψ) is parallel with a similar
property for the Whittaker normalization θW(ψ). Let (ρ,A, B, ζ) ∈ Jord(ψ), and we
get ψ≫ simply by changing (ρ,A, B, ζ) to (ρ,A≫ , B≫ , ζ) with A≫ − A = B≫ − B ⩾ 0
and ζ≫ = ζ . Suppose

πψ = Jacθ(ρ ,A≫ ,B≫ ,ζ)↦(ρ ,A,B ,ζ) πψ≫

with an action θ(ψ) induced from some θ(ψ≫). If ζ = −1 and θ(ψ≫) = θW(ψ≫),
then θ(ψ) = θW(ψ); if ζ = +1 and θ(ψ≫) = θU(ψ≫), then θ(ψ) = θU(ψ) (see
[MW06, Proposition 5.4.1]).

To state the second property, let us deûne Z(ψ) to be the set of unordered pairs
{(ρ, a, b), (ρ, a′ , b′)} in Jord(ψp) such that sup(b, b′) and sup(a, a′) are both even,
and inf(b, b′) and inf(a, a′) are both odd. _en we have θW(ψ)/θU(ψ) = (−1)∣Z(ψ)∣

(see [MW06, _eorem 5.5.7]).
Now we can start the proof. Let us index the Jordan blocks in Jord(ψ) accord-

ing to the order >ψ , i.e., (ρ i , a i , b i) >ψ (ρ i−1 , a i−1 , b i−1). And we assume Jord(ψ) =
{(ρ i , a i , b i)}l

i=1. Letψ≫ be a dominating parameter with discrete diagonal restriction
and natural order. _en we can also obtain ψk from ψ≫ by changing (ρ i , a≫, i , b≫, i)
to (ρ i , a i , b i) for 1 ⩽ i ⩽ k. In particular, we can set ψ0 = ψ≫. Let

Jack ∶= Jacθ(ρk ,a≫,k ,b≫,k)z→(ρk ,ak ,bk) .

_en we have the following sequence:

πψ≫ = πψ0
Jac1ÐÐ→ ⋅ ⋅ ⋅ JackÐÐ→ πψk

Jack+1

ÐÐÐ→ ⋅ ⋅ ⋅ Jac lÐÐ→ πψ l = πψ .

From the properties of θW(ψ) and θU(ψ) that we have recalled above, we can com-
pute θMW(ψk)/θW(ψk). If ζk = −1, we have

θMW(ψk)/θW(ψk) = θMW(ψk−1)/θW(ψk−1).
If ζk = +1, we have

θMW(ψk)/θW(ψk)
= θMW(ψk)/θU(ψk) ⋅ θU(ψk)/θW(ψk)
= θMW(ψk−1)/θU(ψk−1) ⋅ θU(ψk)/θW(ψk)
= θMW(ψk−1)/θW(ψk−1) ⋅ θW(ψk−1)/θU(ψk−1) ⋅ θU(ψk)/θW(ψk)

= θMW(ψk−1)/θW(ψk−1) ⋅ (−1)∣Z(ψk−1)∣ ⋅ (−1)∣Z(ψk)∣ .

Moreover, letZk(ψk−1) (resp. Zk(ψk)) be the subset of pairs inZ(ψk−1) (resp. Z(ψk))
containing (ρk , a≫,k , b≫,k) (resp. (ρk , ak , bk)); then

θMW(ψk)/θW(ψk)

= θMW(ψk−1)/θW(ψk−1) ⋅ (−1)∣Zk(ψk−1)∣+∣Zk(ψk)∣

= θMW(ψk−1)/θW(ψk−1) ⋅ (−1)∣(Zk(ψk−1)∪Zk(ψk))/(Zk(ψk−1)∩Zk(ψk))∣ ,
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where we identify (ρk , a≫,k , b≫,k) with (ρk , ak , bk) in taking the intersection and
union. To simplify the formula above, let us denote by Zk(ψk−1 ,ψk) the set

(Zk(ψk−1) ∪ Zk(ψk)) / (Zk(ψk−1) ∩ Zk(ψk)) .

_e proof is given by induction on k. So let us assume the theorem is valid for
θMW(ψk)/θW(ψk) with 0 ⩽ k ⩽ s. Note that when k = 0, this is our assumption
at the beginning. We need to prove the theorem for k = s + 1. According to our for-
mula, we need to divide into two cases with respect to the parity of as+1 + bs+1. Here
we will only treat the case when as+1 + bs+1 is even, while the other case is similar. Let
ρ = ρs+1. From our previous discussion, we have

θMW(ψs+1)/θW(ψs+1) =
⎧⎪⎪⎨⎪⎪⎩

θMW(ψs)/θW(ψs), if ζs+1 = −1,
θMW(ψs)/θW(ψs) ⋅ (−1)∣Zs+1(ψs ,ψs+1)∣ , if ζs+1 = +1.

We ûrst consider the case when ζs+1 = −1. Suppose {(ρ, a≫,s+1 , b≫,s+1), (ρ, a, b)}
belongs to ZMW/W(ψs); then by our deûnition we are in one of the following situa-
tions.

(a) If (ρ, a≫,s+1 , b≫,s+1) >ψs (ρ, a, b),
⎧⎪⎪⎨⎪⎪⎩

a≫,s+1 even; a, b odd⇒ a≫,s+1 > a.
a≫,s+1 odd; a, b even⇒ impossible.

(b) If (ρ, a≫,s+1 , b≫,s+1) <ψs (ρ, a, b),
⎧⎪⎪⎨⎪⎪⎩

a≫,s+1 even; a, b odd⇒ a≫,s+1 > a, ζa ,b = +1.
a≫,s+1 odd; a, b even⇒ a≫,s+1 < a, ζa ,b = −1.

Note that a≫,s+1 = as+1, so in all the situations we have {(ρ, as+1 , bs+1), (ρ, a, b)}
belonging to ZMW/W(ψs+1) as well. In the same way, one can show

{(ρ, as+1 , bs+1), (ρ, a, b)} ∈ ZMW/W(ψs+1) Ô⇒
{(ρ, a≫,s+1 , b≫,s+1), (ρ, a, b)} ∈ ZMW/W(ψs).

_is means that our formula is valid for k = s + 1 in this case.
Next we come to the more diõcult case ζs+1 = +1. Similarly, we ûrst suppose

{(ρ, a≫,s+1 , b≫,s+1), (ρ, a, b)} belongs to ZMW/W(ψs), and we will be in one of the
following situations.
(i) If (ρ, a≫,s+1 , b≫,s+1) >ψs (ρ, a, b),

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a≫,s+1 even; a, b odd⇒ a≫,s+1 < a, b≫,s+1 > b.

a≫,s+1 odd; a, b even⇒
⎧⎪⎪⎨⎪⎪⎩

a≫,s+1 < a, ζa ,b = −1.
a≫,s+1 < a, b≫,s+1 < b, ζa ,b = +1.

(ii) If (ρ, a≫,s+1 , b≫,s+1) <ψs (ρ, a, b),

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a≫,s+1 even; a, b odd⇒ a≫,s+1 > a, b≫,s+1 > b, ζa ,b = +1. ⋆-1

a≫,s+1 odd; a, b even⇒
⎧⎪⎪⎨⎪⎪⎩

a≫,s+1 < a, ζa ,b = −1.
a≫,s+1 > a, b≫,s+1 < b, ζa ,b = +1.

⋆-2
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Note that as+1 < a≫,s+1 and bs+1 = b≫,s+1, so

{(ρ, as+1 , bs+1), (ρ, a, b)} ∈ ZMW/W(ψs+1)

in all the situations except for ⋆-1 and ⋆-2 with the additional condition as+1 < a.
It is easy to check in the exceptional cases, either {(ρ, a≫,s+1 , b≫,s+1), (ρ, a, b)} or
{(ρ, as+1 , bs+1), (ρ, a, b)} belongs to Zs+1(ψs ,ψs+1).
Conversely, if we suppose {(ρ, as+1 , bs+1), (ρ, a, b)} belongs to ZMW/W(ψs+1),

then we will be in one of the following situations.
(a) If (ρ, as+1 , bs+1) >ψs+1 (ρ, a, b),

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

as+1 even; a, b odd⇒ as+1 < a, bs+1 > b. ⋆-3

as+1 odd; a, b even⇒
⎧⎪⎪⎨⎪⎪⎩

as+1 < a, ζa ,b = −1. ⋆-4
as+1 < a, bs+1 < b, ζa ,b = +1. ⋆-5

(b) If (ρ, as+1 , bs+1) <ψs+1 (ρ, a, b),

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

as+1 even; a, b odd⇒ as+1 > a, bs+1 > b, ζa ,b = +1.

as+1 odd; a, b even⇒
⎧⎪⎪⎨⎪⎪⎩

as+1 < a, ζa ,b = −1. ⋆-6
as+1 > a, bs+1 < b, ζa ,b = +1.

We ûnd {(ρ, a≫,s+1 , b≫,s+1), (ρ, a, b)} ∉ ZMW/W(ψs+1) only for ⋆-3 , ⋆-4 , ⋆-5 ,
⋆-6 with the additional condition a≫,s+1 > a. Again, it is easy to check in these
cases that either {(ρ, a≫,s+1 , b≫,s+1), (ρ, a, b)} or {(ρ, as+1 , bs+1), (ρ, a, b)} belongs
to Zs+1(ψs ,ψs+1).
Finally, it suõces to ûgure out the set Zs+1(ψs ,ψs+1) and show that it consists of

exactly those pairs that we have encountered in ⋆-1 – ⋆-6 with their additional con-
ditions respectively. So let us suppose that either {(ρ, a≫,s+1 , b≫,s+1), (ρ, a, b)} or
{(ρ, as+1 , bs+1), (ρ, a, b)} belongs to Zs+1(ψs ,ψs+1), and we list all the possibilities.
(i) If (ρ, a≫,s+1 , b≫,s+1) >ψs (ρ, a, b),
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a≫,s+1 even; a, b odd⇒ a≫,s+1 > a > as+1 , b≫,s+1 > b. ⋆-3 with a≫,s+1 > a
a≫,s+1 odd; a, b even⇒

⎧⎪⎪⎨⎪⎪⎩

a≫,s+1 > a > as+1 , b≫,s+1 < b, ζa ,b = +1. ⋆-5 with a≫,s+1 > a
a≫,s+1 > a > as+1 , b≫,s+1 < b, ζa ,b = −1. ⋆-4 with a≫,s+1 > a

(ii) If (ρ, a≫,s+1 , b≫,s+1) <ψs (ρ, a, b),
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a≫,s+1 even; a, b odd⇒ a≫,s+1 > a > as+1 , b≫,s+1 > b. ⋆-1 with as+1 < a
a≫,s+1 odd; a, b even⇒

⎧⎪⎪⎨⎪⎪⎩

a≫,s+1 > a > as+1 , b≫,s+1 < b, ζa ,b = +1. ⋆-2 with as+1 < a
a≫,s+1 > a > as+1 , b≫,s+1 < b, ζa ,b = −1. ⋆-6 with a≫,s+1 > a

Note that each case here corresponds exactly to one of ⋆-1 - ⋆-6 with the required
additional conditions, as we indicate on their right. _is ûnishes the proof.
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Remark 5.4 _ere is a slight diòerence between our deûnition of ZMW/W(ψ) (also
Z(ψ)) and that in [MW06]; namely, they use ordered pairs rather than unordered
pairs. Moreover, this theorem slightly generalizes the formula in [MW06] in the sense
that we only require that >ψ satisûes (P).

We would also like to see the eòect of Mœglin and Waldspurger’s normalization
on the parametrizations of representations inside Arthur packets. To do so, we need
the following deûnition.

Deûnition 5.5 For ψ ∈ Ψ(G) and (ρ, a, b) ∈ Jord(ψp),

ZMW/W(ψ)(ρ ,a ,b) ∶=
{(ρ′ , a′ , b′) ∈ Jord(ψp) ∶ the pair of (ρ, a, b) and (ρ′ , a′ , b′) lies in ZMW/W(ψ)},

and εMW/W
ψ (ρ, a, b) ∶= (−1)∣ZMW/W(ψ)(ρ ,a ,b)∣.

Proposition 5.6 Suppose ψ ∈ Ψ(G) has discrete diagonal restriction.

(i) εMW/W
ψ ∈ ŜΣ0

ψ and εMW/W
ψ (sψ) = θMW(ψ)/θW(ψ).

(ii) If wewrite πMW(ψ, ε) ∶= πW(ψ, εεMW/W
ψ ) for ε ∈ Ŝψ , then the character identities

in _eorem 4.1 can be rewritten as follows.
(a) Let

fMW(ψ) ∶= ∑
ε∈Ŝψ

ε(sψ) fG(πMW(ψ, ε)), f ∈H(G).

_en

f GMW(ψ) = fN θ ,MW(πψ), f ∈ C∞c (GL(N)).(5.3)

(b) If s ∈ Sψ and (H,ψH) → (ψ, s), then we can deûne a stable distribution
fMW(ψH) on H as in (a), and the following identity holds:

f HMW(ψH) = ∑
ε∈Ŝψ

ε(ssψ) fG(πMW(ψ, ε)), f ∈H(G).(5.4)

Proof For part (i), we have

∏
(ρ ,a ,b)∈Jord(ψ)

εMW/W
ψ (ρ, a, b) = ∏

(ρ ,a ,b)∈Jord(ψ)
(−1)∣ZMW/W(ψ)(ρ ,a ,b)∣

= (−1)∑(ρ ,a ,b)∈Jord(ψ) ∣ZMW/W(ψ)(ρ ,a ,b)∣

= (−1)2∣ZMW/W(ψ)∣ = 1,

and hence εMW/W
ψ deûnes a character of SΣ0

ψ . To compute εMW/W
ψ (sψ), let us recall

that

sψ(ρ, a, b) =
⎧⎪⎪⎨⎪⎪⎩

−1, if b is even,
1, if b is odd,
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for (ρ, a, b) ∈ Jord(ψ). _en

εMW/W
ψ (sψ) = ∏

(ρ ,a ,b)∈Jord(ψ)
b is even

εMW/W
ψ (ρ, a, b) = (−1)

∑(ρ ,a ,b)∈Jord(ψ)
b is even

∣ZMW/W(ψ)(ρ ,a ,b)∣

= (−1)∣ZMW/W(ψ)∣ = θMW(ψ)/θW(ψ).

Now we consider part (ii). First, by deûnition, we have for f ∈H(G)

fMW(ψ) = ∑
ε∈Ŝψ

ε(sψ) fG(πMW(ψ, ε)) = ∑
ε∈Ŝψ

ε(sψ) fG(πW(ψ, εεMW/W
ψ ))

= ∑
ε∈Ŝψ

εεMW/W
ψ (sψ) fG(πW(ψ, ε)) = ∑

ε∈Ŝψ

ε(sψ)εMW/W
ψ (sψ) fG(πW(ψ, ε))

= εMW/W
ψ (sψ) ∑

ε∈Ŝψ

ε(sψ) fG(πW(ψ, ε)) = εMW/W
ψ (sψ) fW(ψ).

Combined with part (i) and (4.1), we then get

f GMW(ψ) = θMW(ψ)/θW(ψ) fN θ ,W(πψ) = fN θ ,MW(πψ)

for f ∈ C∞c (GL(N)). Next, for any s ∈ Sψ and (H,ψH) → (ψ, s), let ψH = ψI × ψII
(see Example 3.1). _en by (4.2) we have

f HW(ψH) = ∑
ε∈Ŝψ

ε(ssψ) f (πW(ψ, ε)) .

Also note the right-hand side of (5.4) is

RHS = ∑
ε∈Ŝψ

ε(ssψ) f (πW(ψ, εεMW/W
ψ ))

= ∑
ε∈Ŝψ

εεMW/W
ψ (ssψ) f (πW(ψ, ε))

= εMW/W
ψ (ssψ) ∑

ε∈Ŝψ

ε(ssψ) f (πW(ψ, ε)) ,

and the le�-hand side of (5.4) is

LHS = εMW/W
ψH

(sψH) f HW(ψH),

where sψH = sψI × sψII and ε
MW/W
ψH

= εMW/W
ψI

⊗ εMW/W
ψII

. So it suõces to show that

εMW/W
ψH

(sψH) = ε
MW/W
ψ (ssψ).

Moreover, by using part (i), this equality can be reduced to

εMW/W
ψ (s) = θMW(ψH)/θW(ψH) ⋅ θMW(ψ)/θW(ψ),(5.5)

where

θMW(ψH)/θW(ψH) = θMW(ψI)/θW(ψI) ⋅ θMW(ψII)/θW(ψII).
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To show (5.5), one considers the partition Jord(ψ) = Jord+ ⊔ Jord− (see Example 3.1).
_en εMW/W

ψ (s) = (−1)m , where

m = ♯ {{(ρ, a, b), (ρ′ , a′ , b′)} ∈ ZMW/W(ψ) ∶ (ρ, a, b) ∈ Jord+ , (ρ′ , a′ , b′) ∈ Jord− } .

By _eorem 5.3, we can write the other side of (5.5) as

(−1)∣ZMW/W(ψ)∣−∣ZMW/W(ψI)∣−∣ZMW/W(ψII)∣ ,

and hence the validity of (5.5) is clear.

For ψ = ψp ∈ Ψ(G), we ûx an order >ψ on Jord(ψ) satisfying condition (P). We
also chooseψ≫ dominatingψ with discrete diagonal restriction and natural order. We
identify Sψ≫ with Sψ> and then s>ψ = sψ≫ . For ε ∈ Ŝψ> , we deûne

πMW(ψ, ε) ∶= ○(ρ ,A,B ,ζ)∈Jord(ψ)Jac(ρ ,A≫ ,B≫ ,ζ)↦(ρ ,A,B ,ζ)πMW(ψ≫ , ε),(5.6)

where the Jacquet functor is deûned as in (5.2) and the composition is taken in the
decreasing order. For theseH(G)-modules, we have the following proposition.

Proposition 5.7 Suppose ψ = ψp ∈ Ψ(G), and >ψ is an order on Jord(ψ) satisfy-
ing condition (P). Suppose ψ≫ has discrete diagonal restriction and dominates ψ with
natural order.

(i) _en εMW/W
ψ ∈ ŜΣ0

ψ> and ε
MW/W
ψ (s>ψ) = θMW(ψ)/θW(ψ).

(ii) For ε ∈ Ŝψ> ,

πMW(ψ, ε) =
⎧⎪⎪⎨⎪⎪⎩

πW(ψ, εεMW/W
ψ ), if εεMW/W

ψ ∈ Ŝψ ,
0, otherwise.

Proof _e proof of part (i) is the same as that in Proposition 5.6, so we will only
show part (ii) here. For s ∈ Sψ> , we denote its image in Sψ again by s. Let

ΠMW ,s(ψ≫) = ∑
ε∈Ŝψ≫

ε(ssψ≫)πMW(ψ≫ , ε),

ΠW ,s(ψ) = ∑
ε∈Ŝψ

ε(ssψ)πW(ψ, ε).

It follows for ε ∈ Ŝψ> that

πMW(ψ≫ , ε) =
ε(sψ≫)
∣Sψ≫ ∣

∑
s∈Sψ≫

ε(s)ΠMW ,s(ψ≫).

Suppose that (H≫ ,ψH≫) → (ψ≫ , s) and (H,ψH) → (ψ, s); then ψH≫ dominates ψH .
By (4.2) and (5.4) we have

(5.7) ○(ρ ,A,B ,ζ)∈Jord(ψ) Jac(ρ ,A≫ ,B≫ ,ζ)↦(ρ ,A,B ,ζ)ΠMW ,s(ψ≫) =
θMW(ψH)/θW(ψH)ΠW ,s(ψ).

Analogous to (5.5), one can show

θMW(ψH)/θW(ψH) = εMW/W
ψ (ss>ψ).
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_erefore,

πMW(ψ, ε) =
ε(s>ψ)
∣Sψ> ∣

∑
s∈Sψ>

ε(s)εMW/W
ψ (ss>ψ)ΠW ,s(ψ).

We rewrite this as

πMW(ψ, εεMW/W
ψ ) =

εεMW/W
ψ (s>ψ)
∣Sψ> ∣

∑
s∈Sψ>

εεMW/W
ψ (s)εMW/W

ψ (ss>ψ)ΠW ,s(ψ)

=
ε(s>ψ)
∣Sψ> ∣

∑
s∈Sψ>

ε(s)ΠW ,s(ψ).

Note that ΠW ,s(ψ) only depends on the image of s in Sψ , so

∑
s∈Sψ>

ε(s)ΠW ,s(ψ) =
⎧⎪⎪⎨⎪⎪⎩

∣Sψ> ∣
∣Sψ ∣ ∑s∈Sψ

ε(s)ΠW ,s(ψ), if ε ∈ Ŝψ ,
0, otherwise.

If ε ∈ Ŝψ , then ε(sψ) = ε(s>ψ), and it follows that

πMW(ψ, εεMW/W
ψ ) =

ε(sψ)
∣Sψ ∣

∑
s∈Sψ

ε(s)ΠW ,s(ψ) = πW(ψ, ε).

If ε ∉ Ŝψ , then πMW(ψ, εεMW/W
ψ ) = 0. _is ûnishes the proof.

In general, for ψ ∈ Ψ(G), we deûne
πMW(ψ, ε) = πψnp ⋊ πMW(ψp , ε),

for ε ∈ Ŝψ> . Since πW(ψ, ε) = πψnp ⋊ πW(ψp , ε) for ε ∈ Ŝψ , we again have

πMW(ψ, ε) =
⎧⎪⎪⎨⎪⎪⎩

πW(ψ, εεMW/W
ψ ), if εεMW/W

ψ ∈ Ŝψ ,
0, otherwise.

_e main purpose of introducing the Mœglin–Waldspurger normalization is that
one will have a recursive formula for fN θ ,MW(πψ) with ψ ∈ Ψ(G) having discrete
diagonal restriction. Here we will occasionally write π(ψ) for πψ . To introduce the
formula, let us ûx (ρ, a, b) ∈ Jord(ψ) such that inf(a, b) > 1. Recall we also put
A = (a + b)/2 − 1, B = ∣a − b∣/2, and ζ = ζa ,b = Sign(a − b) if a /= b and arbitrary
otherwise. _en it is the same to require A /= B for the ûxed Jordan block. Let ψ′

be obtained from ψ by removing (ρ, a, b). _en we can deûne an element in the
Grothendieck group of representations of GL(N) as follows:

π(ψ)(ρ ,A,B ,ζ) ∶= ⊕
C∈]B ,A]

(−1)A−C(⟨ζB, . . . ,−ζC⟩

× Jacθζ(B+2), . . . ,ζC π(ψ′ , (ρ,A, B + 2, ζ)) × ⟨ζC , . . . ,−ζB⟩)

⊕ (−1)[(A−B+1)/2]π(ψ′ , (ρ,A, B + 1, ζ), (ρ, B, B, ζ)) .
We impose the normalized actions of Mœglin–Waldspurger on π(ψ′ , (ρ,A, B +
2, ζ)) and π(ψ′ , (ρ,A, B + 1, ζ), (ρ, B, B, ζ)), and we denote the resulting action on
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π(ψ)(ρ ,A,B ,ζ) by θMW(ψ)(ρ ,A,B ,ζ). _e next theorem shows the relation between
π(ψ)(ρ ,A,B ,ζ) and π(ψ).

_eorem 5.8 Suppose ψ ∈ Ψ(G) has discrete diagonal restriction; then

fN θ ,MW(πψ) = fN θ ,MW(π(ψ)(ρ ,A,B ,ζ)).

_e proof of this theorem (see [MW06]) involves some complicated computations
of Jacquet modules, and it is fair to say that the Mœglin–Waldspurger normalization
is somehow artiûcially made for this theorem. _is theorem has an immediate con-
sequence on the Arthur packets for G.
For ψ ∈ Ψ(G) having discrete diagonal restriction, we write

ΠMW(ψ) ∶= ∑
ε∈Ŝψ

ε(sψ)πMW(ψ, ε).(5.8)

_en we have the following proposition.

Proposition 5.9 Suppose ψ ∈ Ψ(G) has discrete diagonal restriction and we ûx
(ρ,A, B, ζ) ∈ Jord(ψ) such that A > B; then
ΠMW(ψ) = ⊕

C∈]B ,A]
(−1)A−C⟨ζB, . . . ,−ζC⟩ ⋊ Jacζ(B+2), . . . ,ζCΠMW(ψ′ , (ρ,A, B + 2, ζ))

⊕ (−1)[(A−B+1)/2]ΠMW(ψ′ , (ρ,A, B + 1, ζ), (ρ, B, B, ζ)),
where ψ′ is obtained from ψ by removing (ρ,A, B, ζ).

Proof _is proposition follows easily from _eorem 5.8 and the twisted character
relation (5.3), together with the compatibility of the twisted endoscopic transfer with
parabolic inductions and Jacquet modules (see [Xu15], Section 6).

From this formula, one can see that the case of parameters with discrete diagonal
restriction can be reduced to the case of elementary parameters. Later on, we will give
a recursive formula of Mœglin for πMW(ψ, ε), or more precisely for πM(ψ, ε) (see
Section 7 for its deûnition), in the case of discrete diagonal restriction again, which
is clearly motivated by the formula here. But in order to give Mœglin’s formula, we
need to ûrst study the Arthur packets for elementary parameters.

6 Elementary Arthur Packets

Let us recall that ψ ∈ Ψ(G) is elementary if ψ ○ ∆ ∈ Φ2(G) and A = B for all
(ρ,A, B, ζ) ∈ Jord(ψ). And we have the following theorem about elementary Arthur
packets due to Mœglin [Mœg06b].

_eorem 6.1 (Mœglin) Suppose ψ ∈ Ψ(G) is elementary; then πW(ψ, ε) is always
nonzero and irreducible. Moreover, πW(ψ, ε) /= πW(ψ, ε′) if ε /= ε′.

_e main diõculty of this theorem remains proving that certain generalized
Aubert involution (see Section 6.2) would take irreducible representations viewed as
H(G)-modules in elementary Arthur packets to irreducible representations viewed
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as H(G)-modules up to a sign in the corresponding Grothendieck group. But this
does not admit a direct approach. So instead, we will follow [Mœg06b] to systemati-
cally construct a class of representationswhich generalizes the construction of discrete
series representations of Mœglin and Tadić (see [MT02] and also [Xu15, Section 10]).
_is class of representations will form the candidates for elements in the elementary
Arthur packets. In fact, what Mœglin constructed are representations of GΣ0 , but we
can then take the irreducible representations of G viewed as H(G)-modules deûned
by their restriction to G. _e point is that it is easier to show the generalized Aubert
involution preserve this class of representations ofGΣ0 and also their irreducibility. In
the end, we are going to show the corresponding H(G)-modules are really elements
in the elementary Arthur packets.
First we need to deûne parabolic induction and Jacquet module on the category

Rep(GΣ0) of ûnite-length smooth representations of GΣ0 . Let P = MN be a standard
parabolic subgroup of G. If M is θ0-stable, we write MΣ0 ∶= M ⋊ Σ0. Otherwise, we
let MΣ0 = M. Suppose σΣ0 ∈ Rep(MΣ0), πΣ0 ∈ Rep(GΣ0).
(a) If Mθ0 = M, we deûne the normalized parabolic induction IndGΣ0

PΣ0 σΣ0 to be the
extension of the representation IndG

P (σΣ0 ∣M) by an induced action of Σ0, and
we deûne the normalized Jacquet module JacPΣ0 πΣ0 to be the extension of the
representation JacP(πΣ0 ∣G) by an induced action of Σ0.

(b) If Mθ0 /= M, we deûne the normalized parabolic induction IndGΣ0

PΣ0 σΣ0 to be
IndGΣ0

G IndG
P (σΣ0 ∣M), and we deûne the normalized Jacquet module JacPΣ0 πΣ0

to be JacP(πΣ0 ∣G).
It follows from the deûnition that

(JacPΣ0 πΣ0)∣M = JacP(πΣ0 ∣G).

Moreover,
(IndGΣ0

PΣ0 σΣ0)∣G = IndG
P (σΣ0 ∣M)

unless G is special even orthogonal and MΣ0 = M, in which case

(IndGΣ0

PΣ0 σΣ0)∣G = IndG
P (σΣ0 ∣M) ⊕ ( IndG

P (σΣ0 ∣M)) θ0 .

We can also deûne Jacx on Rep(GΣ0) as in the introduction.

6.1 Construction of a Class of Representations

_e construction of Mœglin is by induction on the rank of the groups, and it also
depends on certain so-called basic properties, which have to be established at the same
time again by induction. So let us assume for G = G(n′) with n′ < n and elementary
ψ ∈ Ψ(G), the irreducible representation πΣ0(ψ, ε) ofGΣ0 is well deûned and distinct
for ε ∈ ŜΣ0

ψ .
Let bρ ,ψ ,ε ∈ Jordρ(ψd) be the biggest integer such that ε is “ρ-cuspidal” for

Jordρ ,cusp(ψ) ∶= {(ρ, α, δα) ∈ Jordρ(ψ) ∶ α ⩽ bρ ,ψ ,ε};

i.e.,
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(a) if (ρ, α, δα) ∈ Jordρ ,cusp(ψ), then (ρ, α−2, δα−2) ∈ Jordρ ,cusp(ψ) as long as α−2 >
0;

(b) if (ρ, α, δα), (ρ, α − 2, δα−2) ∈ Jordρ ,cusp(ψ), then ε(ρ, α, δα)ε(ρ, α − 2, δα−2) =
−1;

(c) if (ρ, 2, δ2) ∈ Jordρ ,cusp(ψ), then ε(ρ, 2, δ2) = −1.
We allow bρ ,ψ ,ε to be zero. Let aρ ,ψ ,ε ∈ Jordρ(ψd) be the smallest integer such that
aρ ,ψ ,ε > bρ ,ψ ,ε , and let δρ ,ψ ,ε be the associated sign. If such aρ ,ψ ,ε does not exist, we
say aρ ,ψ ,ε = ∞.
Along with our assumption on the existence of πΣ0(ψ, ε), we also assume they

satisfy the following basic properties.

Basic Properties [Mœg06b, Section 2.3]
(1) (Jacquet module): If Jacρ∣∣x πΣ0(ψ, ε) /= 0, then there exists bρ ,ψ ,ε < α ∈ Jordρ(ψd)

such that x = δαα.
(2) (Non-unitary irreducibility) : For x ⩾ 1/2, if 2x − 1 ∉ Jordρ(ψd) ∪ {0} or 0 < x ⩽

(bρ ,ψ ,ε − 1)/2, then ρ∣∣x ⋊ πΣ0(ψ, ε) is irreducible.
(3) (Unitary reducibility) : Suppose Jordρ(ψd) contains odd integers. _en ρ ⋊

πΣ0(ψ, ε) is irreducible if 1 ∈ Jordρ(ψd), and is semisimple of length 2 without
multiplicities otherwise. Moreover, let σΣ0 be an irreducible subrepresentation of
ρ ⋊ πΣ0(ψ, ε) in both cases; then ρ × ⋅ ⋅ ⋅ × ρ ⋊ σΣ0 is irreducible.

Remark 6.2 Property (1) is proved in [Mœg06b, Section 2.5]; Property (2) is proved
in [Mœg06b, Section 2.7]. In the tempered case, Property (1) can be deduced easily
from [Xu15, Lemma 9.2]. But, the general proof of Property (1) depends on Prop-
erty (2). Property (2) is not obvious even in the tempered case, and its proof in the
tempered case is more or less the same as in the general case. A fundamental case of
Property (2) is when πΣ0(ψ, ε) is supercuspidal, and that follows from [Xu15, Corol-
lary 9.1] (cf. Proposition 1.6). Property (3) is proved in [Mœg06b, Section 2.8] without
assuming any unitarity results of Arthur, and in the tempered case it follows easily
from Arthur’s theory.

Based on our assumptions, we can now give the construction for πΣ0(ψ, ε).

Deûnition 6.3 Suppose ψ ∈ Ψ(G(n)) is an elementary parameter and ε ∈ ŜΣ0
ψ .

(i) If aρ ,ψ ,ε = ∞ for all ρ, then let (ϕcusp , εcusp) ∶= (ψd , ε), andwe deûne πΣ0(ψ, ε)
to be πΣ0

W (ϕcusp , εcusp) in_eorem 4.3, which is supercuspidal by [Xu15,_eorem 3.3]
(cf. _eorem 1.4).

(ii) If aρ ,ψ ,ε > bρ ,ψ ,ε + 2 or bρ ,ψ ,ε = 0, we deûne

πΣ0(ψ, ε) ↪Ð→ ρ∣∣δρ ,ψ ,ε(aρ ,ψ ,ε−1)/2 ⋊ πΣ0(ψ′ , ε′)
to be the unique irreducible subrepresentation, where (ψ′ , ε′) is obtained from (ψ, ε)
by changing (ρ, aρ ,ψ ,ε , δρ ,ψ ,ε) to (ρ, aρ ,ψ ,ε − 2, δρ ,ψ ,ε).

(iii) If aρ ,ψ ,ε = bρ ,ψ ,ε + 2, we need to divide into three cases.
(a) If Jordρ(ψd) contains even integers and bρ ,ψ ,ε /= 0, then we deûne

πΣ0(ψ, ε) ↪Ð→ ⟨δρ ,ψ ,ε(aρ ,ψ ,ε − 1)/2, . . . , δρ ,ψ ,ε1/2⟩ ⋊ πΣ0(ψ− , ε−)
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to be the unique irreducible subrepresentation, where (ψ− , ε−) is obtained from (ψ, ε)
by removing (ρ, aρ ,ψ ,ε , δρ ,ψ ,ε), and changing (ρ, α, δα) to (ρ, α,−δρ ,ψ ,ε) with

ε−(ρ, α,−δρ ,ψ ,ε) = −ε(ρ, α, δα)
for all α ⩽ bρ ,ψ ,ε . Moreover,

πΣ0(ψ, ε) ↪Ð→ ⟨δρ ,ψ ,ε(aρ ,ψ ,ε − 1)/2, . . . ,−δρ ,ψ ,ε(bρ ,ψ ,ε − 1)/2⟩ ⋊ πΣ0(ψ′ , ε′).
where (ψ′ , ε′) is obtained from (ψ, ε) by removing aρ ,ψ ,ε and bρ ,ψ ,ε from Jordρ(ψd).

(b) If Jordρ(ψd) contains odd integers and bρ ,ψ ,ε /= 1, then we deûne πΣ0(ψ, ε) to
be the unique common irreducible subrepresentation of

⟨δρ ,ψ ,ε(aρ ,ψ ,ε − 1)/2, . . . , 0⟩ ⋊ πΣ0(ψ− , ε−)
and

⟨δρ ,ψ ,ε(aρ ,ψ ,ε − 1)/2, . . . ,−δρ ,ψ ,ε(bρ ,ψ ,ε − 1)/2⟩ ⋊ πΣ0(ψ′ , ε′).

Here (ψ′ , ε′) is obtained from (ψ, ε) by removing aρ ,ψ ,ε and bρ ,ψ ,ε from Jordρ(ψd);
(ψ− , ε−) is obtained from (ψ, ε) by removing (ρ, aρ ,ψ ,ε , δρ ,ψ ,ε) and (ρ, 1, δ1), and
changing (ρ, α, δα) to (ρ, α,−δρ ,ψ ,ε) with

ε−(ρ, α,−δρ ,ψ ,ε) = −ε(ρ, α, δα)
for 1 < α ⩽ bρ ,ψ ,ε .

(c) If aρ ,ψ ,ε = 3, bρ ,ψ ,ε = 1, we have (ψ− , ε−) = (ψ′ , ε′) in the notation of (b). By
Property (3), σΣ0 = ρ ⋊ πΣ0(ψ′ , ε′) is semisimple of length 2, and hence we can write
σΣ0 = πΣ0

+ ⊕ πΣ0
− according to the following two cases.

(1) When Jordρ(ψd) only contains 2 elements, we ûx arbitrary parametrization in
σΣ0 , and we deûne πΣ0(ψ, ε) to be the unique irreducible subrepresentation of
ρ∣∣δ3 ⋊ πΣ0

ζ , with ζ = ε(3)δ3.
(2) When ∣ Jordρ(ψd)∣ > 2, i.e., aρ ,ψ′ ,ε′ /= ∞, we can specify the parametriza-

tion in σΣ0 as follows. Assume (ψ′′ , ε′′) is obtained from (ψ′ , ε′) by changing
(ρ, aρ ,ψ′ ,ε′ , δρ ,ψ′ ,ε′) to (ρ, 1, δρ ,ψ′ ,ε′). Let

ΠΣ0 = ρ × ⟨δρ ,ψ′ ,ε′(aρ ,ψ′ ,ε′ − 1)/2, . . . , δρ ,ψ′ ,ε′⟩ ⋊ πΣ0(ψ′′ , ε′′),
σΣ0
q = ⟨δρ ,ψ′ ,ε′(aρ ,ψ′ ,ε′ − 1)/2, . . . , 0⟩ ⋊ πΣ0(ψ′′ , ε′′),

and
σΣ0
s = ⟨ ρ × ⟨δρ ,ψ′ ,ε′(aρ ,ψ′ ,ε′ − 1)/2, . . . , δρ ,ψ′ ,ε′⟩⟩ ⋊ πΣ0(ψ′′ , ε′′).

_ere is an exact sequence

0 // σΣ0
s

// ΠΣ0 // σΣ0
q

// 0

σΣ0
?�

OO .

We set πΣ0
+ = σΣ0 ∩ (s.s.σΣ0

q ) and πΣ0
− = σΣ0 ∩ (s.s.σΣ0

s ). _en we deûne
πΣ0(ψ, ε) to be the unique irreducible subrepresentation of ρ∣∣δ3 ⋊ πΣ0

ζ , with
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ζ = ε(aρ ,ψ′ ,ε′)δρ ,ψ′ ,ε′ ε(3)δ3. Under such a choice this parametrization is com-
patible with Arthur’s parametrization of discrete series representations in the case
ψ = ψd (cf. Proposition 1.5 and also [Xu15, Proposition 9.3]), and it also satisûes
_eorem 6.10.

Remark 6.4 _e uniqueness properties in the construction should follow from the
property about Jacquet modules, i.e., Property (1). _e parametrization of represen-
tations ofGΣ0 in this construction is not uniquely determined by the choices wemake
in Step (c)(1). To ûx this one can use the (twisted) endoscopy theory. In the tempered
case, there are unique choices to bemade here so that this parametrization is the same
as Arthur’s (cf. _eorem 1.3 and also [Xu15, _eorem 2.2]). In the nontempered case,
we can ûx the parametrization by that in the tempered case through the generalized
Aubert involution, and we will denote such parametrization by πΣ0

M (ψ, ε) later on.

In the next few sections, we would like to show that Πψ consists ofH(G)-modules
obtained from restriction of πΣ0(ψ, ε) for ε ∈ ŜΣ0

ψ . To do so, we will introduce two
kinds of generalized Aubert involution operators, one on the Grothendieck group
of representations of GΣ0 (similarly also for representations of G viewed as H(G)-
modules), and the other on that of GL(N) ⋊ ⟨θN⟩. We will start with GΣ0 following
[Mœg06b, Section 4].

6.2 Aubert Involution for GΣ0

Let us ûx a positive integer X0 and write x0 = (X0 − 1)/2. We also ûx a self-dual irre-
ducible unitary supercuspidal representation ρ of GL(dρ). We denote by PΣ0

dρ
the set

of Σ0-conjugacy classes of standard parabolic subgroups P of G whose Levi compo-
nent M is isomorphic to

GL(a1dρ) × ⋅ ⋅ ⋅ ×GL(a ldρ) ×G(n − ∑
i∈[1, l]

a idρ) .(6.1)

Here we also requireG(n−∑i∈[1, l] a idρ) /= SO(2)when dρ /= 1. Let AM be the maxi-
mal split central torus ofM. For P ∈ PΣ0

dρ
and σΣ0 ∈ Rep(MΣ0), we denote by σΣ0

<x0 the
direct sumof irreducible constitutes of σ whose cuspidal support on the general linear
factors consist only of ρ∣∣x with ∣x∣ < x0. In particular, when G(n − ∑i∈[1, l] a idρ) =
SO(2) ≅ GL(1), we also impose this condition on G(n −∑i∈[1, l] a idρ).

We deûne the generalized Aubert involution for GΣ0 with respect to (ρ, X0) as
follows. For any πΣ0 ∈ Rep(GΣ0),

inv<X0(πΣ0) ∶= ∑
P∈PΣ0

dρ

(−1)dim AM IndGΣ0

PΣ0 ( J̃acPΣ0 (πΣ0)<x0) ,

where

J̃acPΣ0 (πΣ0) =
⎧⎪⎪⎨⎪⎪⎩

JacPΣ0 (πΣ0) ⊗ ω0 , if G(n −∑i∈[1, l] a idρ) = SO(2),
JacPΣ0 (πΣ0), otherwise.

Analogously, we can deûne inv⩽X0 if we change all strict inequalities to inequalities
here. Just as for the usual Aubert involution, we have the following result.
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Proposition 6.5 ([Mœg06b], Proposition 4) As deûned above, inv<X0 is an involu-
tion on the Grothendieck group of ûnite-length smooth representations of GΣ0 .

However, unlike the usual Aubert involution, it is by no means clear that inv<X0

preserves irreducibility. Because of this we would like to show it preserves irreducibly
at least for the class of representations that we have constructed in Section 6.1. _e
key ingredient of showing this is the following proposition.

Proposition 6.6 ([Mœg06b, Proposition 3]) Let πΣ0(ψ, ε) be a representation de-
ûned as in Section 6.1, and let E be an ordered multi-set of half-integers such that for all
x ∈ E, ∣x∣ < (aρ ,ψ ,ε − 1)/2. If πΣ0 is an irreducible subquotient of ×x∈Eρ∣∣x ⋊ πΣ0(ψ, ε),
then there exists an ordered multi-set E′ satisfying

{E′} ∪ {−E′} = {E} ∪ {−E},

such that
πΣ0 ↪Ð→ ×x∈E′ρ∣∣x ⋊ πΣ0(ψ, ε).

Combining Propositions 6.5 and 6.6, one can show the following theorem.

_eorem 6.7 ([Mœg06b,_eorem 4.1]) Wehave that inv<X0 π
Σ0(ψ, ε) is irreducible

with a sign in the Grothendieck group of representations of GΣ0 . Moreover, the corre-
sponding irreducible representation ∣ inv<X0 π

Σ0(ψ, ε)∣ also belongs to the class of repre-
sentations constructed in Section 6.1.

One can also determine the sign in this theorem. Let

Jord(ψ, ρ, < X0) = {α ∈ Jordρ(ψd) ∶ α < X0},

and we deûne

β(ψ, ρ, < X0) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(−1)∣ Jord(ψ ,ρ ,<X0)∣(∣ Jord(ψ ,ρ ,<X0)∣−1)/2 ⋅ ∏α∈Jord(ψ ,ρ ,<X0)(−1)(α−1)/2 ,
if Jordρ(ψd) contains odd integers;

∏α∈Jord(ψ ,ρ ,<X0)(−1)α/2 , if Jordρ(ψd) contains even integers.

Proposition 6.8 ([Mœg06b, Proposition 4,2])

β(ψ, ρ, < X0) inv<X0 π
Σ0(ψ, ε) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∏α∈Jord(ψ ,ρ ,<X0) ε(ρ, α, δα)∣ inv<X0 π
Σ0(ψ, ε)∣,

if Jordρ(ψd) contains even integers;
∣ inv<X0 π

Σ0(ψ, ε)∣, if Jordρ(ψd) contains odd integers.

Nextwewant to illustrate the second part of_eorem6.7. _ismakes use of a com-
patible relation between this Aubert involution and the Jacquet module. To describe
this relation, let P = MN be inPΣ0

dρ
and letwP be aWeyl group element inWΣ0(M) ∶=

Norm(AM ,GΣ0)/M sending all positive roots outside M to negative roots. We can
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also deûne invMΣ0

<X0
by taking the usual Aubert involution on the general linear fac-

tors of (6.1). For any representation πΣ0 ofGΣ0 , let JacPΣ0 ,<x(πΣ0) = (JacPΣ0 (πΣ0))<x .
_en we have

JacPΣ0 ,<x ∣ inv<X0(πΣ0)∣ = Ad(wP)∣ invMΣ0

<X0
JacPΣ0 ,<x(πΣ0)∣

for all x ⩽ x0 and πΣ0 ∈ Rep(GΣ0) (cf. [Mœg06b, Section 4.2]). From this equality,
one can easily conclude the following corollary.

Corollary 6.9 ([Mœg06b, Corollary 4.2]) Let α ∈ Jordρ(ψ) with aρ ,ψ ,ε < α.
(i) If aρ ,ψ ,ε > bρ ,ψ ,ε + 2, then

∣ inv<α(πΣ0(ψ, ε))∣ ↪Ð→ ρ∣∣−δρ ,ψ ,ε(aρ ,ψ ,ε−1)/2 ⋊ ∣ inv<α(πΣ0(ψ′ , ε′))∣,
where (ψ′ , ε′) is obtained by changing (ρ, aρ ,ψ ,ε , δρ ,ψ ,ε) to (ρ, aρ ,ψ ,ε − 2, δρ ,ψ ,ε).

(ii) If aρ ,ψ ,ε = bρ ,ψ ,ε + 2, then

∣ inv<α(πΣ0(ψ, ε))∣ ↪Ð→ ⟨−δρ ,ψ ,ε(aρ ,ψ ,ε − 1)/2, . . . , δρ ,ψ ,ε(bρ ,ψ ,ε − 1)/2⟩
⋊ ∣ inv<α(πΣ0(ψ′ , ε′))∣ ,

where (ψ′ , ε′) is obtained by removing aρ ,ψ ,ε and bρ ,ψ ,ε from Jordρ(ψd).

It is easy to see from this corollary that ∣ inv<X0 π
Σ0(ψ, ε)∣ is in the class of Sec-

tion 6.1. In fact, from here one can even describe the pair (ψ♯ , ε♯) that parametrizes
∣ inv<X0 π

Σ0(ψ, ε)∣.

_eorem 6.10 ([Mœg06b, _eorem 5]) For πΣ0(ψ, ε), let ψ♯ be obtained from ψ
by changing δα to −δα for all α ∈ Jordρ(ψd) such that α < X0, and let ε♯ = ε under
this correspondence. _en one can make suitable choices in the construction of rep-
resentation corresponding to this new pair (ψ♯ , ε♯) (see Section 6.1, (c)(1)) such that
πΣ0(ψ♯ , ε♯) = ∣ inv<X0 π

Σ0(ψ, ε)∣.

Let Rep(G) be the category of ûnite-length smooth representations of G viewed
as H(G)-modules. We denote the elements in Rep(G) by [π] for π ∈ Rep(G), and
we call [π] irreducible if π is irreducible. Let

JacP =
⎧⎪⎪⎨⎪⎪⎩

JacP + JacP ○θ0 , if G = SO(2n) and Mθ0 /= M,
JacP , otherwise.

We can deûne parabolic induction and the Jacquet module on Rep(G) as follows:

IndG
P [σ] ∶= [IndG

P σ] and JacP[π] ∶= [JacPπ].
_en the generalized Aubert involution inv<X0 can also be deûned for Rep(G) in an
analogous way, i.e.,

inv<X0([π]) ∶= ∑
P∈PΣ0

dρ

(−1)dim AM IndG
P ( JacP([π])<x0) .

For πΣ0 ∈ Rep(GΣ0), we have

[(IndGΣ0

PΣ0 JacPΣ0 πΣ0)∣G] = IndG
P JacP[πΣ0 ∣G],
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so
[(inv<X0 π

Σ0)∣G] = inv<X0([πΣ0 ∣G]).

6.3 Twisted Aubert Involution for GL(N)

As in the previous section, we again ûx X0, x0, and ρ. We denote by PθN
dρ

the set of
θN -invariant standard parabolic subgroups P of GL(N) whose Levi component M is
isomorphic to

GL(a1dρ) × ⋅ ⋅ ⋅ ×GL(a ldρ) ×GL(N − 2 ∑
i∈[1, l]

a idρ) ×GL(a ldρ) × ⋅ ⋅ ⋅ ×GL(a1dρ).

Let AM be the maximal split central torus of M, and (AM)θN be the group of its
θN -coinvariants. For P ∈ PθN

dρ
and τ ∈ Rep(M), we denote by τ<x0 the direct sum

of irreducible constitutes of τ whose cuspidal support on ⨉i∈[1, l] GL(a idρ) consists
only of ρ∣∣x with ∣x∣ < x0. _en we deûne the generalized θN -twisted Aubert involu-
tion for GL(N) with respect to (ρ, X0) as follows. For any self-dual representation π
of GL(N), let π+ be an extension of π to GL(N) ⋊ ⟨θN⟩,

invθN
<X0

(π+) ∶= ∑
P∈PθN

dρ

(−1)dim(AM)θN IndGL(N)
P ( JacP(π+)<x0) .

We should point out that invθN
<X0

is deûned diòerently from that in [MW06, Section
3.1]). Here invθN

<X0
(π+) is only an element in the Grothendieck group of representa-

tions of GL(N) ⋊ ⟨θN⟩ (see [MW06, Section 3.2],), even when we take π = π(ψ).
However, if we only consider the θN -twisted characters of GL(N), we can still get a
theorem parallel with _eorem 6.10.

_eorem 6.11 ([MW06, Proposition 3.1]) Let ψ♯ be deûned as in _eorem 6.10,

fN(invθN
<X0

(π+(ψ))) = fN(π+(ψ♯)), f ∈ C∞c (GL(N) ⋊ θN)
for certain normalization of π+(ψ♯) with respect to that of π+(ψ).

To determine the normalization of π+(ψ♯) in this theorem, we need the following
proposition.

Proposition 6.12 ([MW06, Lemma 3.2.2]) Suppose that π+(ψ) in _eorem 6.11 is
normalized according to Mœglin and Waldspurger (cf. Section 5); then the correspond-
ing normalization of θN on π+(ψ♯) diòers from θMW(ψ♯) by β(ψ, ρ, < X0).

_e careful reader may notice that this proposition is slightly diòerent from the
original result of Mœglin andWaldspurger, and that is due to a sign error in the state-
ment of [MW06, Lemma 3.2.2]. As a consequence of this proposition, we can rewrite
_eorem 6.11 as follows.

Corollary 6.13
(6.2)
fN( invθN

<X0
(π+MW(ψ))) = β(ψ, ρ, < X0) fN(π+MW(ψ♯)), f ∈ C∞c (GL(N) ⋊ θN),
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where π+MW(ψ) and π+MW(ψ♯) are normalized extensions of π(ψ) and π(ψ♯) according
to Mœglin–Waldspurger.

6.4 Construction of Elementary Arthur Packets by Aubert Involution

In the tempered case, we already know that π(ψ, ε) is a Σ0-orbit of discrete series
representations (cf. Proposition 1.5 and also [Xu15, Proposition 9.3]), and moreover
its parametrization by (ψ, ε) is the same as Arthur’s if we make certain choices in our
deûnition of π(ψ, ε) (cf. Section 6.1, (c)(1)). To obtain the nontempered packet, we
need to use (6.2) and show that the following diagram commutes when restricted to
distributions associated with elementary parameters.

ŜI(G)

inv<X0
��

// Î(N θ)

invθN
<X0

��

ŜI(G) // Î(N θ).

(6.3)

Here, ŜI(G) is the space of stable invariant distributions on G, Î(N θ) is the space
of twisted invariant distributions on GL(N), and the horizontal arrows denote the
twisted spectral endoscopic transfers. _e commutativity of this diagram (under our
restriction) essentially follows from the compatibility of twisted endoscopic transfer
with both Jacquet module and parabolic induction, and we will give its proof in Ap-
pendix A. If we apply this diagram to ΠMW(ψ) (see (5.8)) and expand using (5.3) and
(6.2), we get

f G( ∑
ε∈Ŝψ

ε(sψ)inv<X0πMW(ψ, ε)) = β(ψ, ρ, < X0) fN θ ,MW(π(ψ♯))

= β(ψ, ρ, < X0) f G( ∑
ε∈Ŝψ♯

ε(sψ♯)πMW(ψ♯ , ε)) ,

where f ∈ C∞c (GL(N)), and f G ∈ C∞c (G) is its twisted endoscopic transfer. Hence,

(6.4) ∑
ε∈Ŝψ

ε(sψ) fG( inv<X0πMW(ψ, ε)) =

β(ψ, ρ, < X0) ∑
ε∈Ŝψ♯

ε(sψ♯) fG(πMW(ψ♯ , ε)) ,

for any f ∈H(G).

Lemma 6.14

ε(sψ)/ε(sψ♯) =
⎧⎪⎪⎨⎪⎪⎩

∏α∈Jord(ψ ,ρ ,<X0) ε(ρ, α, δα), if Jordρ(ψd) contains even integers,
1, if Jordρ(ψd) contains odd integers.

Proof It suõces to note that

sψsψ♯(ρ, α, δα) =
⎧⎪⎪⎨⎪⎪⎩

−1 if α < X0 and α is even,
1 otherwise.
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Equality (6.4) suggests we can construct the nontempered Arthur packet by apply-
ing the generalized Aubert involution consecutively to tempered packet. So we have
the following deûnition.

Deûnition 6.15 Suppose ψ ∈ Ψ(G) is elementary; for ε ∈ ŜΣ0
ψ we deûne

πΣ0
M (ψ, ε) ∶= ○(ρ ,a ,δa)∈Jord(ψ)∶δa=−1(∣ inv<a ∣ ○ ∣ inv⩽a ∣)πΣ0

W (ψd , ε)
and

πM(ψ, ε) ∶= ○(ρ ,a ,δa)∈Jord(ψ)∶δa=−1(∣inv<a ∣ ○ ∣inv⩽a ∣)πW(ψd , ε),

where we have ŜΣ0
ψ ≅ ŜΣ0

ψd (resp. Ŝψ ≅ Ŝψd ) by identifying Jord(ψ) with Jord(ψd).

From_eorem6.10, it is clear that πΣ0
M (ψ, ε) = πΣ0(ψ, ε) constructed in Section 6.1,

but with ûxed parametrization determined by that of tempered representations (cf.
Remark 6.4). It follows from _eorem 4.3 that

πΣ0
M (ψ, εε0) ≅ πΣ0

M (ψ, ε) ⊗ ω0 .(6.5)

Moreover, [πΣ0
M (ψ, ε)∣G] = 2πM(ψ, ε) if G is special even orthogonal and SΣ0

ψ = Sψ ,
or πM(ψ, ε) otherwise. In particular, πM(ψ, ε) is irreducible.

_eorem 6.16 Suppose ψ ∈ Ψ(G) is elementary; then

ΠMW(ψ) = ∑
ε∈Ŝψ

ε(sψ)πM(ψ, ε).

Proof Note that in the tempered case πM(ψ, ε) = πW(ψ, ε) = πMW(ψ, ε), so this is
already known. _en from the tempered packet, one can apply the generalizedAubert
involution and use equality (6.4) step by step. Finally, note

ε(sψ)β(ψ, ρ, < X0)inv<X0πM(ψ, ε) = ε(sψ♯)πM(ψ♯ , ε),(6.6)

which follows from Proposition 6.8 and Lemma 6.14.

At this point, we have shown the elementary Arthur packets of G do contain irre-
ducible representations of G viewed as H(G)-modules obtained by restriction from
the class of representations of GΣ0 constructed in Section 6.1. However, to prove
_eorem 6.1 we still need to ûnd the relation between πW(ψ, ε) and πM(ψ, ε). One
can think of this as a problem of parametrization, but in fact it is much more subtle
than that, for we do not know a priori that πW(ψ, ε) is irreducible or not. Nonethe-
less, we will show they are irreducible, and at same time compute the diòerence of
parametrization between πW(ψ, ε) and πM(ψ, ε).

To describe this diòerence, we have to introduce a special element εM/MW
ψ ∈ ŜΣ0

ψ .
It is deûned in the following way.

Deûnition 6.17 Suppose ψ ∈ Ψ(G) is elementary and α ∈ Jordρ(ψd).

(i) If α is even, εM/MW
ψ (ρ, α, δα) = 1.
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(ii) If α is odd, let

m = ♯{α′ ∈ Jordρ(ψd) ∶ α′ > α, δα′ = −1} and n = ♯{α′ ∈ Jordρ(ψd) ∶ α′ < α}.

_en

εM/MW
ψ (ρ, α, δα) =

⎧⎪⎪⎨⎪⎪⎩

(−1)m if δα = +1,
(−1)m+n if δα = −1.

_eorem 6.18 Suppose ψ ∈ Ψ(G) is elementary; then

πM(ψ, ε) = πMW(ψ, εεM/MW
ψ ).

Proof _e idea is similar to the proof of _eorem 6.16 in that we have to apply the
generalized Aubert involution step by step. First note that in the tempered case, we
have by deûnition πM(ψ, ε) = πMW(ψ, ε), and it is easy to check that εM/MW

ψ = 1 in
this case. Next, let us assume ψ is some elementary parameter satisfying the theorem,
and we would like to prove the theorem for ψ♯. In fact this is the critical step in our
proof. To be more precise, we now have

πM(ψ, ε) = πMW(ψ, εεM/MW
ψ )

under our assumption, and we want to show

πM(ψ♯ , ε) ∶= ∣inv<X0πM(ψ, ε)∣ = πMW(ψ♯ , εεM/MW
ψ♯ ).

_e main ingredient of the proof is a commutative diagram analogous to the dia-
gram (6.3). Note that we can identify Sψ with Sψ♯ , and for any s ∈ Sψ ≅ Sψ♯ , let
(H,ψH) → (ψ, s) and (H,ψ♯H) → (ψ♯ , s), whereH = GI×GII andψH = ψI×ψII . _en
the following diagram commutes when restricting to distributions associated with el-
ementary parameters, and this again follows from the compatibility of endoscopic
transfer with Jacquet module and parabolic induction (see [Hir04] and Appendix A).

ŜI(H)

invH
<X0
��

// Î(G)

inv<X0
��

ŜI(H) // Î(G).

(6.7)

Here Î(G) is the space of invariant distributions onG, ŜI(H) is the space of stable in-
variant distributions on H, and the horizontal arrows denote the spectral endoscopic
transfers. We deûne

invH
<X0

∶= invGI
<X0

⊗ invGII
<X0

with invGI
<X0

respecting ρ ⊗ η′, where η′ = ηI in (Example 3.1(i), (ii)), and η′ = 1 in
(Example 3.1(iii)). Applying this diagram to ΠMW(ψH) ∶= ΠMW(ψI) ⊗ ΠMW(ψII),
we get

β(ψH , ρ, < X0) f HMW(ψ♯H) = ∑
ε∈Ŝψ

ε(ssψ) fG( inv<X0 πMW(ψ, ε)) , f ∈H(G),
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where β(ψH , ρ, < X0) = β(ψI , ρ ⊗ η′ , < X0)β(ψII , ρ, < X0). By our assumption, the
right-hand side can be written as

∑
ε∈Ŝψ

ε(ssψ) fG( inv<X0 πM(ψ, εεM/MW
ψ )) = ∑

ε∈Ŝψ

εεM/MW
ψ (ssψ) fG( inv<X0 πM(ψ, ε)) .

Combining (6.6), we have

f HMW(ψ♯H) = β(ψH , ρ, < X0) ∑
ε∈Ŝψ

εεMW
ψ (ssψ) fG(inv<X0 πM(ψ, ε))

= β(ψH , ρ, < X0) ∑
ε∈Ŝψ

εεM/MW
ψ (ssψ)β(ψ, ρ, < X0)ε(sψsψ♯) fG(πM(ψ♯ , ε))

= β(ψH , ρ, < X0)β(ψ, ρ, < X0)εM/MW
ψ (ssψ) ∑

ε∈Ŝψ

ε(ssψ♯) fG(πM(ψ♯ , ε)) .

Finally, it is a simple fact that εM/MW
ψ (sψ) = 1. So

(6.8) f HMW(ψ♯H) =

β(ψH , ρ, < X0)β(ψ, ρ, < X0)εM/MW
ψ (s) ∑

ε∈Ŝψ

ε(ssψ♯) fG(πM(ψ♯ , ε)).

On the other hand, we have from the character relation that

f HMW(ψ♯H) = ∑
ε∈Ŝψ♯

ε(ssψ♯) fG(πMW(ψ♯ , ε)) .

Since we know from linear algebra that πMW(ψ♯ , ε) are completely determined by
these identities for all s ∈ Sψ♯ , it remains for us to show

β(ψH , ρ, < X0)β(ψ, ρ, < X0) = εM/MW
ψ εM/MW

ψ♯ (s).

If Jordρ(ψd) contains even integers, then it is easy to show from the deûnitions that
both sides are equal to 1. So now let us assume that Jordρ(ψd) contains odd integers.
Note that Jord(ψ) = Jord(ψI ⊗ η′) ⊔ Jord(ψII). Let u = ∣ Jord(ψI , ρ ⊗ η′ , < X0)∣ and
v = ∣ Jord(ψII , ρ, < X0)∣; then

β(ψH , ρ, < X0)β(ψ, ρ, < X0) = (−1)u(u−1)/2+v(v−1)/2−(u+v)(u+v−1)/2 = (−1)uv

On the other hand, we can index Jordρ(ψd) according to the natural order of integers
and assume that Jord(ψI , ρ ⊗ η′ , < X0) = {αt j}u

j=1. _en

εM/MW
ψ εM/MW

ψ♯ (s) =
u

∏
j=1

(−1)(u+v−t j)+(t j−1) = (−1)u(u+v−1) = (−1)uv .

_is ûnishes the proof.

Corollary 6.19 Suppose ψ ∈ Ψ(G) is elementary; let εM/W
ψ ∶= εM/MW

ψ εMW/W
ψ . _en

πW(ψ, εεM/W
ψ ) = πM(ψ, ε).

Proof _e proof is clear from Proposition 5.6.
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In particular, this proves _eorem 6.1.

Corollary 6.20 Suppose G is special even orthogonal and ψ ∈ Ψ(G) is elementary.
For ε ∈ Ŝψ , let πW(ψ, ε) = [π]. _en πθ0 ≅ π if and only if SΣ0

ψ /= Sψ .

Proof _is follows from (6.5).

If ψ ∈ Ψ(G) is elementary, we can deûne ΠΣ0
ψ to be the set of irreducible repre-

sentations of GΣ0 , whose restriction to G belongs to Πψ . _en it follows from Corol-
lary 6.20 and_eorem 4.2 that there is a canonical bijection between

SΣ0
ψ Ð→ ΠΣ0

ψ

ε z→ πΣ0
W (ψ, ε),

such that:
● [πΣ0

W (ψ, ε)∣G] = 2πW(ψ, ε) if G is special even orthogonal and SΣ0
ψ = Sψ , or

πW(ψ, ε) otherwise.
● For any s ∈ SΣ0

ψ but not in Sψ and (H,ψH) → (ψ, s), the following identity holds:

f HW(ψH) = ∑
ε∈Ŝψ

ε(ssψ) fG(πΣ0
W (ψ, ε)) f ∈ C∞c (G ⋊ θ0).

Let us deûne πΣ0
MW(ψ, ε) ∶= πΣ0

W (ψ, εεMW/W
ψ ) for ε ∈ ŜΣ0

ψ ; then we can show in the
same way as Proposition 5.6 that for any s ∈ SΣ0

ψ but not in Sψ and (H,ψH) → (ψ, s),

f HMW(ψH) = ∑
ε∈Ŝψ

ε(ssψ) fG(πΣ0
MW(ψ, ε)) f ∈ C∞c (G ⋊ θ0).

At last, we can extend_eorem 6.18 to GΣ0 .

_eorem 6.21 Suppose ψ ∈ Ψ(G) is elementary; then

πΣ0
M (ψ, ε) = πΣ0

MW(ψ, εεM/MW
ψ ).

Proof We can assume that G is special even orthogonal and SΣ0
ψ /= Sψ . Since

πM(ψ, ε) = πMW(ψ, εεM/MW
ψ ),

πΣ0
MW(ψ, εεM/MW

ψ ) = πΣ0
M (ψ, ε) or πΣ0

M (ψ, ε) ⊗ ω0 .

Note that when ψ is tempered,

εM/MW
ψ = εMW/W

ψ = 1 and πΣ0
M (ψ, ε) = πΣ0

W (ψ, ε) = πΣ0
MW(ψ, ε).

So as in the proof of _eorem 6.18, we can assume

πΣ0
M (ψ, ε) = πΣ0

MW(ψ, εεM/MW
ψ )

for some parameter ψ by induction, and the critical step is to show that

πΣ0
M (ψ♯ , ε) ∶= ∣ inv<X0 π

Σ0
M (ψ, ε)∣ = πΣ0

MW(ψ♯ , εεM/MW
ψ♯ ).
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We identity SΣ0
ψ ≅ SΣ0

ψ♯ , and choose s
∗ ∈ SΣ0

ψ but not in Sψ . Let (H,ψH) → (ψ, s∗) and
(H,ψ♯H) → (ψ♯ , s), where H = GI × GII and ψH = ψI × ψII . _en we can have the
following commutative diagram analogous to (6.7) (see Appendix A):

ŜI(H)

invH
<X0
��

// Î(Gθ0)

inv<X0
��

ŜI(H) // Î(Gθ0).

(6.9)

Here, Î(Gθ0) is the space of θ0-twisted invariant distributions onG, and the horizon-
tal arrows denote the twisted spectral endoscopic transfers. We deûne

invH
<X0

∶= invGI
<X0

⊗ invGII
<X0

with invGI
<X0

(resp. invGII
<X0

) respecting ρ⊗ ηI (resp. ρ⊗ ηII). Applying this diagram to
ΠMW(ψH) ∶= ΠMW(ψI) ⊗ΠMW(ψII), one can show

f HMW(ψ♯H) = β(ψH , ρ, < X0)β(ψ, ρ, < X0)εM/MW
ψ (s∗) ∑

ε∈Ŝψ

ε(s∗sψ♯) fG(πΣ0
M (ψ♯ , ε))

for f ∈ C∞c (G ⋊ θ0) (cf. (6.8)). As in the proof of _eorem 6.18, we also have

β(ψH , ρ, < X0)β(ψ, ρ, < X0) = εM/MW
ψ εM/MW

ψ♯ (s∗).

Since
f HMW(ψ♯H) = ∑

ε∈Ŝψ♯

ε(s∗sψ♯) fG(πΣ0
MW(ψ♯ , ε)) ,

∑
ε∈Ŝψ♯

ε(s∗sψ♯) fG(πΣ0
MW(ψ♯ , ε)) = ∑

ε∈Ŝψ

εεM/MW
ψ♯ (s∗sψ♯) fG(πΣ0

M (ψ♯ , ε))

= ∑
ε∈Ŝψ♯

ε(s∗sψ♯) fG(πΣ0
M (ψ♯ , εεM/MW

ψ♯ )) .

By the linear independence of twisted characters, we have for any ε ∈ Ŝψ♯ ,

ε(s∗sψ♯) fG(πΣ0
MW(ψ♯ , ε)) = ε(s∗sψ♯) fG(πΣ0

M (ψ♯ , εεM/MW
ψ♯ )) ,

and hence fG(πΣ0
MW(ψ♯ , ε)) = fG(πΣ0

M (ψ♯ , εεM/MW
ψ♯ )), i.e.,

πΣ0
M (ψ♯ , ε) = πΣ0

MW(ψ♯ , εεM/MW
ψ♯ ).

Remark 6.22 Later onwewill see thatMœglin deûnes πΣ0
M (ψ, ε) in the general case,

and if one also extends the deûnition of εM/MW
ψ to the general case, then_eorem 6.21

is still valid (see _eorem 8.9).
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7 The Case of Discrete Diagonal Restriction

In this section, we would like to look into the Arthur packets associated with pa-
rameters having discrete diagonal restrictions. To be more precise, we want to give a
parametrization of irreducible constituents of πW(ψ, ε) (or equivalently πMW(ψ, ε))
in this case. _is parametrization is given by Mœglin, and we will follow her paper
[Mœg09] closely.
As in the elementary case, we start by constructing certain elements in the Gro-

thendieck group of representations of GΣ0 . _ese elements are parametrized by ψ ∈
Ψ(G) with discrete diagonal restriction and ε ∈ ŜΣ0

ψ .

Deûnition 7.1 Suppose ψ ∈ Ψ(G) has discrete diagonal restriction, and there exists
(ρ,A, B, ζ) ∈ Jord(ψ) such that A > B. Let ε ∈ ŜΣ0

ψ and η0 ∶= ε(ρ,A, B, ζ). _en we
deûne

πΣ0
M (ψ, ε) ∶=
⊕

C∈]B ,A]
(−1)A−C⟨ζB, . . . ,−ζC⟩ ⋊ Jacζ(B+2), . . . ,ζC πΣ0

M (ψ′ , ε′ , (ρ,A, B + 2, ζ ; η0))⊕

⊕
η=±1

(−1)[(A−B+1)/2]ηA−B+1ηA−B0 πΣ0
M (ψ′ , ε′ , (ρ,A, B + 1, ζ ; η), (ρ, B, B, ζ ; ηη0)) ,

where ψ′ is obtained from ψ by removing (ρ,A, B, ζ), and ε′( ⋅ ) is the restriction of
ε( ⋅ ).

Remark 7.2 (i) WhenA = B+1 and η0 = −1, the term involving (ρ,A, B+2, ζ , η0)
does not appear because ε′( ⋅ ) does not deûne a character of SΣ0

ψ′ in this case.
(ii) It is clear by induction that

πΣ0
M (ψ, εε0) ≅ πΣ0

M (ψ, ε) ⊗ ω0 .

(iii) We could also deûne πM(ψ, ε) in a similar way. Let

Jord(ψ1) = Jord(ψ′) ∪ {(ρ,A, B + 2, ζ)},
and

Jord(ψ2) = Jord(ψ′) ∪ {(ρ,A, B + 1, ζ), (ρ, B, B, ζ)}.
We can identify Sψ ≅ Sψ1 by sending (ρ,A, B, ζ) to (ρ,A, B + 2, ζ), and map
s ∈ Sψ into Sψ2 by letting

s(ρ,A, B + 1, ζ) = s(ρ, B, B, ζ) ∶= s(ρ,A, B, ζ).

_en Sψ ↪ Sψ2 is of index 1 or 2. We denote the image of ε in Ŝψ1 by ε1. Let us
deûne

πM(ψ, ε) ∶=
⊕

C∈]B ,A]
(−1)A−C⟨ζB, . . . ,−ζC⟩ ⋊ Jacζ(B+2), . . . ,ζCπM(ψ1 , ε1) ⊕

⊕
ε←ε2∈Ŝψ2

(−1)[(A−B+1)/2]ε2(ρ,A, B + 1, ζ)A−B+1ε(ρ,A, B, ζ)A−BπM(ψ2 , ε2).
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Again by induction, one observes the restriction of πΣ0
M (ψ, ε) to G viewed as

H(G)-modules is 2πM(ψ, ε) if G is special even orthogonal and SΣ0
ψ = Sψ , or

πM(ψ, ε) otherwise. Later we will show that πΣ0
M (ψ, ε) is a representation of

GΣ0 , and πM(ψ, ε) consists of irreducible representations ofG viewed asH(G)-
modules in the restriction of πΣ0

M (ψ, ε) to G without multiplicities.

Next wewant to show that Πψ consists of πM(ψ, ε), and furthermorewewould like
to compute the diòerence between the parametrizations of πM(ψ, ε) and πMW(ψ, ε).
To do so, we need to extend the deûnition of εM/MW

ψ ∈ ŜΣ0
ψ in the previous section.

Deûnition 7.3 Suppose ψ ∈ Ψ(G) has discrete diagonal restriction, and (ρ, a, b) ∈
Jord(ψ).
(i) If a + b is odd, εM/MW

ψ (ρ, a, b) = 1.
(ii) If a + b is even, let

m = ♯{(ρ, a′ , b′) ∈ Jord(ψ) ∶ a′ , b′ odd, ζa′ ,b′ = −1, ∣a′ − b′∣ > ∣a − b∣},
and

n = ♯{(ρ, a′ , b′) ∈ Jord(ψ) ∶ a′ , b′ odd, ∣a′ − b′∣ < ∣a − b∣}.
_en

εM/MW
ψ (ρ, a, b) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if a, b even,
(−1)m if a, b odd, ζa ,b = +1,
(−1)m+n if a, b odd, ζa ,b = −1.

_ere is a simple fact about this character εM/MW
ψ .

Lemma 7.4 Supposeψ ∈ Ψ(G)has discrete diagonal restriction; then εM/MW
ψ (sψ) = 1.

Proof From the deûnition, we see εM/MW
ψ (ρ, a, b) = 1 if b is even. _en

εM/MW
ψ (sψ) = ∏

(ρ ,a ,b)∈Jord(ψ)
b even

εM/MW
ψ (ρ, a, b) = 1.

_eorem 7.5 Suppose ψ ∈ Ψ(G) has discrete diagonal restriction; then

πM(ψ, ε) = πMW(ψ, εεM/MW
ψ ).

Before we prove the theorem, for any s ∈ Sψ let

ΠMW ,s(ψ) ∶= ∑
ε∈Ŝψ

ε(ssψ)πMW(ψ, ε),

ΠM ,s(ψ) ∶= ∑
ε∈Ŝψ

ε(ssψ)πM(ψ, ε).

In particular, ΠMW(ψ) = ΠMW ,1(ψ) and we denote ΠM(ψ) = ΠM ,1(ψ). For
ΠM ,s(ψ), we have the following recursive formula.
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Lemma 7.6 Suppose ψ ∈ Ψ(G) has discrete diagonal restriction and s ∈ Sψ . Let
(ρ,A, B, ζ) ∈ Jord(ψ) such that A > B; then

ΠM ,s(ψ) =
⊕

C∈]B ,A]
(−1)A−C⟨ζB, . . . ,−ζC⟩ ⋊ Jacζ(B+2), . . . ,ζCΠM ,s(ψ′ , (ρ,A, B + 2, ζ))

⊕ (−1)[(A−B+1)/2]ΠM ,s(ψ′ , (ρ,A, B + 1, ζ), (ρ, B, B, ζ)) ,
where we let s(ρ,A, B, ζ) = s(ρ,A, B + 2, ζ) = s(ρ,A, B + 1, ζ) = s(ρ, B, B, ζ).

Proof By deûnition we have for any ε ∈ Ŝψ ,

ε(ssψ) πM(ψ, ε) =
⊕

C∈]B ,A]
(−1)A−C⟨ζB, . . . ,−ζC⟩ ⋊ Jacζ(B+2), . . . ,ζC ε(ssψ) πM(ψ1 , ε1)

⊕
ε←ε2∈Ŝψ2

(−1)[(A−B+1)/2]ε2(ρ,A, B + 1, ζ)A−B+1ε(ρ,A, B, ζ)A−B

⋅ ε(ssψ) πM(ψ2 , ε2).
So it suõces to show ε1(ssψ1) = ε(ssψ) and

ε2(ssψ2) = ε2(ρ,A, B + 1, ζ)A−B+1ε(ρ,A, B, ζ)A−Bε(ssψ).
_e ûrst one is easy, because sψ1 = sψ under our identiûcation. For the second one,
note that ε2(s) = ε(s) and

ε(sψ) = ∏
(ρ ,a ,b)∈Jord(ψ)

ε(ρ, a, b)b−1 = ∏
(ρ ,A,B ,ζ)∈Jord(ψ)

ε(ρ,A, B, ζ)A−ζB .

_en

ε2(sψ2)/ε(sψ) = ε2(ρ,A, B + 1, ζ)A−ζ(B+1)ε2(ρ, B, B, ζ)B−ζB/ε(ρ,A, B, ζ)A−ζB .
Using the fact that ε2(ρ,A, B + 1, ζ)ε2(ρ, B, B, ζ) = ε(ρ,A, B, ζ), we have

ε2(sψ2)/ε(sψ)
= ε2(ρ,A, B + 1, ζ)A−ζ(B+1)

⋅ ε(ρ,A, B, ζ)B−ζBε2(ρ,A, B + 1, ζ)−B+ζB/ε(ρ,A, B, ζ)A−ζB

= ε2(ρ,A, B + 1, ζ)A−B−1ε(ρ,A, B, ζ)B−A

= ε2(ρ,A, B + 1, ζ)A−B+1ε(ρ,A, B, ζ)A−B .
_is ûnishes the proof.

Lemma 7.7 Suppose ψ ∈ Ψ(G) has discrete diagonal restriction; then ΠMW(ψ) =
ΠM(ψ).

Proof Lemma 7.6 and Proposition 5.9 allow us to reduce this lemma to the case of
elementary Arthur packets, where the statement is already known.

Now we can give the poof of _eorem 7.5.
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Proof Since εM/MW
ψ (sψ) = 1, it is enough to show that

ΠM ,s(ψ) = εM/MW
ψ (s)ΠMW ,s(ψ)

for all s ∈ Sψ . From the previous lemma, we know this is true for s = 1. So we can
assume that s /= 1 in the rest of the proof. By induction, we may assume the theorem
is true for ψ1 and ψ2, i.e.,

ΠM ,s(ψ1) = εM/MW
ψ1 (s)ΠMW ,s(ψ1),

ΠM ,s(ψ2) = εM/MW
ψ2 (s)ΠMW ,s(ψ2).

Suppose (H,ψH) → (ψ, s) and ψs ∶= ψH = ψI × ψII . We can assume (ρ,A, B, ζ) ∈
Jord(ψII) because the other case is similar. Let ψ1

s = ψ1
I × ψ1

II and ψ2
s = ψ2

I × ψ2
II .

In particular, ψI = ψ1
I = ψ2

I . Note that ΠMW ,s(ψ1) (resp. ΠMW ,s(ψ2)) is the spectral
endoscopic transfer of ΠMW(ψ1

I)⊗ΠMW(ψ1
II) (resp. ΠMW(ψ2

I )⊗ΠMW(ψ2
II)). By the

compatibility of endoscopic transfer with Jacquetmodule and parabolic induction, we
can conclude that ΠM ,s(ψ) is the spectral endoscopic transfer of

⊕
C∈]B ,A]

(−1)A−C εM/MW
ψ1 (s)⟨ζB, . . . ,−ζC⟩ ⋊

Jacζ(B+2), . . . ,ζC(ΠMW(ψ1
I) ⊗ΠMW(ψ1

II))

⊕ (−1)[(A−B+1)/2]εM/MW
ψ2 (s)ΠMW(ψ2

I ) ⊗ΠMW(ψ2
II).

Note that JacζDΠMW(ψ1
I) = 0 for any B + 2 ⩽ D ⩽ A, which follows from the corre-

sponding vanishing fact for Jacquet modules of π(ψ1
I). _en we can rewrite it as

⊕
C∈]B ,A]

(−1)A−C εM/MW
ψ1 (s)ΠMW(ψ1

I)

⊗ (⟨ζB, . . . ,−ζC⟩ ⋊ Jacζ(B+2), . . . ,ζCΠMW(ψ1
II))

⊕ (−1)[(A−B+1)/2]εM/MW
ψ2 (s)ΠMW(ψ2

I ) ⊗ΠMW(ψ2
II).

If we can show
εM/MW
ψ (s) = εM/MW

ψ1 (s) = εM/MW
ψ2 (s),(7.1)

then thatmeansΠM ,s(ψ) is the spectral endoscopic transfer of εM/MW
ψ (s)ΠMW(ψI)⊗

ΠMW(ψII). Hence,
ΠM ,s(ψ) = εM/MW

ψ (s)ΠMW ,s(ψ).
Finally, it is an easy exercise to verify (7.1). In fact, one can assume that s(ρ,A, B, ζ) = 1;
then the set of Jordan blocks (ρ, a′ , b′) such that s(ρ, a′ , b′) = −1 is the same for ψ,
ψ1, and ψ2, and it is enough to show

εM/MW
ψ (ρ, a′ , b′) = εM/MW

ψ1 (ρ, a′ , b′) = εM/MW
ψ2 (ρ, a′ , b′)

for any (ρ, a′ , b′) in this set. Recall that
(ρ,A, B + 2, ζ) = (ρ, a + 2ζ , b − 2ζ),
(ρ,A, B + 1, ζ) = (ρ, a + ζ , b − ζ),

(ρ, B, B, ζ) = (ρ, sup(0, a − b) + 1, sup(0, b − a) + 1).
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One checks easily that the contribution of (ρ,A, B, ζ) to the numbers m, n in Deûni-
tion 7.3 for ψ is the same as (ρ,A, B + 2, ζ) for ψ1, and (ρ,A, B + 1, ζ), (ρ, B, B, ζ) for
ψ2 modulo 2. _en the rest is clear.

One consequence of _eorem 7.5 is that πM(ψ, ε) is an H(G)-module, which is
by no means clear from our deûnition. In fact, the main goal of [Mœg09] is to show
that πΣ0

M (ψ, ε) is a representation of GΣ0 and characterize its irreducible constituents,
which also implies that πM(ψ, ε) is anH(G)-module independently of Arthur’s the-
ory.

_eorem 7.8 ([Mœg09, _eorem 4.2]) Suppose ψ ∈ Ψ(G) has discrete diagonal
restriction, and there exists (ρ,A, B, ζ) ∈ Jord(ψ) such that A > B. Let ε ∈ ŜΣ0

ψ and
η0 ∶= ε(ρ,A, B, ζ). _en we have

πΣ0
M (ψ, ε) = ⊕

l∈[0,[(A−B+1)/2]]
⊕

η=±1∶η0=ηA−B+1∏C∈[B+l ,A−l](−1)[C]

⟨ ⟨ζB, . . . ,−ζA⟩ × ⋅ ⋅ ⋅ × ⟨ζ(B + l − 1), . . . ,−ζ(A− l + 1)⟩
⋊ πΣ0

M (ψ′ , ε′ ,∪C∈[B+l ,A−l](ρ,C ,C , ζ ; η(−1)[C]))⟩ ,
where ψ′ is obtained from ψ by removing (ρ,A, B, ζ), and ε′( ⋅ ) is the restriction of
ε( ⋅ ). In particular, when l = (A − B + 1)/2 and η0 = 1, we will just take one value for
η, since both values give the same term.

Remark 7.9 _e complicated condition on η comes from the fact that η(−1)[C]
with ε′( ⋅ ) needs to deûne a character ε− of SΣ0

ψ− , where Jord(ψ−) is obtained from
Jord(ψ′) by adding ∪C∈[B+l ,A−l](ρ,C ,C , ζ).

_is theorem shows that πΣ0
M (ψ, ε) is a representation GΣ0 and allows us to de-

compose it according to two parameters l , η, where l is an integer-valued function on
Jord(ψ) and η is a Z2-valued function on Jord(ψ). In the notation of this theorem,
we let l(ρ,A, B, ζ) = l and η(ρ,A, B, ζ) = η(−1)[B+l]. _en

l(ρ,A, B, ζ) ∈ [0, [(A− B + 1)/2]] ,
and

ε(ρ,A, B, ζ) = η(ρ,A, B, ζ)A−B+1(−1)[(A−B+1)/2]+l(ρ ,A,B ,ζ) .

Let us denote by ε l ,η the character of SΣ0
ψ deûned by (l , η) through this formula. _en

we deûne for any pair (l , η) such that ε l ,η ∈ ŜΣ0
ψ ,

πΣ0
M (ψ, l , η) ∶= ⟨⟨ζB, . . . ,−ζA⟩ × ⋅ ⋅ ⋅ ×

⟨ζ(B + l(ρ,A, B, ζ) − 1), . . . ,−ζ(A− l(ρ,A, B, ζ) + 1)⟩
⋊ πΣ0

M (ψ− , l− , η−)⟩ ,

where ψ− is deûned as in the remark, and l− and η− are extended from l and η by
letting l−(ρ,C ,C , ζ) = 0 and η

−
(ρ,C ,C , ζ) = η(−1)[C]. In the theorem, Mœglin
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shows that πΣ0
M (ψ, l , η) is irreducible. In fact, one can also show that

πΣ0
M (ψ, l , η) ↪Ð→

⨉
(ρ ,A,B ,ζ)∈Jord(ψ)

⎛
⎜⎜
⎝

ζB ⋅ ⋅ ⋅ −ζA
...

...
ζ(B + l(ρ,A, B, ζ) − 1) ⋅ ⋅ ⋅ −ζ(A− l(ρ,A, B, ζ) + 1)

⎞
⎟⎟
⎠

⋊ πΣ0
M ( ⋃

(ρ ,A,B ,ζ)∈Jord(ψ)
⋃

C∈[B+l(ρ ,A,B ,ζ),A−l(ρ ,A,B ,ζ)]

(ρ,C ,C , ζ ; η(ρ,A, B, ζ)(−1)C−B−l(ρ ,A,B ,ζ)))

as the unique irreducible subrepresentation. We deûne πM(ψ, l , η) to be the irre-
ducible representation ofG viewed asH(G)-module in the restriction of πΣ0

M (ψ, l , η)
to G. _en

πM(ψ, l , η) ↪Ð→

⨉
(ρ ,A,B ,ζ)∈Jord(ψ)

⎛
⎜⎜
⎝

ζB ⋅ ⋅ ⋅ −ζA
...

...
ζ(B + l(ρ,A, B, ζ) − 1) ⋅ ⋅ ⋅ −ζ(A− l(ρ,A, B, ζ) + 1)

⎞
⎟⎟
⎠

⋊ πM( ⋃
(ρ ,A,B ,ζ)∈Jord(ψ)

⋃
C∈[B+l(ρ ,A,B ,ζ),A−l(ρ ,A,B ,ζ)]

(ρ,C ,C , ζ ; η(ρ,A, B, ζ)(−1)C−B−l(ρ ,A,B ,ζ)))

as the unique irreducible element in Rep(G) forming an H(G)-submodule.
We deûne an equivalence relation on pairs (l , η) such that (l , η) ∼Σ0 (l ′ , η′) if

and only if l = l ′ and (η/η′)(ρ,A, B, ζ) = 1 unless l(ρ,A, B, ζ) = (A − B + 1)/2. It
is clear that πΣ0

M (ψ, l , η) ≅ πΣ0
M (ψ, l ′ , η′) if (l , η) ∼Σ0 (l ′ , η′). In fact, the converse is

also true.

Proposition 7.10 Suppose ψ ∈ Ψ(G) has discrete diagonal restriction and ε ∈ ŜΣ0
ψ ;

then
πΣ0

M (ψ, ε) = ⊕
{(l ,η)∶ ε=ε l ,η}/∼Σ0

πΣ0
M (ψ, l , η).

Moreover, πΣ0
M (ψ, l , η) ≅ πΣ0

M (ψ, l ′ , η′) if and only if (l , η) ∼Σ0 (l ′ , η′).

Proof _e only thing that may not be obvious from _eorem 7.8 is the fact that
πΣ0

M (ψ, l , η) ≇ πΣ0
M (ψ, l ′ , η′) if (l , η) ≁Σ0 (l ′ , η′). But this can be shown by comparing

the Jacquet modules of these representations.

Remark 7.11 If Jord(ψ) contains (ρ, a, b) with a = b, then our deûnition of
πΣ0

M (ψ, l , η) will depend on the choice of sign ζa ,b . However, it is not hard to show
that the representation πΣ0

M (ψ, l , η) is independent of ζa ,b .
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IfG is special even orthogonal, and ψ ∈ Ψ(G) has discrete diagonal restriction, we
deûne a Z2-valued function on Jord(ψ) by

η
0
(ρ,A, B, ζ) =

⎧⎪⎪⎨⎪⎪⎩

−1, if dρ is odd and A ∈ Z,
1, otherwise.

_en ε0(ρ,A, B, ζ) = η0(ρ,A, B, ζ)
A−B+1, and hence ε l ,η η

0
= ε l ,η ε0. In general, we

let η
0
= 1 if G is not special even orthogonal.

Corollary 7.12 Suppose ψ ∈ Ψ(G) has discrete diagonal restriction; then

πΣ0
M (ψ, l , η η

0
) ≅ πΣ0

M (ψ, l , η) ⊗ ω0 .(7.2)

Proof _is follows from the formula of πΣ0
M (ψ, l , η) and (6.5) in the elementary case.

We deûne another equivalence relation on pairs (l , η) such that (l , η) ∼ (l ′ , η′) if
and only if (l , η) ∼Σ0 (l ′ , η′) or (l , η) ∼Σ0 (l ′ , η′ η

0
). It follows from this corollary

that πM(ψ, l , η) = πM(ψ, l ′ , η′) if and only if (l , η) ∼ (l ′ , η′).

Corollary 7.13 Suppose ψ ∈ Ψ(G) has discrete diagonal restriction and ε ∈ Ŝψ ; then

πM(ψ, ε) = ⊕
{(l ,η)∶ε=ε l ,η}/∼

πM(ψ, l , η).

Moreover,
⊕

ε←ε∈ŜΣ0
ψ

πΣ0
M (ψ, ε)

consists of all irreducible representations of GΣ0 , whose restriction to G belong to
πM(ψ, ε).

Proof We can assume G is special even orthogonal. It follows from Proposition 7.10
that

m ⋅ πM(ψ, ε) = πΣ0
M (ψ, ε)∣G = ⊕

{(l ,η)∶ε=ε l ,η}/∼Σ0

πΣ0
M (ψ, l , η)∣G ,

where m = 2 if SΣ0
ψ = Sψ , and m = 1 otherwise. By (7.2), one can easily see the right

hand side is
m ⊕

{(l ,η)∶ε=ε l ,η}/∼
πM(ψ, l , η).

_is proves the ûrst part, and the second part should then be clear.

Motivated by this corollary, we can deûne ΠΣ0
ψ to be the set of irreducible repre-

sentations of GΣ0 , whose restriction to G belong to Πψ . In the case where G is special
even orthogonal and ψ ∈ Ψ(G) has discrete diagonal restriction, suppose SΣ0

ψ /= Sψ ;
then for any (l , η),

(l , η η
0
) ≁Σ0 (l , η),
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and hence πθ0 ≅ π for any irreducible constituent [π] in πM(ψ, ε) by (7.2). _en it
follows from _eorem 4.2 that there is a canonical disjoint decomposition

ΠΣ0
ψ = ⊔

ε∈ŜΣ0
ψ

πΣ0
W (ψ, ε)

such that
● [πΣ0

W (ψ, ε)∣G] = 2πW(ψ, ε) if G is special even orthogonal and SΣ0
ψ = Sψ , or

πW(ψ, ε) otherwise.
● For any s ∈ SΣ0

ψ but not in Sψ and (H,ψH) → (ψ, s), the following identity holds

f HW(ψH) = ∑
ε∈Ŝψ

ε(ssψ) fG(πΣ0
W (ψ, ε)) f ∈ C∞c (G ⋊ θ0).

Let us deûne πΣ0
MW(ψ, ε) ∶= πΣ0

W (ψ, εεMW/W
ψ ) for ε ∈ ŜΣ0

ψ ; then we can show in the
same way as Proposition 5.6 that for any s ∈ SΣ0

ψ but not in Sψ and (H,ψH) → (ψ, s),

f HMW(ψH) = ∑
ε∈Ŝψ

ε(ssψ) fG(πΣ0
MW(ψ, ε)) f ∈ C∞c (G ⋊ θ0).

At last, we can extend_eorem 7.5 to GΣ0 .

_eorem 7.14 Suppose ψ ∈ Ψ(G) has discrete diagonal restriction; then

πΣ0
M (ψ, ε) = πΣ0

MW(ψ, εεM/MW
ψ ).

Proof We can assume that G is special even orthogonal and SΣ0
ψ /= Sψ . _e proof

goes in the same way as that of _eorem 7.5. First we choose s∗ ∈ SΣ0
ψ but not in Sψ ,

and we deûne

ΠΣ0
MW ,s∗(ψ) ∶= ∑

ε∈Ŝψ

ε(s∗sψ)πΣ0
MW(ψ, ε),

ΠΣ0
M ,s∗(ψ) ∶= ∑

ε∈Ŝψ

ε(s∗sψ)πΣ0
M (ψ, ε).

Secondly, we can extend Lemma 7.6 to this case, i.e., for (ρ,A, B, ζ) ∈ Jord(ψ) such
that A > B,

ΠΣ0
M ,s∗(ψ) = ⊕

C∈]B ,A]
(−1)A−C⟨ζB, . . . ,−ζC⟩ ⋊ Jacζ(B+2), . . . ,ζC ΠΣ0

M ,s∗(ψ
′ , (ρ,A, B + 2, ζ))

⊕ (−1)[(A−B+1)/2]ΠΣ0
M ,s∗(ψ

′ , (ρ,A, B + 1, ζ), (ρ, B, B, ζ)) ,

where we let s∗(ρ,A, B, ζ) = s∗(ρ,A, B + 2, ζ) = s∗(ρ,A, B + 1, ζ) = s∗(ρ, B, B, ζ).
_e proof is the same. _en we can show by induction that

ΠΣ0
M ,s∗(ψ) = ε

M/MW
ψ (s∗)ΠΣ0

MW ,s∗(ψ).
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_is is because of _eorem 6.21 and the fact that (7.1) still holds in this case. Finally,
since πM(ψ, ε) = πMW(ψ, εεM/MW

ψ ), we have

ε(s∗sψ)πΣ0
M (ψ, ε) = εM/MW

ψ (s∗) ⋅ εεM/MW
ψ (s∗sψ)πΣ0

MW(ψ, εεM/MW
ψ )

= ε(s∗sψ)πΣ0
MW(ψ, εεM/MW

ψ )
by the linear independence of twisted characters. Hence,

πΣ0
M (ψ, ε) = πΣ0

MW(ψ, εεM/MW
ψ ).

8 The General Case

In this section, we consider Mœglin’s parametrization of elements in Πψ for general
ψ ∈ Ψ(G). _e idea is similar to Section 5. We ûrst assume that ψ = ψp , and ûx
an order >ψ on Jord(ψ) satisfying condition (P). We also choose a parameter ψ≫
dominating ψ with discrete diagonal restriction and natural order, and we identify
SΣ0
ψ> ≅ SΣ0

ψ≫ . _en we deûne for ε ∈ ŜΣ0
ψ> ,

πΣ0
M (ψ, ε) ∶= ○(ρ ,A,B ,ζ)∈Jord(ψ) Jac(ρ ,A≫ ,B≫ ,ζ)↦(ρ ,A,B ,ζ) π

Σ0
M (ψ≫ , ε),

where the composition is taken in the decreasing order. Since

πΣ0
M (ψ≫ , εε0) ≅ πΣ0

M (ψ≫ , ε) ⊗ ω0 ,

we have
πΣ0

M (ψ, εε0) ≅ πΣ0
M (ψ, ε) ⊗ ω0 .

We also deûne

πM(ψ, ε) ∶= ○(ρ ,A,B ,ζ)∈Jord(ψ)Jac(ρ ,A≫ ,B≫ ,ζ)↦(ρ ,A,B ,ζ)πM(ψ≫ , ε).(8.1)

It follows from the case of discrete diagonal restriction that the restriction of πΣ0
M (ψ, ε)

toG viewed asH(G)-modules is 2πM(ψ, ε) ifG is special even orthogonal and SΣ0
ψ =

Sψ , or πM(ψ, ε) otherwise.
Next we extend the deûnition of εM/MW

ψ ∈ ŜΣ0
ψ> to this case.

Deûnition 8.1 Suppose ψ = ψp ∈ Ψ(G) and (ρ, a, b) ∈ Jord(ψ). We ûx an order >ψ
on Jord(ψ) satisfying condition (P).
(i) If a + b is odd, εM/MW

ψ (ρ, a, b) = 1.
(ii) If a + b is even, let

m = ♯{(ρ, a′ , b′) ∈ Jord(ψ) ∶ a′ , b′ odd, ζa′ ,b′ = −1, (ρ, a′ , b′) >ψ (ρ, a, b)},
and
n = ♯{(ρ, a′ , b′) ∈ Jord(ψ) ∶ a′ , b′ odd, (ρ, a′ , b′) <ψ (ρ, a, b)}.
_en

εM/MW
ψ (ρ, a, b) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if a, b even,
(−1)m if a, b odd, ζa ,b = +1,
(−1)m+n if a, b odd, ζa ,b = −1.
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Proposition 8.2 Suppose ψ = ψp ∈ Ψ(G) and ε ∈ Ŝψ> ; then

πM(ψ, ε) = πMW(ψ, εεM/MW
ψ ).

Proof By the deûnition of (5.6) and (8.1), it suõces to show that

πM(ψ≫ , ε) = πMW(ψ≫ , εεM/MW
ψ ).

One checks easily εM/MW
ψ = εM/MW

ψ≫ by the deûnition. So now this proposition will
follow from _eorem 7.5 directly.

As a consequence, we have the following result.

Proposition 8.3 Suppose ψ = ψp ∈ Ψ(G) and ε ∈ Ŝψ> . Let ρ be a unitary irreducible
supercuspidal representation of GL(dρ).
(i) For ζ ∈ {±1} and segment [x , y] with 0 ⩽ x ⩽ y, Jacζx , . . . ,ζ yπM(ψ, ε) = 0 unless

there exists a sequence of Jordan blocks {(ρ,A i , B i , ζ)}n
i=1 ⊆ Jord(ψ) such that

B1 = x ,An ⩾ y, and B i ⩽ B i+1 ⩽ A i + 1.
(ii) For x ∈ R, let m = ♯{(ρ,A, B, ζ) ∈ Jord(ψ) ∶ ζB = x}; then

Jacx , . . . ,x
´ ¹¹¹¹¸ ¹¹¹¹¶

n

πM(ψ, ε) = 0

if n > m.

Proof Note that πM(ψ, ε) = πMW(ψ, εεM/MW) and

πMW(ψ, εεM/MW) =
⎧⎪⎪⎨⎪⎪⎩

πW(ψ, εεM/MW εMW/W), if εεM/MW εMW/W ∈ Ŝψ ,
0, otherwise.

So it suõces to show the proposition for πW(ψ, ε) and ε ∈ Ŝψ . As we see from the
proof of Proposition 5.7,

πW(ψ, ε) =
ε(sψ)
∣Sψ ∣

∑
s∈Sψ

ε(s)ΠW ,s(ψ),

where ΠW ,s(ψ) is transferred from ΠψH for (H,ψH) → (ψ, s). By (4.1), it suõces to
show the vanishing of the corresponding Jacquet modules for πψH ∶= πψI ⊗ πψII . In
fact, it suõces to consider

πψ = ⨉
(ρ ,a ,b)∈Jord(ψ)

Sp(St(ρ, a), b).

_en one can easily check that Jacθζx , . . . ,ζ y πψ = 0 unless there exists a sequence of
Jordan blocks

{(ρ,A i , B i , ζ)}n
i=1 ⊆ Jord(ψ)

such that B1 = x ,An ⩾ y, and B i ⩽ B i+1 ⩽ A i + 1. It is also easy to see that

Jacθx , . . . ,x
´ ¹¹¹¹¸ ¹¹¹¹¶

n

πψ = 0

if n > m.
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Remark 8.4 _is proposition implies that the same kind of statements are also true
for πΣ0

M (ψ, ε).

For functions l(ρ,A, B, ζ) ∈ [0, [(A−B+ 1)/2]] and η(ρ,A, B, ζ) ∈ Z2 on Jord(ψ)
such that

ε l ,η(ρ,A, B, ζ) ∶= η(ρ,A, B, ζ)A−B+1(−1)[(A−B+1)/2]+l(ρ ,A,B ,ζ)

deûnes a character ε l ,η of SΣ0
ψ> , we deûne

πΣ0
M (ψ, l , η) ∶= ○(ρ ,A,B ,ζ)∈Jord(ψ) Jac(ρ ,A≫ ,B≫ ,ζ)↦(ρ ,A,B ,ζ) π

Σ0
M (ψ≫ , l , η),

where the composition is taken in the decreasing order,
l(ρ,A, B, ζ) = l(ρ,A≫ , B≫ , ζ) and η(ρ,A, B, ζ) = η(ρ,A≫ , B≫ , ζ).

_en we have the following result about this representation.

Proposition 8.5 ([Mœg10], Proposition 2.8.1) For ψ = ψp ∈ Ψ(G), πΣ0
M (ψ, l , η) only

depends on >ψ , but not on ψ≫. Moreover, πΣ0
M (ψ, l , η) is either zero or irreducible. If

πΣ0
M (ψ, l , η) /= 0, then

πΣ0
M (ψ≫ , l , η) ↪Ð→ ( ⨉

(ρ ,A,B ,ζ)∈Jord(ψ)
⟨X≫

(ρ ,A,B ,ζ)⟩) ⋊ πΣ0
M (ψ, l , η),

where the product is taken in the increasing order.

Proof First, we would like to show πΣ0
M (ψ, l , η) only depends on >ψ . Suppose there

are two dominating parameters ψ1
≫ and ψ2

≫ with discrete diagonal restriction and
natural order; we can always choose a third one ψ∗≫ that dominates both ψ1

≫ and ψ2
≫.

It is clear that
πΣ0

M (ψ i
≫ , l , η) = ○(ρ ,A,B ,ζ)∈Jord(ψ) Jac(ρ ,A∗≫ ,B∗≫ ,ζ)↦(ρ ,Ai≫ ,B i≫ ,ζ) π

Σ0
M (ψ∗≫ , l , η)

for i = 1, 2, where the composition is taken in the decreasing order. For all
(ρ′ ,A′ , B′ , ζ′) >ψ (ρ,A, B, ζ), it is easy to check that

Jac(ρ ,Ai≫ ,B i≫ ,ζ)↦(ρ ,A,B ,ζ) and Jac(ρ′ ,A′∗≫ ,B′∗≫ ,ζ′)↦(ρ′ ,A′ i≫ ,B
′ i≫ ,ζ′)

commute (cf. [Xu15, Lemma 5.6]). Also note that
Jac(ρ ,Ai≫ ,B i≫ ,ζ)↦(ρ ,A,B ,ζ) ○ Jac(ρ ,A∗≫ ,B∗≫ ,ζ)↦(ρ ,Ai≫ ,B i≫ ,ζ) = Jac(ρ ,A∗≫ ,B∗≫ ,ζ)↦(ρ ,A,B ,ζ) .

_en

○(ρ ,A,B ,ζ)∈Jord(ψ) Jac(ρ ,Ai≫ ,B i≫ ,ζ)↦(ρ ,A,B ,ζ) π
Σ0
M (ψ i

≫ , l , η) =
○(ρ ,A,B ,ζ)∈Jord(ψ) Jac(ρ ,A∗≫ ,B∗≫ ,ζ)↦(ρ ,A,B ,ζ) π

Σ0
M (ψ∗≫ , l , η).

_is ûnishes the ûrst part of the proof.
Next we index Jord(ψ) according to >ψ such that

(ρ i ,A i , B i , ζ i) >ψ (ρ i−1 ,A i−1 , B i−1 , ζ i−1).
Let ψ≫ be obtained from ψ by shi�ing (ρ i ,A i , B i , ζ i) to (ρ i ,A i +Ti , B i +Ti , ζ i). We
also deûne ψk from ψ≫ by shi�ing (ρ i ,A i +Ti , B i +Ti , ζ i) back to (ρ i ,A i , B i , ζ i) for

https://doi.org/10.4153/CJM-2016-029-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-029-3


942 B. Xu

i ⩽ k. Suppose πΣ0
M (ψ, l , η) /= 0; then πΣ0

M (ψk , l , η) /= 0 by deûnition. We would like
to show by induction that πΣ0

M (ψk , l , η) is irreducible and that

πΣ0
M (ψk−1 , l , η) ↪Ð→

⎛
⎜⎜
⎝

ζk(Bk + Tk) ⋅ ⋅ ⋅ ζk(Bk + 1)
...

...
ζk(Ak + Tk) ⋅ ⋅ ⋅ ζk(Ak + 1)

⎞
⎟⎟
⎠
⋊ πΣ0

M (ψk , l , η)(8.2)

is the unique irreducible subrepresentation. Note that ψ0 = ψ≫ and ψn = ψ, where
n = ∣ Jord(ψ)∣. So let us assume πΣ0

M (ψk−1 , l , η) is irreducible. For 0 ⩽ l ⩽ Tk − 1, we
denote

τ l ∶=
⎛
⎜⎜
⎝

ζk(Bk + Tk) ⋅ ⋅ ⋅ ζk(Bk + l + 1)
...

...
ζk(Ak + Tk) ⋅ ⋅ ⋅ ζk(Ak + l + 1)

⎞
⎟⎟
⎠
.

Let ψk−1, l be obtained from ψk−1 by shi�ing (ρk ,Ak + Tk , Bk + Tk , ζk) to (ρk ,Ak +
l , Bk + l , ζk). We claim that πΣ0

M (ψk−1, l , l , η) is irreducible and

πΣ0
M (ψk−1 , l , η) ↪Ð→ τ l ⋊ πΣ0

M (ψk−1, l , l , η)

is the unique irreducible subrepresentation. In particular, ψk−1,0 = ψk , so this is what
we want.

To prove the claim, we assume it is true for l + 1, and we would like to establish it
for l .

πΣ0
M (ψk−1 , l , η) ↪Ð→ τ l+1 ⋊ πΣ0

M (ψk−1, l+1 , l , η).

Since
Jacζk(Bk+l+1), . . . ,ζk(Ak+l+1) π

Σ0
M (ψk−1, l+1 , l , η) /= 0,

there exists an irreducible representation σΣ0
l and C ∈ [Bk + l + 1,Ak + l + 1] such that

πΣ0
M (ψk−1, l+1 , l , η) ↪Ð→ ⟨ζkC , . . . , ζk(Ak + l + 1)⟩ ⋊ σΣ0

l .

If C > Bk + l + 1, then by Proposition 8.3 there exists (ρ i ,A i , B i , ζ i) ∈ Jord(ψ) for
i < k such that

ρ i = ρk , ζ i = ζk , B i > Bk + l + 1 and A i ⩾ Ak + l + 1.

But this is impossible by the condition (P) on >ψ . _erefore, we must have C = Bk +
l + 1. It follows that σΣ0

l is a constituent of πΣ0
M (ψk−1, l , l , η). Apply Proposition 8.3 to

ψk−1, l , and we have

JacζkC′ , . . . ,ζkC′′ σ
Σ0
l = 0(8.3)

for C′ ∈ [Bk + l + 1,Ak + Tk], C′′ ∈ [Ak + l + 1,Ak + Tk]. To sum up,

πΣ0
M (ψk−1 , l , η) ↪Ð→ τ l+1 ×

⎛
⎜⎜
⎝

ζk(Bk + l + 1)
...

ζk(Ak + l + 1)

⎞
⎟⎟
⎠
⋊ σΣ0

l .
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If we apply Jac(ρk ,Ak+Tk ,Bk+Tk ,ζk)↦(ρk ,Ak+l ,Bk+l ,ζk) to

τ l+1 ×
⎛
⎜⎜
⎝

ζk(Bk + l + 1)
...

ζk(Ak + l + 1)

⎞
⎟⎟
⎠
⋊ σΣ0

l ,(8.4)

we should get σΣ0
l by (8.3). So

πΣ0
M (ψk−1, l , l , η) ∶= Jac(ρk ,Ak+Tk ,Bk+Tk ,ζk)↦(ρk ,Ak+l ,Bk+l ,ζk) π

Σ0
M (ψk−1 , l , η) = σΣ0

l ,

and (8.4) has a unique irreducible subrepresentation. Hence,

πΣ0
M (ψk−1 , l , η) ↪Ð→ τ l ⋊ πΣ0

M (ψk−1, l , l , η)
is the unique irreducible subrepresentation. _is completes the proof of our claim.

Remark 8.6 It is an interesting problem to determine when πΣ0
M (ψ, l , η) is not

zero, and a solution to such problem would have many applications (e.g., [Mœg11b,
Mœg11a]). In a sequel to this paper, we will give a procedure for ûnding explicit non-
vanishing conditions on (l , η) for πΣ0

M (ψ, l , η).

Corollary 8.7 For ψ = ψp ∈ Ψ(G), if πΣ0
M (ψ, l , η) ≅ πΣ0

M (ψ, l ′ , η′) /= 0, then
(l , η) ∼Σ0 (l ′ , η′).

Proof Suppose πΣ0
M (ψ, l , η) ≅ πΣ0

M (ψ, l ′ , η′) /= 0; then by applying (8.2) step by
step, one can conclude that πΣ0

M (ψ≫ , l , η) ≅ πΣ0
M (ψ≫ , l ′ , η′). _is implies (l , η) ∼Σ0

(l ′ , η′).

Let πM(ψ, l , η) be the irreducible representation of G viewed asH(G)-module in
the restriction of πΣ0

M (ψ, l , η) to G if πΣ0
M (ψ, l , η) /= 0, and zero otherwise. _en

πM(ψ, l , η) = ○(ρ ,A,B ,ζ)∈Jord(ψ)Jac(ρ ,A≫ ,B≫ ,ζ)↦(ρ ,A,B ,ζ)πM(ψ≫ , l , η),
where the composition is taken in the decreasing order. _e following proposition fol-
lows easily from the deûnitions and similar statements in the case of discrete diagonal
restriction (cf. Proposition 7.10 and Corollary 7.13).

Proposition 8.8 For ψ = ψp ∈ Ψ(G) and ε ∈ ŜΣ0
ψ> ,

πΣ0
M (ψ, ε) = ⊕

{(l ,η)∶ε=ε l ,η}/∼Σ0

πΣ0
M (ψ, l , η),

πM(ψ, ε) = ⊕
{(l ,η)∶ ε=ε l ,η}/∼

πM(ψ, l , η).

Moreover,
⊕

ε←ε∈ŜΣ0
ψ>

πΣ0
M (ψ, ε)

consists of all irreducible representations of GΣ0 , whose restriction to G belong to
πM(ψ, ε).
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As a consequence, forψ = ψp ∈ Ψ(G)we can deûne ΠΣ0
ψ to be the set of irreducible

representations of GΣ0 , whose restriction to G belong to Πψ . In the case where G is
special even orthogonal, if SΣ0

ψ /= Sψ , then πθ0 ≅ π for any irreducible constituent
[π] in πM(ψ, ε). So it follows from _eorem 4.2 that there is a canonical disjoint
decomposition

ΠΣ0
ψ = ⊔

ε∈ŜΣ0
ψ

πΣ0
W (ψ, ε)

such that:
● [πΣ0

W (ψ, ε)∣G] = 2πW(ψ, ε) if G is special even orthogonal and SΣ0
ψ = Sψ , or

πW(ψ, ε) otherwise.
● For any s ∈ SΣ0

ψ but not in Sψ and (H,ψH) → (ψ, s), the following identity holds:

f HW(ψH) = ∑
ε∈Ŝψ

ε(ssψ) fG(πΣ0
W (ψ, ε)) f ∈ C∞c (G ⋊ θ0).

Let us also deûne for ε ∈ ŜΣ0
ψ> ,

πΣ0
MW(ψ, ε) ∶= ○(ρ ,A,B ,ζ)∈Jord(ψ) Jac(ρ ,A≫ ,B≫ ,ζ)↦(ρ ,A,B ,ζ) π

Σ0
MW(ψ≫ , ε).

_en we have the following theorem.

_eorem 8.9 Suppose ψ = ψp ∈ Ψ(G) and ε ∈ ŜΣ0
ψ> ,

πΣ0
MW(ψ, ε) =

⎧⎪⎪⎨⎪⎪⎩

πΣ0
W (ψ, εεMW/W

ψ ), if εεMW/W
ψ ∈ ŜΣ0

ψ ,
0, otherwise,

and

πΣ0
M (ψ, ε) = πΣ0

MW(ψ, εεM/MW
ψ ).

Proof We can assume G is special even orthogonal and SΣ0
ψ /= Sψ . Since

πMW(ψ, ε) =
⎧⎪⎪⎨⎪⎪⎩

πW(ψ, εεMW/W
ψ ), if εεMW/W

ψ ∈ Ŝψ ,
0, otherwise

we have πΣ0
MW(ψ, εεMW/W

ψ ) /= 0 only if ε ∈ ŜΣ0
ψ .

Let us choose s∗ ∈ SΣ0
ψ> but not in Sψ> , and we denote its image in SΣ0

ψ again by s∗.
_en let us deûne

ΠΣ0
MW ,s∗(ψ) ∶= ∑

ε∈Ŝψ>

ε(s∗s>ψ)πΣ0
MW(ψ, ε),

ΠΣ0
W ,s∗(ψ) ∶= ∑

ε∈Ŝψ

ε(s∗sψ)πΣ0
W (ψ, ε).

As in Proposition 5.7 one can show

ΠΣ0
MW ,s∗(ψ) = ε

MW/W
ψ (s>ψs∗)ΠΣ0

W ,s∗(ψ)
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(cf. (5.7)). By the linear independence of twisted characters, we have for ε ∈ ŜΣ0
ψ ,

εεMW/W
ψ (s∗s>ψ)πΣ0

MW(ψ, εεMW/W
ψ ) = εMW/W

ψ (s>ψs∗) ⋅ ε(s∗sψ)πΣ0
W (ψ, ε).

And hence,
πΣ0

MW(ψ, εεMW/W
ψ ) = πΣ0

W (ψ, ε).
_is proves the ûrst part. _e second part follows from the case of the discrete diag-
onal restriction and the fact that εM/MW

ψ≫ = εM/MW
ψ .

_e following corollary is a direct consequence of _eorem 8.9.

Corollary 8.10 Suppose ψ = ψp ∈ Ψ(G) and ε ∈ ŜΣ0
ψ> , let ε

M/W
ψ ∶= εM/MW

ψ εMW/W
ψ .

_en

πΣ0
M (ψ, ε) =

⎧⎪⎪⎨⎪⎪⎩

πΣ0
W (ψ, εεM/W

ψ ), if εεM/W
ψ ∈ ŜΣ0

ψ ,
0, otherwise.

Finally for ψ ∈ Ψ(G), Πψ = πψnp ⋊Πψp . We deûne

ΠΣ0
ψ ∶= ( ⨉

(ρ ,a ,b)∈Jord(ψnp)
Sp(St(ρ, a), b)) ⋊ΠΣ0

ψp
,

πΣ0
W (ψ, ε) ∶= ( ⨉

(ρ ,a ,b)∈Jord(ψnp)
Sp(St(ρ, a), b)) ⋊ πΣ0

W (ψp , ε),

πΣ0
M (ψ, ε) ∶= ( ⨉

(ρ ,a ,b)∈Jord(ψnp)
Sp(St(ρ, a), b)) ⋊ πΣ0

M (ψp , ε)

for ε ∈ ŜΣ0
ψ . _en we have

πΣ0
M (ψ, ε) =

⎧⎪⎪⎨⎪⎪⎩

πΣ0
W (ψ, εεM/W

ψ ), if εεM/W
ψ ∈ ŜΣ0

ψ ,
0, otherwise.

For l(ρ,A, B, ζ) ∈ [0, [(A − B + 1)/2]] and η(ρ,A, B, ζ) ∈ Z2 on Jord(ψp) such that

ε l ,η ∈ ŜΣ0
ψ> , we also deûne

πΣ0
M (ψ, l , η) = ( ⨉

(ρ ,a ,b)∈Jord(ψnp)
Sp(St(ρ, a), b)) ⋊ πΣ0

M (ψp , l , η),

πM(ψ, l , η) = ( ⨉
(ρ ,a ,b)∈Jord(ψnp)

Sp(St(ρ, a), b)) ⋊ πM(ψp , l , η).

Proposition 8.11 ([Mœg06a, _eorem 6]) For ψ ∈ Ψ(G), πΣ0
M (ψ, l , η) is irreducible

or zero.

As a consequence of this proposition, πM(ψ, l , η) is the irreducible representation
ofG viewed asH(G)-module in the restriction of πΣ0

M (ψ, l , η) toG if πΣ0
M (ψ, l , η) /= 0,

and zero otherwise. To summarize, we obtain Mœglin’s multiplicity free result for
Arthur packets.
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_eorem 8.12 (Mœglin) For ψ ∈ Ψ(G),

ΠΣ0(ψ) ∶= ⊕
ε∈ŜΣ0

ψ

πΣ0
W (ψ, ε) ( resp. Π(ψ) ∶= ⊕

ε∈Ŝψ

πW(ψ, ε))

is a multiplicity-free representation of GΣ0 (resp. H(G)-module).

A Compatibility of Endoscopic Transfer with Aubert Involution

In this section, we want to establish the compatibility of (twisted) endoscopic transfer
with generalized (twisted) Aubert involution (cf. (6.3), (6.7), and (6.9)). We will start
by considering the usual (twisted) Aubert involution. Let F be a p-adic ûeld and let G
be a quasisplit connected reductive group over F. Let θ be an F-automorphism of G
preserving an F-splitting. We denote the space of (resp. twisted) invariant distribu-
tions on G by Î(G) (resp. Î(Gθ)), and denote the space of stable invariant distribu-
tions on G by ŜI(G). Let Pθ be the set of θ-stable standard parabolic subgroups ofG.
Let G+ = G ⋊ ⟨θ⟩. For any π+ ∈ Rep(G+), we deûne the θ-twisted Aubert involution
as follows:

invθ(π+) = ∑
P∈Pθ

(−1)dim(AP)θ IndG
P (JacP π+),

where AP is the maximal split central torus of the Levi component M of P. Let H be
a twisted endoscopic group of G, and we denote by invH the Aubert involution on
Grothendieck group of Rep(H). _en we want to show that the following diagram
commutes, where the horizontal maps correspond to the twisted spectral endoscopic
transfer:

ŜI(H)

invH

��

// Î(Gθ)

invθ

��

ŜI(H) // Î(Gθ),

(A.1)

To establish this diagram, we need to know the compatibility of twisted endoscopic
transfer with Jacque modules, and we will recall its formulation here following [Xu15,
Appendix C].
For simplicity, we will assume there is an embedding

ξ∶ LH Ð→ LG ,

and ξ(LH) ⊆ Cent(s, LG) and Ĥ ≅ Cent(s, Ĝ)0 for some semisimple s ∈ Ĝ ⋊ θ̂.
We ûx (θ̂-stable) ΓF-splittings (BH ,TH , {XαH}) and (BG ,TG , {Xα}) for Ĥ and Ĝ
respectively. By taking certain Ĝ-conjugate of ξ, we can assume s ∈ TG⋊θ̂ and ξ(TH) =
(T θ̂

G)0 and ξ(BH) ⊆ BG . LetWH =W(Ĥ,TH) andWGθ =W(Ĝ ,TG)θ̂ ; thenWH can
be viewed as a subgroup of WGθ . We also view LH as a subgroup of LG through ξ.
For P = MN ∈ Pθ with standard embedding LP ↪ LG, there exists a torus S ⊆ (T θ̂

G)0
such that LM = Cent(S , LG). Let WMθ =W(M̂ ,TG)θ̂ . We deûne

WGθ (H,M) ∶= {w ∈WGθ ∣ Cent(w(S), LH) →WF surjective }.
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For any w ∈ WGθ (H,M), let us take g ∈ Ĝ such that Int(g) induces w. Since
Cent(w(S), LH) → WF is surjective, gLPg−1 ∩ LH deûnes a parabolic subgroup of
LH with Levi component gLMg−1 ∩ LH. So we can choose a standard parabolic sub-
group P′w = M′

wN ′
w of H with standard embedding LP′w ↪ LH such that LP′w (resp.

LM′
w) is Ĥ-conjugate to gLPg−1 ∩ LH (resp. gLMg−1 ∩ LH). In particular,M′

w can be
viewed as a twisted endoscopic group of M, and the embedding ξM′

w
∶ LM′

w → LM is
given by the following diagram:

LP′w� _

��

LM′
w

oo
ξM′w // LM // LP� _

��
LH

Int(h)
// LH

ξ
// LG LG ,

Int(g)
oo

where h ∈ Ĥ induces an element in WH . Note that the choice of h is unique up to
M̂′

w-conjugation, and so is ξM′
w
. If we change g to h′gm, where h′ ∈ Ĥ induces an

element in WH and m ∈ M̂ induces an element in WMθ , then we still get P′w , but ξM′
w

changes to Int(m−1) ○ ξM′
w
up to M̂′

w-conjugation. To summarize, for any element w
in

WH/WGθ (H,M)/WMθ

we can associate a standard parabolic subgroup P′w = M′
wN ′

w ofH and a M̂-conjugacy
class of embeddings ξM′

w
∶ LM′

w → LM. _en the following diagram commutes,
where the sum is overWH/WGθ (H,M)/WMθ and the horizontal maps correspond to
the twisted spectral endoscopic transfers with respect to ξ on the top and ξM′

w
on the

bottom:

ŜI(H)

⊕w JacP′w
��

// Î(Gθ)

JacP
��

⊕w ŜI(M′
w) // Î(Mθ).

(A.2)

Let us denote the twisted spectral endoscopic transfer fromH toG by TranGθ

H , and the
twisted spectral endoscopic transfer from M′

w to M by TranMθ

M′
w
. _en we can translate

the diagram (A.2) into the following identity. For ΘH ∈ ŜI(H),

∑
w

TranMθ

M′
w
JacP′w ΘH = JacP TranGθ

H ΘH .

It follows that

∑
w

IndG
P (TranMθ

M′
w
JacP′w ΘH) = IndG

P (JacP TranGθ

H ΘH).

By the compatibility of twisted endoscopic transfer with parabolic induction,

IndG
P TranMθ

M′
w
( JacP′w ΘH) = TranGθ

H IndH
P′w

( JacP′w ΘH) .
So

TranGθ

H ( ∑
w

IndH
P′w

JacP′w ΘH) = IndG
P JacP ( TranGθ

H ΘH) .

https://doi.org/10.4153/CJM-2016-029-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-029-3


948 B. Xu

We can multiply both sides by (−1)dim(AP)θ , and then sum over P ∈ Pθ ,

TranGθ

H ( ∑
P∈Pθ

(−1)dim(AP)θ ∑
w

IndH
P′w

JacP′w ΘH) = invθ ( TranGθ

H ΘH) .

To establish the diagram (A.1), it is enough to show

∑
P∈Pθ

(−1)dim(AP)θ ∑
w

IndH
P′w

JacP′w ΘH = invH ΘH .

By the deûnition,

invH ΘH = ∑
P′∈PH

(−1)dim AP′ IndH
P′ JacP′ Θ

H ,

wherePH denotes the set of standard parabolic subgroups ofH. So it suõces to prove
the following proposition.

Proposition A.1 For any P′ = M′N ′ ∈ PH ,

∑
P∈Pθ

(−1)dim(AP)θ aM′ ,H ,M = (−1)dim AP′ ,(A.3)

where
aM′ ,H ,M ∶= ♯{w ∈WH/WGθ (H,M)/WMθ ∣P′w = P′}.

Hiraga proved this proposition in the non-twisted case (see [Hir04]), and we will
extend his arguments to prove the twisted case here. First we need to introduce some
more notation.

Let AĜ , θ̂ be the identity component of ΓF-invariant elements in (T θ̂
G)0, and let

AĤ be the identity component of ΓF-invariant elements in TH . By the choice of Ĝ-
conjugate of ξ, we can further assume that ξ(AĤ) ⊆ AĜ , θ̂ and there is a θ-stable
standard Levi subgroup MH of G such that LMH = Cent(AĤ , LG).
For any θ-stable standard Levi subgroup M of G, we denote by Rres(M̂) the

root system (not necessarily reduced) obtained by restriction from the root system
R(M̂ ,TG) to (T θ̂

G)0, and we denote the set of simple roots in Rres(M̂) by ∆res(M̂).
Let R±res(M̂) be the set of positive (negative) roots. We write rres(M) for the num-
ber of ΓF-orbits in ∆res(M̂). Note that Pθ is in bijection with the ΓF-stable subsets of
∆res(Ĝ).
For any standard Levi subgroup M′ of H, we denote by R(M̂′) the root system

R(M̂′ ,TH) and we denote the set of simple roots in R(M̂′) by ∆(M̂′). Let R±(M̂′)
be the set of positive (negative) roots. We write r(M′) for the number of ΓF-orbits in
∆(M̂′). Note that PH is in bijection with the ΓF-stable subsets of ∆(Ĥ). It is easy to
see that R±(Ĥ) ⊆ R±res(Ĝ).

If we multiply both sides of (A.3) by (−1)dim AĜ , θ̂
, then we will get

∑
P∈Pθ

(−1)rres(M)aM′ ,H ,M = (−1)rres(MH)+r(M′) .(A.4)

We will break the proof of this identity into four steps.
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Step 1:We ûx a θ-stable standard Levi subgroup M of G. Let

DMθ = {w ∈WGθ ∣w−1(∆res(M̂)) ⊆ R+res(Ĝ)},
DH = {w ∈WGθ ∣w−1(∆(Ĥ)) ⊆ R+res(Ĝ)}.

We would like to show that DH ,Mθ ∶= D−1
Mθ ∩ DH is a set of representatives of

WH/WGθ /WMθ .

Lemma A.2 DH (resp. DMθ ) is a set of representatives ofWH/WGθ (resp. WMθ /WGθ ).

Proof For any w ∈ WGθ , let B̂H ∶= Ĥ ∩ w(BG). _en B̂H is a Borel subgroup of
Ĥ. So there exists a unique wH ∈ WH such that wH(B̂H) = BH . It follows that BH =
wH(Ĥ ∩w(BG)) = Ĥ ∩wHw(BG), and hence wHw ∈ DH . By the uniqueness of wH ,
we see DH is a set of representatives ofWH/WGθ .

_e proof forWMθ /WGθ is similar. One just needs to noticeWGθ ≅W(Ĝ1 , (T θ̂
G)0)

andWMθ ≅ W(M̂1 , (T θ̂
G)0), where Ĝ1 (resp. M̂1) is the identity component of θ̂-in-

variant elements in Ĝ (resp. M̂).

For w ∈WGθ , we deûne
lMθ (w) = ♯{α ∈ R+res(M̂)∣wα ∈ R−res(Ĝ)}
lH(w) = ♯{α ∈ R+(Ĥ)∣wα ∈ R−res(Ĝ)}.

Lemma A.3 For any w ∈WGθ , DH ,Mθ ∩WHwWMθ /= ∅.

Proof Since DH is a set of representatives of WH/WGθ , we can choose w0 ∈
WHwWMθ such that w0 ∈ DH . Note that w−1

0 ∈ DMθ if and only if lMθ (w0) = 0.
So we can make an induction on lMθ (w0). Suppose lMθ (w0) > 0; then there exists
α ∈ ∆res(M̂) such that w0α ∈ R−res(Ĝ). We claim

lMθ (w0sα) < lMθ (w0),
where sα is corresponding the simple re�ection. To see this, note that

sα(R+res(M̂) −Z+α) = R+res(M̂) −Z+α and w0α ∈ R−res(Ĝ).
So

lMθ (w0sα) = ♯{α′ ∈ R+res(M̂) −Z+α∣w0sαα′ ∈ R−res(Ĝ)}
= ♯{α′′ ∈ R+res(M̂) −Z+α∣w0α′′ ∈ R−res(Ĝ)}.

_en
lMθ (w0) = lMθ (w0sα) + ∣Z+α ∩ R+res(M̂)∣ > lMθ (w0sα).

We still need to show w0sα ∈ DH . For that, let us consider (w0sα)−1(∆(Ĥ)) =
sαw−1

0 (∆(Ĥ)). Since
sα(R+res(Ĝ) −Z+α) = R+res(Ĝ) −Z+α,

we only need to show w−1
0 (∆(Ĥ)) ∩ Z+α = ∅. _is is guaranteed by the fact that

w0α ∈ R−res(Ĝ).
Now we have the following proposition.
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Proposition A.4 DH ,Mθ is a set of representatives of WH/WGθ /WMθ .

Proof In view of Lemma A.3, we just need to show WHwWMθ contains a unique
element in DH ,Mθ for any w ∈ WGθ . Suppose w0 ,w′

0 ∈ DH ,Mθ ∩WHwWMθ ; then we
can assume that w′

0 = wHw0wMθ for wH ∈ WH and wMθ ∈ WMθ . First we want to
show that wH can be chosen to be trivial. Note that wH = 1 if and only if lH(w−1

H ) = 0.
Suppose lH(w−1

H ) > 0; then there exists α ∈ ∆(Ĥ) such that w−1
H (α) ∈ R−(Ĥ). Since

w0 ,w′
0 ∈ DH , we have β = w−1

0 w−1
H α ∈ R−res(Ĝ) and w−1

Mθ β = (w′
0)−1α ∈ R+res(Ĝ). So

β ∈ R−res(M̂). Hence
w′

0 = wHw0wMθ = (sα ⋅ sα)wHw0wMθ = sαwHsw−1
H α

w0wMθ

= (sαwH)w0(sw−1
0 w−1

H α
wMθ ) = (sαwH)w0(sβwMθ ).

As in the proof of Lemma A.3, one can show lH(w−1
H sα) < lH(w−1

H ). So by induction
on lH(w−1

H ), we can assume that w′
0 = w0wMθ . Since w0 ,w′

0 ∈ D−1
Mθ , we must have

wMθ = 1, and hence w′
0 = w0.

Next we would like to describe DH ,Mθ ∩WGθ (H,M), which is a set of represen-
tatives ofWH/WGθ (H,M)/WMθ . Since LM = Cent((Aθ̂

M̂
)0 , LG), w ∈ WGθ (H,M) is

characterized by the condition that

Cent(w(Aθ̂
M̂)0 , LH) Ð→WF

is surjective. For w ∈ DH , the above condition is equivalent to requiring w(Aθ̂
M̂
)0 ⊆

AĤ . So let us deûne

D̃Mθ = {w ∈ DMθ ∣ w−1(Aθ̂
M̂)0 ⊆ AĤ} .

_en D̃H ,Mθ ∶= D̃−1
Mθ ∩ DH is equal to DH ,Mθ ∩WGθ (H,M).

For w ∈ D̃H ,Mθ , it is easy to see that M̂′
w = w(M̂) ∩ Ĥ. So we would like to deûne

M̂′
w ∶= w(M̂)∩Ĥ for allw ∈ DH ,Mθ , andnote thatM′

w is only a standard Levi subgroup
ofH over F in this case. For any standard Levi subgroup M′ ofH over F, let us deûne

DM′ = {w ∈WGθ ∣ w−1(∆(M̂′)) ⊆ R+res(Ĝ)} .

We also deûne

DM′ ,H ,Mθ ∶= {w ∈ DH ,Mθ ∣ M′
w = M′}, D̃M′ ,H ,Mθ ∶= {w ∈ D̃H ,Mθ ∣ M′

w = M′}.

It is clear that D̃M′ ,H ,Mθ /= ∅ only when M′ is deûned over F.

Step 2: We again ûx a θ-stable standard Levi subgroup M of G, and we will take M′

to be standard Levi subgroups of H over F (if not speciûed). Let

ξ̃Mθ = ∑
w∈D̃Mθ

w and ξM′ = ∑
w∈DM′

w .

For any ξ = ∑w∈WGθ
aww , let us write

[ξ]H = ∑
w∈WGθ

w(AĤ)=AĤ

aww .
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_en we want to show
[ξH ξ̃Mθ ]H = ∑

P′∈PH

aM′ ,H ,Mθ [ξM′]H .(A.5)

For any x ∈ WGθ satisfying x(AĤ) = AĤ , its coeõcient in [ξH ξ̃Mθ ]H is given by
the number of pairs (dH , dMθ ) ∈ DH × D̃Mθ such that x = dHdMθ ; in other words, we
need to count xD̃−1

Mθ ∩ DH .
By Proposition A.4, it is enough to count

(xD̃−1
Mθ ∩ DH) ∩WHwWMθ(A.6)

for all w ∈ DH ,Mθ . Let

w−1x = wMθ (x ,w) ⋅ dMθ (x ,w)(A.7)

for wMθ (x ,w) ∈ WMθ and dMθ (x ,w) ∈ DMθ . Note that this decomposition makes
sense for all x ∈WGθ .

Lemma A.5 Suppose x ∈ WGθ satisûes x(AĤ) = AĤ and w ∈ DH ,Mθ ; then
dMθ (x ,w) ∈ D̃Mθ if and only if w ∈ D̃H ,Mθ .

Proof Since xdMθ (x ,w)−1(Aθ̂
M̂
)0 = wwMθ (x ,w)(Aθ̂

M̂
)0 = w(Aθ̂

M̂
)0, the lemma is

clear.

Beforewe give the result for (A.6), wewould like to consider a slightlymore general
situation.

Proposition A.6 For x ∈WGθ and w ∈ DH ,Mθ ,

(xD−1
Mθ ∩ DH) ∩WHwWMθ =

⎧⎪⎪⎨⎪⎪⎩

{xdMθ (x ,w)−1}, if xdMθ (x ,w)−1 ∈ DH ,
∅, otherwise.

To prove this proposition, we need the following lemma.

Lemma A.7 Suppose w ∈ DH ,Mθ , and every element in WHwWMθ has a unique ex-
pression as wHwwMθ for wMθ ∈WMθ andwH ∈ D−1

M′ ∩WH , where M′ = M′
w . Moreover,

lH(w−1
Mθw−1w−1

H ) ⩾ lH(w−1
H ).

Proof As in Lemma A.2, one can show that D−1
M′ ∩WH is a set of representatives of

WH/WM′ . _en

wHwwMθ = (d−1
M′wM′)wwMθ = d−1

M′w(w−1wM′w)wMθ

for dM′ ∈ DM′ and wM′ ∈ WM′ . Since WH ∩ wWMθw−1 = WM′ , we have
w−1wM′w ∈ WMθ . _is proves the existence of the expression. To see the unique-
ness, we can assume thatwHwwMθ = w′

Hww
′
Mθ in both the desired expressions. _en

wHwwMθ (w′
Mθ )−1 = w′

Hw . Sowe can assume instead thatwHwwMθ = w′
Hw . It follows

wwMθ = w−1
H w′

Hw ∈ WHw. So wwMθw−1 ∈ WH . Hence, wM′ ∶= wwMθw−1 ∈ WM′ .
Now we get wHwM′ = w′

H . Since wH ,w′
H ∈ D−1

M′ ∩WH , we must have wM′ = 1. _en
wH = w′

H and wMθ = 1.
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Next we want to show
lH(w−1

Mθw−1w−1
H ) ⩾ lH(w−1

H )
for wMθ ∈WMθ and wH ∈ D−1

M′ ∩WH . Note that

R+(Ĥ) = (R+(Ĥ) −wH(R+(M̂′))) ⊔wH(R+(M̂′)).
_en

w−1
H (R+(Ĥ)) = (w−1

H (R+(Ĥ)) − R+(M̂′)) ⊔R+(M̂′).
We claim that α ∈ w−1

H (R+(Ĥ))−R+(M̂′) is positive if and only ifw−1
Mθw−1α is positive.

It is clear that for α ∈ R(Ĥ), α is positive if and only if w−1α is positive. So we only
need to show w−1α ∉ Rres(M̂) for α ∈ w−1

H (R+(Ĥ)) − R+(M̂′), or equivalently, α ∉
w(Rres(M̂)). To see this, we consider

R+(Ĥ) ∩wHw(Rres(M̂)) = R+(Ĥ) ∩wH(R(Ĥ) ∩w(Rres(M̂)))
= R+(Ĥ) ∩wH(R(M̂′)).

Since wH ∈ D−1
M′ ∩WH , wH(R±(M̂′)) ⊆ R±(Ĥ), and we have

R+(Ĥ) ∩wH(R(M̂′)) = wH(R+(M̂′)) .
_erefore,

R+(Ĥ) ∩wHw(Rres(M̂)) = wH(R+(M̂′)) .
Multiplying both sides by w−1

H , and we get

w−1
H (R+(Ĥ)) ∩w(Rres(M̂)) = R+(M̂′).

From this identity, one can easily see α ∉ w(Rres(M̂)) for α ∈ w−1
H (R+(Ĥ))−R+(M̂′).

_is shows our claim. Consequently, we have

lH(w−1
Mθw−1w−1

H ) = lH(w−1
H ) + ♯{α ∈ R+(M̂′) ∣ w−1

Mθw−1α ∈ R−res(Ĝ)} ≥ lH(w−1
H ).

Corollary A.8 For w ∈ DH ,Mθ , DH ∩WHwWMθ ⊆ wWMθ .

Proof For wHwwMθ ∈ DH ∩WHwWMθ , we can assume that wH ∈ D−1
M′ ∩WH by

Lemma A.7. _en 0 = lH(w−1
Mθw−1w−1

H ) ⩾ lH(w−1
H ). So lH(w−1

H ) = 0, and hence
wH = 1.

Now we will prove Proposition A.6.

Proof For x ∈WGθ and
y ∈ (xD−1

Mθ ∩ DH) ∩WHwWMθ ,
we can assume y = wwMθ for wMθ ∈ WMθ by Corollary A.8. _ere exists dMθ ∈ DMθ

such that
xd−1

Mθ = y = wwMθ .
So w−1x = wMθdMθ . Compared with (A.7), we get dMθ = dMθ (x ,w) and
wMθ = wMθ (x ,w). _en y = xdMθ (x ,w)−1 ∈ DH . On the other hand, suppose
xdMθ (x ,w)−1 ∈ DH ; it is clear that xdMθ (x ,w)−1 ∈ xD−1

Mθ ∩ DH . Moreover,

xdMθ (x ,w)−1 = wwMθ (x ,w) ∈WHwWMθ .
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So xdMθ (x ,w)−1 ∈ (xD−1
Mθ ∩ DH) ∩WHwWMθ . _is ûnishes the proof.

Since there is a decomposition

DH ,Mθ = ⊔
P′
DM′ ,H ,Mθ ,

where the sum is over all standard parabolic subgroup P′ of H over F, we would like
to reûne Proposition A.6 by restricting to DM′ ,H ,Mθ .

Proposition A.9 For x ∈ WGθ and w ∈ DM′ ,H ,Mθ , (xD−1
Mθ ∩ DH) ∩WHwWMθ /= ∅

if and only if x ∈ DM′ .

Proof By Proposition A.6, it is enough to show that xdMθ (x ,w)−1 ∈ DH if and only
if x ∈ DM′ . Since

R+(Ĥ) ∩w(Rres(M̂)) = R+(M̂′)
and xdMθ (x ,w)−1 = wwMθ (x ,w), we have
dMθ (x ,w)x−1(R+(M̂′)) = dMθ (x ,w)x−1(R+(Ĥ)) ∩wMθ (x ,w)−1w−1w(Rres(M̂))

= dMθ (x ,w)x−1(R+(Ĥ)) ∩ Rres(M̂).

If xdMθ (x ,w)−1 ∈ DH , then dMθ (x ,w)x−1(R+(Ĥ)) ⊆ R+res(Ĝ). So
dMθ (x ,w)x−1(R+(M̂′)) ⊆ R+res(M̂).

_en
x−1(R+(M̂′)) ⊆ dMθ (x ,w)−1(R+res(M̂)) ⊆ R+res(Ĝ).

_is means x ∈ DM′ .
Conversely, suppose x ∈ DM′ ; then x−1(R+(M̂′)) ⊆ R+res(Ĝ). We can rewrite it as

dMθ (x ,w)−1(dMθ (x ,w)x−1)(R+(M̂′)) ⊆ R+res(Ĝ).
Since dMθ (x ,w)x−1(R+(M̂′)) = wMθ (x ,w)−1w−1(R+(M̂′)) ⊆ Rres(M̂), we must
have

dMθ (x ,w)x−1(R+(M̂′)) ⊆ R+res(M̂).
So it is enough to consider

dMθ (x ,w)x−1(R+(Ĥ) − R+(M̂′))
= wMθ (x ,w)−1w−1(R+(Ĥ) − R+(M̂′))
= wMθ (x ,w)−1(w−1(R+(Ĥ)) −w−1(R+(M̂′)))
= wMθ (x ,w)−1(w−1(R+(Ĥ)) −w−1(R+(Ĥ) ∩w(Rres(M̂))))
= wMθ (x ,w)−1(w−1(R+(Ĥ)) −w−1(R+(Ĥ)) ∩ Rres(M̂))
= wMθ (x ,w)−1(w−1(R+(Ĥ)) − Rres(M̂)) .

Since α ∈ w−1(R+(Ĥ)) − Rres(M̂) is positive and not in Rres(M̂), wMθ (x ,w)−1α is
also positive. _erefore,

dMθ (x ,w)x−1(R+(Ĥ) − R+(M̂′)) ⊆ R+res(Ĝ).
_is implies xdMθ (x ,w)−1 ∈ DH .
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Next, we will modify Propositions A.6 and A.9 for counting (A.6).

Proposition A.10 For x ∈WGθ satisfying x(AĤ) = AĤ and w ∈ DH ,Mθ ,

(xD̃−1
Mθ ∩ DH) ∩WHwWMθ =

⎧⎪⎪⎨⎪⎪⎩

{xdMθ (x ,w)−1}, if w ∈ D̃H ,Mθ and xdMθ (x ,w)−1 ∈ DH ,
∅, otherwise.

Proof By Proposition A.6,

(xD−1
Mθ ∩ DH) ∩WHwWMθ =

⎧⎪⎪⎨⎪⎪⎩

{xdMθ (x ,w)−1}, if xdMθ (x ,w)−1 ∈ DH ,
∅, otherwise.

So (xD̃−1
Mθ ∩DH)∩WHwWMθ /= ∅ if and only if xdMθ (x ,w)−1 ∈ DH and dMθ (x ,w) ∈

D̃Mθ . By Lemma A.5, this is equivalent to requiring xdMθ (x ,w)−1 ∈ DH and w ∈
D̃H ,Mθ .

As a consequence, we can restrict ourselves to the set D̃H ,Mθ when counting (A.6).
Since

D̃H ,Mθ = ⊔
P′∈PH

D̃M′ ,H ,Mθ ,(A.8)

we can further restrict to each D̃M′ ,H ,Mθ .

Proposition A.11 For x ∈WGθ satisfying x(AĤ) = AĤ and w ∈ D̃M′ ,H ,Mθ ,

(xD̃−1
Mθ ∩ DH) ∩WHwWMθ /= ∅

if and only if x ∈ DM′ .

Proof By deûnition, D̃M′ ,H ,Mθ ⊆ DM′ ,H ,Mθ . In view of Proposition A.9, it suõces to
show that for x ∈ DM′ ,

(xD̃−1
Mθ ∩ DH) ∩WHwWMθ /= ∅.

Since in this case
(xD−1

Mθ ∩ DH) ∩WHwWMθ /= ∅,
we have xdMθ (x ,w)−1 ∈ DH by Proposition A.6. _en the result follows immediately
from Proposition A.10.

Corollary A.12

[ξH ξ̃Mθ ]H = ∑
P′∈PH

aM′ ,H ,Mθ [ξM′]H .

Proof Since aM′ ,H ,Mθ = ∣D̃M′ ,H ,Mθ ∣, this identity is an easy consequence of (A.8)
and Proposition A.11.
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Step 3: In this step, we would like to establish the following two identities:

∑
P∈Pθ

(−1)rres(M) ξ̃Mθ = (−1)rres(MH)wG
−w

MH

− ,(A.9)

∑
P′∈PH

(−1)r(M′)[ξM′]H = [ξHwG
−w

MH

− ]H .(A.10)

Here wG
− (resp. wMH

− ) is the longest element in WG (resp. WMH ). It is an easy exer-
cise to show that wG

− ∈ WGθ (resp. wMH

− ∈ W(MH)θ ). Moreover, we have wG
− (AĜ , θ̂) =

AĜ , θ̂ (resp. wMH

− (AĜ , θ̂) = AĜ , θ̂ ), i.e., wG
− ,wMH

− ∈WΓF
Gθ .

First let us consider (A.9). Recall that the le�-hand side of (A.9) is equal to

LHS(A.9) = ∑
P∈Pθ

(−1)rres(M) ∑
w∈D̃Mθ

w ,

and we make the following observation.

Lemma A.13 If w ∈ D̃Mθ , then w ∈WΓF
Gθ .

Proof For w ∈ D̃Mθ , we have

w−1(∆res(M̂)) ⊆ R+res(Ĝ) and w−1(Aθ̂
M̂)0 ⊆ AĤ

by the deûnition. We take any σ ∈ ΓF . Since AĤ ⊆ AĜ , θ̂ , it is easy to see that σ(w) ∈
WMθw. On the other hand,

σ(w)−1(∆res(M̂)) = σ(w−1(∆res(M̂))) ⊆ σ(R+res(Ĝ)) = R+res(Ĝ).

So σ(w) ∈ DMθ . By Lemma A.2, σ(w) = w. Hence, w ∈WΓF
Gθ .

As a consequence, we can restrict the summation on the le�-hand side of (A.9) to
WΓF

Gθ . Moreover, for w ∈WΓF
Gθ , the condition that w ∈ D̃Mθ is equivalent to

R+res(M̂H) ⊆ w−1(R+res(M̂)) ⊆ R+res(Ĝ).

So

LHS(A.9) = ∑
P∈Pθ

(−1)rres(M) ∑
w∈WΓF

Gθ

R+res(M̂H)⊆w−1(R+res(M̂))⊆R+res(Ĝ)

w

= ∑
w∈WΓF

Gθ

( ∑
P∈Pθ

w(R+res(M̂H))⊆R+res(M̂)⊆w(R+res(Ĝ))

(−1)rres(M)) w

For w ∈WΓF
Gθ , we deûne

Iw = {α ∈ ∆res(Ĝ)∣nβα /= 0 for some β ∈ ∆res(M̂H)},

where wβ = ∑α∈∆res(Ĝ) nβα α. _en we have the following lemma.
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Lemma A.14 For w ∈WΓF
Gθ , Iw = w(∆res(M̂H)) if and only if

w(R+res(M̂H)) ⊆ R+res(M̂) ⊆ w(R+res(Ĝ))

for some P ∈ Pθ .

Proof If there exists P ∈ Pθ such that
w(R+res(M̂H)) ⊆ R+res(M̂) ⊆ w(R+res(Ĝ)) ,

then Iw ⊆ ∆res(M̂) ⊆ w(R+res(Ĝ)). Sow−1(Iw) ⊆ R+res(Ĝ). We claimw(∆res(M̂H)) ⊆
∆res(Ĝ). Suppose β ∈ ∆res(M̂H); since wβ ∈ R+res(M̂), we can assume that wβ =
∑α∈Iw nβα α where nβα ⩾ 0. Hence,

β = w−1(wβ) = ∑
α∈Iw

nβα (w−1α).

Since w−1α ∈ R+res(Ĝ) for α ∈ Iw , this can only happen when nβα = 0 except for
one simple root, i.e., wβ ∈ ∆res(Ĝ). _is proves our claim. As a consequence, Iw =
w(∆res(M̂H)).
Conversely, if Iw = w(∆res(M̂H)), we can let MIw be the standard Levi subgroup

of G associated with the subset of simple roots Iw . _en we have

w(R+res(M̂H)) ⊆ R+res(M̂Iw ) ⊆ w(R+res(Ĝ)) .

In view of this lemma, we can assume that Iw = w(∆res(M̂H)). Let M(w) be the
standard Levi subgroup of G associated with the subset of α ∈ ∆res(Ĝ) such that
w−1α ∈ R+res(Ĝ). It is clear that M(w) ⊇ MIw under our assumption. _en

LHS(A.9) = ∑
w∈WΓF

Gθ

Iw=w(∆res(M̂H))

( ∑
P∈Pθ

MIw ⊆M⊆M(w)

(−1)rres(M)) w

= ∑
w∈WΓF

Gθ

Iw=w(∆res(M̂H)),MIw =M(w)

(−1)rres(MIw )w

Note that rres(MIw ) = rres(MH), so

LHS(A.9) = (−1)rres(MH) ∑
w∈WΓF

Gθ

Iw=w(∆res(M̂H)),MIw =M(w)

w .

_en (A.9) follows from the following lemma.

Lemma A.15 Suppose w ∈WΓF
Gθ satisûes Iw = w(∆res(M̂H)) and MIw = M(w); then

w = wG
−w

MH

− .

Proof Since (wG
− )2 = (wMH

− )2 = 1, it is equivalent to show that wMH

− w−1 = wG
− , i.e.,

wMH

− w−1(∆res(Ĝ)) ⊆ R−res(Ĝ).
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Since w−1(Iw) = ∆res(M̂H), wMH

− w−1(Iw) ⊆ R−res(Ĝ). Since MIw = M(w),

w−1(∆res(Ĝ) − Iw) ⊆ R−res(Ĝ).

By w−1(Iw) = ∆res(M̂H) again, we have w−1(∆res(Ĝ) − Iw) ∩ Rres(M̂H) = ∅. Hence

wMH

− w−1(∆res(Ĝ) − Iw) ⊆ R−res(Ĝ).

_is ûnishes the proof.

Next let us consider (A.10). Recall that the le�-hand side of (A.10) is equal to

LHS(A.10) = ∑
P′∈PH

(−1)r(M′) ∑
w∈DM′

w(AĤ)=AĤ

w .

For w ∈ WGθ satisfying w(AĤ) = AĤ , we have that for any σ ∈ ΓF and α ∈ R(Ĥ),
w−1(α) and w−1(σH(α)) are both positive or negative, where σH is the Galois action
in LH. _is is because

w−1(α)∣AĤ = w−1(α∣AĤ) = w−1(σH(α)∣AĤ) = w−1(σH(α))∣AĤ /= 0.

So the subset of α ∈ ∆(Ĥ) satisfying w−1α ∈ R+res(Ĝ) determines a standard Levi
subgroup M′(w) of H. _en

LHS(A.10) = ∑
w∈WGθ

w(AĤ)=AĤ

( ∑
P′∈PH

M′⊆M′(w)

(−1)r(M′)) w = ∑
w∈WGθ

w(AĤ)=AĤ

w−1(∆(Ĥ))⊆R−res(Ĝ)

w .

On the other hand, the right-hand side of (A.10) is equal to

RHS(A.10) = [ξHwG
− ]H ⋅wMH

− .

One can check easily thatDHwG
− consists ofw ∈WGθ such thatw−1(∆(Ĥ)) ⊆ R−res(Ĝ).

So

RHS(A.10) = ( ∑
w∈WGθ

w(AĤ)=AĤ

w−1(∆(Ĥ))⊆R−res(Ĝ)

w)wMH

− = ∑
w∈WGθ

w(AĤ)=AĤ

w−1(∆(Ĥ))⊆R−res(Ĝ)

w .

_e last equality is due to the fact that for w ∈WGθ satisfying w(AĤ) = AĤ ,

w−1(∆(Ĥ)) ⊆ R−res(Ĝ)

if and only if

(wwMH

− )−1(∆(Ĥ)) ⊆ R−res(Ĝ).

One can show this by restricting the roots to AĤ . _en the proof is completed by
comparing the last expressions of RHS (A.10) and LHS (A.10).
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Step 4:We will establish (A.4) by using the identities (A.9) and (A.10). First, we mul-
tiply (A.9) by ξH , and compare it with (A.10):

∑
P∈Pθ

(−1)rres(M)[ξH ξ̃Mθ ]H = (−1)rres(MH)[ξHwG
−w

MH

− ]H(A.11)

= (−1)rres(MH) ∑
P′∈PH

(−1)r(M′)[ξM′]H .

_en we can use (A.5) to expand the le�-hand side:

LHS(A.11) = ∑
P∈Pθ

(−1)rres(M) ∑
P′∈PH

aM′ ,H ,Mθ [ξM′]H

= ∑
P′∈PH

( ∑
P∈Pθ

(−1)rres(M)aM′ ,H ,Mθ)[ξM′]H .

By the linear independence of [ξM′]H , we get

∑
P∈Pθ

(−1)rres(M)aM′ ,H ,Mθ = (−1)rres(MH)+r(M′)

for any P′ ∈ PH .

A.1 Generalized Aubert Involution

We would like to generalize the diagram (A.1) to (6.3), (6.7), and (6.9). Note that we
will only show the commutativity of (6.3) and (6.7) when restricting to distributions
associated with elementary parameters. In fact, they are not commutative in general.
Let G be a quasisplit symplectic or special orthogonal group. We ûx a positive integer
X0 and write x0 = (X0−1)/2. We also ûx a self-dual irreducible unitary supercuspidal
representation ρ of GL(dρ). Let Pdρ be the set of standard parabolic subgroups P of
G whose Levi component M is isomorphic to

GL(a1dρ) × ⋅ ⋅ ⋅ ×GL(a ldρ) ×G(n − ∑
i∈[1, l]

a idρ) .

_en we can deûne for π ∈ Rep(G),

inv<X0(π) ∶= ∑
P∈Pdρ

(−1)dim AM IndG
P (JacP(π)<x0).

It is clear that
[inv<X0(π)] = inv<X0([π]).

So (6.3) is equivalent to

ŜI(G)

inv<X0
��

// Î(N θ)

invθN
<X0

��

ŜI(G) // Î(N θ).
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To prove this, we can follow the argument for (A.1). For P ∈ PθN
dρ
, we specialize the

diagram (A.2) in our case:

ŜI(G)

⊕w(JacP′w )<x0
��

// Î(N θ)

(JacP)<x0
��

⊕w ŜI(M′
w) // Î(Mθ),

(A.12)

where the sum is restricted to those w satisfying P′w ∈ Pdρ . Unlike (A.2), the above
diagram may not commute in certain cases when we apply it to distributions not as-
sociated with elementary parameters. _is is the reason that we want to restrict (6.3)
(similarly (6.7)) to distributions associated with elementary parameters. By (A.12), it
suõces to show that for any P′ ∈ Pdρ ,

∑
P∈PθN

dρ

(−1)dim(AP)θ aM′ ,G ,M = (−1)dim AP′ .(A.13)

By Proposition A.1, we have

∑
P∈PθN

(−1)dim(AP)θ aM′ ,G ,M = (−1)dim AP′ .

_erefore, (A.13) follows from the simple fact that aM′ ,G ,M = 0 when P ∉ PθN
dρ

.
_e case of (6.7) is similar. For (6.9), let Pθ0

dρ
be the set of θ0-stable standard para-

bolic subgroups in Pdρ . _en we can deûne for πΣ0 ∈ Rep(GΣ0),

invθ0
<X0

(πΣ0) ∶= ∑
P∈Pθ0

dρ

(−1)dim(AM)θ0 IndGΣ0

PΣ0 (JacPΣ0 (πΣ0)<x0).

For P ∈ Pθ0
dρ
and G(n − ∑i∈[1, l] a idρ) /= SO(2), it is clear that (AM)θ0 = AM and

JacPΣ0 = J̃acPΣ0 . If G(n − ∑i∈[1, l] a idρ) = SO(2), then dim(AM)θ0 = dim(AM) − 1,
but the eòect of J̃acPΣ0 in taking the twisted character also diòers from JacPΣ0 by a
negative sign. So we have

fG( invθ0
<X0

(πΣ0)) = fG( inv<X0(πΣ0)) , f ∈ C∞c (G ⋊ θ0).
As a result, (6.9) is equivalent to

ŜI(H)

invH
<X0
��

// Î(Gθ0)

invθ0
<X0

��

ŜI(H) // Î(Gθ0).

_e rest of the argument is similar to (6.3).
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