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Summary

In QTL analysis of non-normally distributed phenotypes, non-parametric approaches have been
proposed as an alternative to the use of parametric tests on mathematically transformed data. The
non-parametric interval mapping test uses random ranking to deal with ties. Another approach is

to assign to each tied individual the average of the tied ranks (midranks). This approach is
implemented and compared to the random ranking approach in terms of statistical power and
accuracy of the QTL position. Non-normal phenotypes such as bacteria counts showing high
numbers of zeros are simulated (0—80 % zeros). We show that, for low proportions of zeros, the
power estimates are similar but, for high proportions of zeros, the midrank approach is superior to
the random ranking approach. For example, with a QTL accounting for 8 % of the total phenotypic
variance, a gain from 8 % to 11 % of power can be obtained. Furthermore, the accuracy of the
estimated QTL location is increased when using midranks. Therefore, if non-parametric interval
mapping is chosen, the midrank approach should be preferred. This test might be especially relevant
for the analysis of disease resistance phenotypes such as those observed when mapping QTLs for

resistance to infectious diseases.

1. Introduction

Most quantitative trait locus (QTL) mapping meth-
ods share a common assumption: that the pheno-
type follows a normal distribution. However, many
phenotypes of interest are not normally distributed.
Examples include: counts, such as bacteria counts
or colony-forming units in infected organs (CFU)
(Berthelot et al., 1998), faecal egg counts (FEC)
(Bouix et al., 1998), plaque-forming units (PFU) in
peripheral blood cells and number of tumors (Vallejo
et al., 1998), and somatic cell counts (SCC) (Schrooten
et al., 2000); survival times and qualitative data
(severity grades assigned upon histological examin-
ation). Traditional QTL mapping methods cannot
be directly applied in such cases. On the one hand,
ANOVA and least-squares-based methods (Haley &
Knott, 1992 ; Martinez & Curnow, 1992 ; Weller et al.,
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1990) assume that residuals within QTL genotype
classes are normally distributed. Such methods are
commonly said to be robust against non-normality.
However, the limits of this robustness in the context
of QTL mapping methods have only been explored
in specific conditions (e.g. Hackett & Weller, 1995;
Coppieters et al., 1998). On the other hand, maximum-
likelihood-based methods use the normal density func-
tion for the structure of the likelihood itself (Lander
& Botstein, 1989). Quality of estimations is therefore
very dependent on the normality of the phenotypic
distribution. One approach to circumvent the as-
sumption of normality is to apply a mathematical
transformation that will convert the trait into an
approximately normal variable. If no mathematical
transformation is available, such as for lesion scores
(e.g. Roberts et al., 1997), an alternative approach is
to use distribution-free methods. Kruglyak & Lander
(1995) described a non-parametric interval mapping
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approach based on the Wilcoxon rank-sum test that
is applicable to experimental crosses. Coppieters et al.
(1998) adapted this method to half-sib pedigrees in
outbred populations.

In a recent study, Tilquin et al. (2001) compared
three different QTL mapping methods in the context
of resistance to bacterial diseases: (1) least-squares
analysis; (2) maximum-likelihood analysis; and (3)
non-parametric mapping. When searching for QTLs
implicated in resistance to bacterial diseases, the dis-
tribution of the trait under study (bacteria counts) is
extremely skewed to the right and can present a high
frequency of zero values. From a statistical point of
view, those zero values are ties. Tilquin et al. (2001)
showed that, under these conditions, losses of power
in parametric and non-parametric methods can be ex-
plained by two distinct causes: the asymmetry of the
phenotypic distribution and the existence of ties.

Two methods of treating ties have been discussed in
the literature. The first is to order tied observations
at random (random ranking approach). The second
method is to attribute to each of the tied observations
the average of the tied ranks; that is, the mean of the
ranks that the observations would have if they were
not tied (midrank approach).

In order to maintain the null distribution of their
interval mapping test statistic, which is asymptotically
normal, Kruglyak & Lander (1995) and Coppieters
et al. (1998) choose to rank tied individuals at random.
This approach has the benefit of simplicity, because
no new theory is necessary: the variance of the test
statistic is unchanged in presence of ties. However,
when dealing with phenotypes presenting a high
number of ties, the information on ties is ignored and,
furthermore, new information is added into the data
(i.e. individuals are ordered even though they were
tied). As stated by Lehmann (1975) for the classic
Wilcoxon rank-sum test, when attributing midranks
instead of random ranking, the variance of the test
statistic now depends on the number and type of ties
observed, and the asymptotic normal distribution of
the test statistic no longer holds. Consequently, if mid-
ranks are preferred, it is necessary to modify the test
statistic of Coppieters et al. (1998) and to reformulate
its asymptotic properties.

Therefore, the aim of the present study is to obtain
a non-parametric test statistic using midranks, and
to compare it with the random ranking approach in
the presence of ties (counts data). Comparisons will
be carried out in terms of statistical power and of the
accuracy of the estimated QTL location.

2. Methods

After recalling briefly the principle of the non-
parametric interval mapping test, a modification of
the test statistic to account for high number of ties
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by attributing midranks is presented. By means of
simulations, the new interval mapping test is com-
pared to the non-parametric interval mapping test
using random ranks and to the classical regression
interval mapping test.

(1) Non-parametric interval mapping

The Wilcoxon rank-sum test was adapted to the inter-
val mapping problem by Kruglyak & Lander (1995).
The principles of this approach have been extensively
reviewed (Georges & Coppieters, 2000; Coppieters
et al., 1998). The Wilcoxon rank-sum test can easily
be applied to QTL mapping in a single half-sib pedi-
gree by considering that the treatments are either to
receive homologue A from the sire at map position p
or to receive homologue B from the sire. Kruglyak &
Lander (1995) define the statistic Yy-(p) for the back-
cross, and Coppieters et al. (1998) for outbred half-sib
pedigrees. For the sake of simplicity, only the statistic
adapted to outbred half-sib pedigrees is detailed here

N

Yi(p)=> [N+ 1=2rank](P(A)— P(B)). (1)

Jj=1

where N is the number of progeny in the half-sibship,
rank; is the rank by phenotype of progeny j and P(A4)
and P(B) are the probabilities — conditional on marker
information — that offspring j inherits homologue A
or B from its sire at the position p being considered
(equivalent to the notation P[g; 4(p)lg; r.g:r] of Co-
ppieters et al. (1998)). At the marker location, P{(A)
and P{(B) take values 0 or 1. Under the null hypo-
thesis of no QTL and for large values of N, Yg(p) can
be shown to be normally distributed with mean 0 and
variance given by Eqn 2

N3 —
va o) = (Y5 rarea-pan. @)

where Var(P(A)— P{(B)) is the expected variance of
P(A)—P(B) over all possible marker genotypes.
Therefore, one can define the statistic Zx(p)

Yk(p)
VVar(Y(p)’

which is distributed as a standard normal variable and
allows the significance of the QTL effect to be tested
at map position p. This test statistic reduces to a classic
Wilcoxon rank-sum test at fully informative markers.
As in Tilquin et al. (2001), the variance of the differ-
ences between observed values of P(A) and P(B)
was used to calculate Var(P{A)—P(B)) in Eqn 2.
To perform an across-family analysis, Coppieters
et al. (1998) proposed to square and sum the indi-
vidual Zg(p) scores over all s families to yield a y?
statistic with s degrees of freedom. This procedure

ZK(P) = ©)
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was originally proposed by Neimann-Serensen &
Robertson (1961).

(1) Modification to use midranks

In the presence of ties, the null distribution of the
ranks (and consequently of the sum of ranks) no
longer holds. The mean is unchanged but the variance
of the ranks decreases as the number of ties in the data
increases (Lehmann, 1975). To maintain the null dis-
tribution of the ranks, tied individuals can be ranked
at random. Another approach is to give to all tied
individuals the average of the tied ranks (a midrank)
(see for example Lehmann, 1975). This latter ap-
proach is somewhat more correct because no new in-
formation is added into the data: individuals with the
same phenotypic value get the same rank. However, it
has the drawback that hypotheses of the Wilcoxon
rank-sum test no longer hold (the variance of the test
statistic is changed). The null distribution of the in-
terval mapping statistic (Zx(p)) also depends on the
number and pattern of ties: the test statistic within a
single family is composed of Yx(p) divided by its ex-
pected standard deviation +/ Var(Yg(p)), which uses
the variance of ranks in its formula (data not shown).

A correction for Var(Yg(p)) is easily found by in-
troducing into Eqn 2 a correction for the variance of
ranks proposed by Lehmann (1975). Suppose that the
N observations take on e distinct values, and that d; of
the N observations are equal to the smallest value, d,
to the next smallest and so forth, and d, to the largest.
With this notation:

1

Var(Yi(p) =3 |(N*=N)= > _di(d}—1)

x Var(P(A)— P/(B)), (4)

which reduces to the previous variance formula in the
absence of ties. Therefore, one can define the follow-
ing new statistic corrected for the presence of ties

Yi(p)
VVar(Yi(p)

which is distributed as a standard normal variable and
allows a test of significance of the QTL effect at map
position p. As the previous Z,(p), this test statistic
reduces to a classic Wilcoxon rank-sum test at the
marker positions and, if squared and summed over
all s families, yields a y? statistic with s degrees of
freedom.

Z(p)= (5)

(iii) Interval mapping by regression

Both non-parametric tests (using random ranking
of ties or using midranks, hereafter referred to as
NP-RA and NP-MI, respectively) were compared
with regression interval mapping (RIM). The RIM
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approach is based on a regression of the value of the
trait on the probabilities of inheriting a given gamete
from the sire (Knott et al., 1996).

(iv) Comparison of methods
(a) Simulated dataset

We simulated the segregation of a QTL in a half-sib
design. Each of 30 sires were randomly mated to 40 un-
related dams and the trait was measured on a single
offspring per mating, totalling 1200 measured indi-
viduals. The heritability of the trait was set to 0-25 in
all simulations. Simulations were carried out under
the hypothesis of one QTL segregating (H;) and were
repeated 1000 times. 11 markers were evenly spaced
(interval 10 cM) on a 100 cM segment. The QTL was
positioned in the centre of the fourth interval (pos-
ition 35cM on a 100 cM chromosome). In all simu-
lations, the number of alleles at the markers was 16,
occurring with equal frequency. This number of alleles
was chosen to mimic a fully informative situation.
Furthermore, the dam allele was specifically coded to
be always identifiable. The number of alleles at the
QTL was equal to 2 with equal frequency (0-5). Seven
levels of heritability owing to the QTL were simulated:
0-5%, 2%, 45%, 8%, 12:5%, 18% and 24-5% of
the total phenotypic variance (i.e. 0-1, 0-:2, 0-3, 0-4,
0-5, 0:6 and 0-7 in terms of Falconer & Mackay’s
substitution effect).

The simulation process was based on an algorithm
already described by Baret ez al. (1998). A normally dis-
tributed phenotype was simulated and used as a refer-
ence. Non-normally distributed phenotypes presenting
various proportions of ties were simulated according
to an approach used in geostatistics and referred to as
normal score back transformation; see Tilquin et al.
(2001) for the rationale for this transformation.

In order to compare both non-parametric statistics
in the presence of ties, zero-inflated continuous pheno-
types were simulated with increasing proportions of
zeros (ties) — bacteria counts presenting 0%, 8-5%,
20%, 35%, 50%, 65% and 80% zeros. The distri-
bution of bacteria counts with 8-5% zeros was simu-
lated using an observed distribution from the study
of Frédéric Lantier (personal communication), who
performed an artificial infection in sheep with a vac-
cinal Salmonella strain (Tilquin et al., 2001 ; Moreno
et al., 2003). This distribution was used as a reference
for our simulations. Other distributions of bacteria
counts used for the simulations were artificially gen-
erated by suppressing zero values (yielding 0 % zeros)
or adding zero values to the original distribution of
bacteria counts with 8:5% zeros.

Because the RIM method requires normally dis-
tributed residuals, a logarithmic transformation was
applied to bacteria counts prior to analysis for this
method. A constant 1 was added to the phenotypic
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Table 1. Power (%) at the 5 % significance level and mean bias (+s.e.) of the estimated QTL location (cM)
for a range of proportions of zeros in bacteria counts and a QTL substitution effect of 0-4 (hqrL?=0-08). Power
estimates are based on 1000 replicates of each alternative (phenotype and method), using 1000 permutations

to obtain the significance level of each replicate. Heritability of the trait was 0-25

Power Mean bias
Phenotype Zeros NP-RA NP-MI log+RIM NP-RA NP-MI log+RIM
Normal 554 554 60 344064 3-54+06% 3-6+0-6%
Bacteria counts 0-0% 554 554 594 3-54+0-6¢ 3-54+0-6¢ 3-:34+0-6¢
85% 554 554 574 3-54+0-64 344067 3-1+0-6%
20-0% 544 544 56 3-8+0-64 354067 3-5+067
35:0% 494 514 534 4-8+0-7¢ 4-1+0-6“ 3:940-6¢
50-0% 384 46b 470 50+0-7¢ 394074 4-14+0-6“
65:0% 264 370 37° 6:9+40-8¢ 5:34+0-8¢ 5:7+0-7¢
80-0 % 134 24 25b 10-64+0-9¢ 6:6+0-8” 7-040-8%°

@b Comparison of power estimates and mean bias between methods within phenotype (tests for the comparison of two
proportions based on a normal approximation and Wilcoxon two-sample tests respectively for power estimates and mean
bias); values with the same superscript are not significantly different, P>0-0167 (Bonferroni correction of P> 0-05).

values prior to transformation to avoid problems
caused by the log of zero.

(b) Significance thresholds and power estimates

For both non-parametric methods (NP-RA and NP-
MI) and for RIM, significance thresholds were deter-
mined using permutations of the phenotypes (or
ranks) as suggested by Churchill & Doerge (1994).
For each simulation, 1000 permutations were carried
out of phenotypes within family. For each permu-
tation, the highest value of the test statistic over the
entire chromosome was retained to yield chromosome-
wise distributions of the maximum test statistics under
the null hypothesis and under the specific conditions
of each simulation. A simulation was declared to be
significant when its test statistic value was higher
than the 5% chromosome-wise threshold obtained
by permutations. Among the 1000 simulations, the
proportion of significant simulations was used as a
power estimate. Power estimates were considered to
be statistically different if their difference was higher
than z;_ s \/(u(1 —u)(1/ny +1/ny)), where z; 5 is
the 1—a/2 quantile of the standard N(0, 1), u is the
proportion of significant runs pooled across methods
and n; and n, are the number of runs for each method
(Snedecor & Cochran, 1967, p. 220). The signifi-
cance level of this test was adjusted for multiple
comparisons using the Bonferroni method.

To compare the accuracy of the three QTL map-
ping methods, the mean bias (+standard error (s.e.))
of the estimated QTL location was computed over the
1000 simulations. For each simulation, the estimated
QTL location was given by the position maximizing
the test statistic along the chromosome. The bias of the
estimated QTL location was computed by subtracting
35 (the simulated location of the QTL) from the
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estimated position. Mean bias values were compared
using Wilcoxon two-sample tests. Furthermore, em-
pirical 95% confidence intervals (mean, 2-5% and
97-5% percentiles) were computed for the mean
estimated QTL location.

3. Results
(1) Simulated data

Bacteria counts with various proportions of zeros were
simulated. Average percentages of zeros (mean +s.e.)
in simulated bacteria counts over the 1000 replicates
and with a QTL substitution effect of 0-4 were
8:2+0:03%, 19:6+0:4%, 347+0:8%, 49-9+1-3%,
65-1+1-:8% and 80-3+2-3%, respectively, for bac-
teria counts with 8:5%, 20 %, 35%, 50%, 65% and
80 % of zeros. When other values of QTL substitution
effect were simulated, proportions of zeros in simu-
lated bacteria counts were very similar to the pro-
portions observed with a QTL effect of 0-4 (data not
shown).

(i) Power estimates

For the three QTL mapping methods, the power was
estimated at various levels of QTL substitution effect
(a) and for increasing proportions of zeros (ties) in the
phenotype. Full results are presented for a QTL sub-
stitution effect of 0-4 (8% of total phenotypic vari-
ance) (Table 1) and summarized according to the QTL
effect and for increasing proportions of zeros by means
of power curves (Fig. 1).

Up to 20 % zeros, there were no differences in power
between the random ranking and the midranks ap-
proaches. From 35% to 80 % zeros, the advantage of
using the midranks approach increased from 1% to
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Fig. 1. Power (%) of NP-RA (a), NP-MI (b) and

log+ RIM (c) methods as a function of the QTL
substitution effect (a) and of the proportion of zeros in
bacteria counts: 0% (solid line), 8-5% (large dots), 20 %
(small dots), 35% (long dashes), 50 % (long—short dashes),
65% (long—short—short dashes) and 80 % (short dashes).

43 % according to the QTL substitution effect. For a
QTL effect of 0-4 (8 % of total phenotypic variance),
the gains in using the midranks approach for pheno-
types with 35%, 50 %, 65% and 80 % zeros were 2 %,
8%, 11% and 11 % of power respectively (gains were
significant for 50%, 65% and 80% of zeros). The
power of NP-MI was always significantly higher than
the power of NP-RA when searching for QTL with ef-
fects higher than or equal to 0-4 (8 % of total pheno-
typic variance) and for a high proportion of zeros
(50%, 65% and 80% of zeros). The gain in power
using NP-MI compared to NP-RA therefore depends
on the levels of the QTL substitution effect () and of
the proportions of zeros (ties) in the phenotype.

For phenotypes producing 80% zeros, non-
significant differences were observed between power
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estimates of NP-MI and RIM methods. For QTL
effects of 0-1, 0-2 and 0-4, the power of RIM was re-
spectively 1%, 3% and 1% higher than the power of
NP-MI, whereas, for QTL effects of 0-5, 0-6 and 0-7,
the power of NP-MI was 2%, 3% and 2% higher
than the power of RIM (Fig. 1). The power of RIM
was significantly higher (4 %) than the power of NP-
MI only when analysing the normal phenotype for
a QTL substitution effect of 0-5 (12:5% of total
phenotypic variance).

(iii) Position estimates

The mean bias (+s.e.) of the estimated QTL location
was computed over the 1000 replicates and for alterna-
tive set of simulations. Full results are presented for a
QTL substitution effect of 0-4 (8 % of total phenotypic
variance) (Table 1).

For all QTL mapping methods and for all pheno-
types and QTL effects, the bias was positive, meaning
that the estimated position tends to be biased towards
the centre of the chromosome, as already observed by
other authors (e.g. Walling et al., 2002). The mean
bias increases as the proportion of zeros in the pheno-
typic distribution increases. This increase is higher for
the non-parametric test using random ranking of ties
(NP-RA) than for the test using midranks (NP-MI).
Furthermore, for a high proportion of zeros (=50 %),
the mean bias of the NP-MI method is also smaller
than the mean bias of the RIM method, but the
differences were not significant.

The variation of the estimated QTL position ac-
cording to the QTL effect and for the three QTL map-
ping methods is depicted by use of empirical 95%
confidence intervals of the mean position estimate
over the 1000 replicates, and for three proportions of
zeros in the phenotype: 20 %, 50 % and 80 % (Fig. 2).
For QTL effects less than 0-4, the empirical 95%
confidence intervals were not depicted because they
included the entire chromosome.

There is a bias towards the centre of the chromo-
some when the QTL effect is small: for a=0-1 or 0-2,
the mean estimated QTL position is shifted to the
centre of the chromosome (50 cM) (data not shown).
This bias decreases to zero as the effect of the simu-
lated QTL increases. The size of the confidence inter-
val is also influenced by the QTL effect: the larger the
effect, the smaller the interval. For QTL effects larger
than 0-2, the mean estimated position of the QTL
using the NP-MI method was closer to the simulated
position than using the NP-RA method. This result
was especially observed for 80% of zeros (Fig. 2),
for which the mean location estimate of the NP-RA
method was more biased towards the centre of the
chromosome than the NP-MI and RIM methods. For
proportions of zeros larger than 20% and for QTL
effects larger than 0-4, the length of the confidence
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Fig. 2. Empirical 95 % confidence intervals for the mean
estimated QTL position (mean, 2-5% and 97-5%
percentiles) over the 1000 replicates as a function of the
QTL substitution effect and for the three QTL mapping
methods (NP-RA, circles; NP-MI, diamonds; log+ RIM,
squares). Three proportions of zeros in bacteria counts are
depicted: 20 % (a), 50% (b) and 80% (c). Arrowheads
indicate the location of the simulated QTL.

interval was always shorter for the NP-MI than for
the NP-RA method.

4. Discussion

In this study, we have adapted the non-parametric
QTL mapping method based on the sum of ranks
that was described previously by Kruglyak & Lander
(1995) and Coppieters et al. (1998) to the analysis of
aggregated or discontinuous phenotypes (producing a
high number of ties). This is particularly relevant for
the analysis of disease-resistance phenotypes. Indeed,
the assessment of the disease-resistance status of
animals to bacterial, parasitic or viral diseases is often
based on a counting process. The distribution of this
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type of trait is right-skewed with a long tail, and a high
frequency of zero values is often observed (e.g. Bishop
& Stear, 2001). Such a feature comes from the dif-
ficulty of appropriately choosing the moment for
sampling individuals, in order to have the most in-
formative data set. Because of the high costs of such
experiments, data cannot be thrown away and should
be analysed, even if there is a high frequency of zeros
in the phenotypic distribution.

Such distributions are neither continuous nor categ-
orical. Furthermore, because of the excess of zeros and
because of the high values taken by those counts, a
Poisson structure cannot generally be assumed. In the
context of parasitology, Wilson & Grenfell (1997) have
proposed the use of generalized linear modelling with
a negative binomial structure of errors for this type
of distribution. However, to our knowledge, no QTL
mapping methods have yet been developed with such
a feature.

By simulating increasing proportions of ties, we
showed that power and precision were both increased
using midranks instead of random ranks. For a QTL
substitution effect of 0-4 (8 % of phenotypic variance),
a gain from 8% to 11% of power can be obtained.
For higher levels of QTL effects and when there are
80 % of zeros in the phenotype, this gain can reach the
values of 27 %, 37% and 43 % respectively for QTL
substitution effects of 0-5, 0-6 and 0-7 (Fig. 1).

This gain can easily be explained by the fact that,
when there are many ties in the phenotype, new in-
formation is added in the data if ties are ranked at
random: individuals with the same value get different
ranks although they should have the same rank. As
noted by Kendall & Stuart (1979), random ranking
of ties has the merit of simplicity and needs no new
theory but obviously sacrifices information contained
in the observations and might be expected to lead
to loss of efficiency compared with the midranks ap-
proach. Other studies on the Wilcoxon rank-sum
statistic have already shown that, when random ranks
are used, the efficiency of the test is reduced (Putter,
1955; McNeil, 1967).

However, if the chance of having a group of ties in
the phenotype is very low (e.g. true continuous dis-
tributions in which ties would occur only by chance,
for example by the rounding of values), the gain by
using midranks would be very small. Indeed, the mag-
nitude of the correction factor in the variance of the
test statistic depends on the number of tied values and
on the distribution of these values in different groups.
For a given number of tied values, the contribution
to the correction factor is bigger if they are all in the
same group. This was stated by Siegel & Castellan
(1988) for the classic Wilcoxon rank-sum statistic.

For high proportions of zeros in the phenotype,
results for the non-parametric interval mapping
method using midranks were not significantly different
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from the results of the regression interval mapping
method (Knott et al., 1996), whereas results for the
non-parametric interval mapping using random
ranks were significantly lower. Even though the RIM
method performed equivalently to the newly modified
NP-MI, there are situations in which the use of a non-
parametric method should be preferred. Indeed, one
can sometimes fail to find the appropriate mathemat-
ical transformation to normalize the data. Further-
more, other assumptions (such as homogeneity of
variances) are not always fulfilled when a mathemat-
ical transformation is applied, and parametric tests
are more sensitive than non-parametric methods to
the presence of outliers.

Instead of simulating increasing proportions of
zeros, one group of ties at the end of the distribution
could have been simulated by giving the same value
to individuals with a phenotypic value higher than a
specified threshold. Because it is the size of the group
of ties that determines the correction factor of the
variance of the test statistic, this would have had the
same effect as one group of ties at the beginning of
the distribution. Another alternative would have been
to simulate one group of ties randomly positioned in
the distribution by giving the same value to individuals
having a phenotypic value in a specified window, but
such a random group of ties would have had no ob-
vious biological basis. The simulation of some small
groups of ties randomly distributed in the phenotype,
as observed when observations are rounded, was not
considered because their contribution to the correc-
tion factor of the variance of the test statistic would
have been too small. Finally, no categorical nor or-
dinal traits were simulated because there are specific
methods to deal with this type of trait (Hackett &
Weller, 1995; Visscher et al., 1996).

In conclusion, the midranks approach is easy to
implement (Fortran code is available upon request).
Therefore, in practice, if non-parametric interval
mapping is chosen, one should favour the use of
midranks to deal with tied values.
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