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Elementary Symmetric Polynomials
in Numbers of Modulus 1

Donald I. Cartwright and Tim Steger

Abstract. We describe the set of numbers σk(z1, . . . , zn+1), where z1, . . . , zn+1 are complex numbers
of modulus 1 for which z1z2 · · · zn+1 = 1, and σk denotes the k-th elementary symmetric polynomial.
Consequently, we give sharp constraints on the coefficients of a complex polynomial all of whose roots
are of the same modulus. Another application is the calculation of the spectrum of certain adjacency
operators arising naturally on a building of type Ãn.

1 Introduction, Applications, and Proof Outline

Let n, k be integers, with n ≥ 1 and 0 ≤ k ≤ n + 1. Let σk(z1, . . . , zn+1) denote the
k-th elementary symmetric function in the variables z1, . . . , zn+1:

(1.1) σk(z1, . . . , zn+1) =
∑

1≤ j1<···< jk≤n+1

z j1 z j2 · · · z jk .

Let Zn denote the set of n + 1-tuples z = (z1, . . . , zn+1) of complex numbers of mod-
ulus 1 for which z1z2 · · · zn+1 = 1. Our aim is to describe the set Σn,k of all complex
numbers of the form (1.1), where z ∈ Zn. To this end, let ϕn,k(θ) = σk(a, b, b, . . . , b),
where a = e−inθ/(n+1), b = eiθ/(n+1) and 0 ≤ θ ≤ 2π(n + 1). That is,

(1.2) ϕn,k(θ) =
(

n

k− 1

)
abk−1+

(
n

k

)
bk =

1

n + 1

(
n + 1

k

)
eikθ/(n+1)(ke−iθ+n+1−k).

Our main result is that Σn,k equals the region bounded by the curve ϕn,k. More
precisely, let Sn,k denote the set consisting of (the image of) ϕn,k, together with all the
bounded components of the complement of this image. We prove the following:

Main Theorem Σn,k = Sn,k.

The set Sn,k, in the case n = 9 and k = 3, is illustrated in Figure 1. The curve
ϕ9,3 consists of both the solid and the dotted arcs. Let Rn,k denote the radius of the
largest disk (centred at the origin) contained in Sn,k. We also let Mn,k =

(n+1
k

)
and
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ρn,k = Mn,k(n + 1− 2k)/(n + 1). We have omitted the subscripts in Figure 1.
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Corollary 1.1 Let xn+1 + c1xn + c2xn−1 + · · ·+ cnx + cn+1 ∈ C[x] be a monic polynomial
whose roots all have the same modulus. Suppose that αn+1 = cn+1. Then ck ∈ αkSn,k for
each k.

Proof If w1, . . . ,wn+1 are the roots of p(x), then |α| = |w j | for each j. Form P(X) =
p(−αX)/(−α)n+1. The roots of P(X) are z j = −w j/α, j = 1, . . . , n + 1, all of
modulus 1, and the constant term of P(X) is (−1)n+1, so that z1z2 · · · zn+1 = 1. Hence
P(X) equals

(1.3)
n+1∏
j=1

(X − z j) = Xn+1 − σ1(z)Xn + σ2(z)Xn−1 + · · · + (−1)nσn(z)X + (−1)n+1.

The coefficient of Xn+1−k in P(X) is also (−1)kck/α
k. Hence ck = αkσk(z) ∈ αkΣn,k.

The second application is what led us to the present work, but to give a detailed
proof would lead us too far from the methods of this paper. We simply give just
enough information about a locally finite thick building X of type Ãn in order to
state the result. See [Ca1] for more details. Firstly, X is a simplicial complex in which
each vertex x has a type τ (x) ∈ {0, 1, . . . , n}. It is natural to define n averaging
operators Ak, k = 1, . . . , n, on the Hilbert space of square summable functions f on
the vertex set of X. Here (Ak f )(x) is the average value of f (y) as y runs through the
set of neighbours of x of type τ (x) + k mod n + 1. There is an integer q ≥ 2 such that
the number of such neighbours y is

Nn+1,k =
(qn+1 − 1) · · · (q− 1)

(qk − 1) · · · (q− 1)(qn+1−k − 1) · · · (q− 1)
.

It has been shown in [Ca1, Ca2] that the Ak’s commute, and that they generate a
C∗-algebra isomorphic to the space of continuous functions on Zn symmetric under
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all permutations of z1, . . . , zn+1. Under this isomorphism, Ak corresponds to the
function

(1.4) (z1, . . . , zn+1) 7→ qk(n+1−k)/2

Nn+1,k
σk(z1, . . . , zn+1).

When the building X is the one associated with GL(n + 1, F), where F is a local field
having a residual field of order q [Ro, Chapter 8] (as must be the case if n ≥ 3), a
proof of this last fact can be given which uses the theory of spherical principal series
representations of GL(n + 1, F) and the associated spherical functions (see [Mac1,
Mac2]). In any case, it follows that the spectrum of the operator Ak is the image of
the function (1.4). Hence

Corollary 1.2 The spectrum of Ak is the the dilation by qk(n+1−k)/2/Nn+1,k of Sn,k.

This result has been proved for the case n = 2 (and k = 1) in [CM] and [MZ].
Here is an outline of the proof of the main theorem. We start in Section 2 by

describing Sn,k in some detail. The main result here is a lower bound for Rn,k.
If z = (z j) ∈ Zn, let Nz denote the number of distinct numbers amongst the

z j ’s, i.e., Nz = |{z1, . . . , zn+1}|. In Section 3, we show that if z ∈ Zn and σk(z) is a
boundary point of Σn,k, then Nz ≤ 2. We also show that Sn,k ⊂ Σn,k. In Section 4 we
consider σk(z) when Nz = 2. Suppose that r, s ≥ 1 are integers such that r + s = n + 1
and let z = (a(r), b(s)) be an n + 1-tuple consisting of r a’s and s b’s, where a and b are
complex numbers of modulus 1, and arbs = 1. We may assume that r ≤ s. We need
to show that σk(z) is an interior point of Σn,k if r ≥ 2 and a 6= b.

To show, for a 6= b and r, s ≥ 2, that σk(a(r), b(s)) is an interior point of Σn,k, it is
not possible to use standard open mapping theorems, because it turns out that the
appropriate Jacobian determinants are zero. So in Section 5 we derive two “openness
conditions” when k, r, s ≥ 2:

(1.5) |σk−1(a(r−2), b(s−1))| > |σk−2(a(r−2), b(s−1))|

and

(1.6) |σk−1(a(r−1), b(s−2))| > |σk−2(a(r−1), b(s−2))|,

and show that, if a 6= b and these conditions hold, then σk(a(r), b(s)) is an interior
point of Σn,k. Notice that for n, k fixed, (1.5) is just (1.6), with r replaced by r − 1.
The easy case k = 1 of the theorem is also dealt with in Section 5.

In Section 6 we finish proving the theorem. The main effort is to show, assuming
k, r ≥ 2, a 6= b, and r < s, that either the openness conditions hold, or that

(1.7) |σk(a(r), b(s))| < Rn,k.

In either case, σk(a(r), b(s)) is an interior point of Σn,k.
There are four cases for which the method described in the previous paragraph

does not work: (n, k, r) = (4, 2, 2), (6, 3, 2), (6, 3, 3) and (8, 4, 2). These are dealt
with in Section 7.
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An important tool in carrying out this program is the expression of σk(a(r), b(s))
in terms of Jacobi polynomials P(α,β)

m (z) for certain integers m, α, β and for z purely
imaginary. To treat the case r, s ≥ k and the case s ≥ k ≥ r at the same time, it is
convenient to work with generalized Jacobi polynomials P(α,β)

m (z) in which the usual
conditions α, β > −1 are not imposed [Sz, Section 4.22]; we will allow α ≤ −1.

We also use the following obvious symmetries of Σn,k:

(1.8) if w ∈ Σn,k, then e2πik/(n+1)w ∈ Σn,k and w̄ ∈ Σn,k.

For z ∈ Zn, the complex conjugate of σk(z) equals σn+1−k(z), and so we can as-
sume that k ≤ (n + 1)/2. The case n + 1 = 2k is easy, as then Σn,k is the interval
[−Mn,k,Mn,k], which is also the image of ϕn,k.

We set

ϕn,k,r(θ) = σk(a(r), b(s)) for a = e−isθ/(n+1) and b = eirθ/(n+1),

and for 0 ≤ θ ≤ 2π(n + 1). This defines a family of (rather beautiful) curves in Σn,k.
In particular, the curve ϕn,k above is ϕn,k,1.

Supposing that arbs = 1, write a = e−isθ/(n+1). Then b = e2πνi/seirθ/(n+1) for
some integer ν. Using (4.1) below, σk(a(r), b(s)) = e2πkνi/(n+1)σk(c(r), d(s)) for c =
e−isθ ′/(n+1) and d = eirθ ′/(n+1), where θ ′ = θ + 2πν/s. So by (1.8), to prove the
theorem, we need only show that ϕn,k,r(θ) is an interior point of Σn,k when r ≥ 2
and θ is not a multiple of 2π. Since ϕn,k,r(θ + 2π) = e2πkri/(n+1)ϕn,k,r(θ), and since
ϕn,k,r(−θ) is the complex conjugate of ϕn,k,r(θ), by (1.8) again we may assume that
0 < θ ≤ π.

Without loss of generality, we may assume r ≤ s. Moreover, if r = s, then
ϕn,k,r(θ) ∈ R, indeed ϕn,k,r(θ) ∈ [−Mn,k,Mn,k]. Given the results of Section 2 below,
this makes the case r = s trivial. So in what follows, we can always assume that r < s
as well as k < (n + 1)/2. It turns out that the analysis is most delicate when r is small
and k is close to (n + 1)/2.

2 The Set Sn,k

In the next result, we omit the subscripts from Sn,k, Rn,k, Mn,k, ϕn,k and ρn,k.

Lemma 2.1 For all k < (n + 1)/2, we have R ≥ max{ρ, 2
3πM}. If k > (n + 1)/3, then

we also have R > Mλ/ sin(3πλ/2) for λ = (n + 1− 2k)/(n + 1).

Proof Consider formula (1.2) forϕ(θ). Clearly |ϕ(θ)| ≤ M, with equality if and only
if θ = 2π` for some ` ∈ {0, 1, . . . , n + 1}. Write ϕ(θ) = r(θ)eiψ(θ), where r(θ) ≥ 0,
ψ(θ) ∈ R and ψ(0) = 0. Since |ke−iθ + n + 1− k| ≥ n + 1− 2k > 0, it follows that
r(θ) > 0, that r(θ) is differentiable, that we can choose ψ(θ) differentiable, and that
in this case ψ(2π`) = 2πk`/(n + 1) for ` = 0, 1, . . . , n + 1. Elementary calculations
based on the logarithmic derivative show thatψ(θ) is an increasing function, and that
r(θ) is decreasing on each interval [2π(`− 1), 2π(`− 1) + π] and increasing on each
interval [2π(` − 1) + π, 2π`]. The minimum value of r(θ) is ρ. Clearly S contains
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the disk centred at the origin and having radius ρ. Indeed, this disk is tangent to the
curve ϕ(θ) at the points θ = π, 3π, . . . .

Let g = gcd{k, n + 1}. Then the cusps of ϕ(θ) at θ = 2π` and 2π`′ coincide if
and only if ` − `′ is divisible by (n + 1)/g. So there are exactly (n + 1)/g different
cusps, at the points Me2πgmi/(n+1), m = 0, . . . , (n + 1)/g − 1. Each of the arcs traced
by ϕ(θ) as θ traverses an interval [2π(`− 1), 2π`] is traced g times. In particular, if k
divides n + 1, then there is a simple closed curve with (n + 1)/k cusps such that ϕ(θ)
traverses this curve k times. For g < k, we obtain a simple closed curve from ϕ as
follows. Starting from M, we move along the first arc ϕ(θ), 0 ≤ θ ≤ 2π, of ϕ until
we meet the `-th arc of ϕ, where ` ∈ {1, . . . , (n + 1)/g} satisfies `k ≡ g mod n + 1.
We then follow the `-th arc until it reaches the cusp Me2πgi/(n+1) = ϕ(2π`). Then we
start on the `+ 1-st arc until it meets the `′-th arc of ϕ, where `′ ∈ {1, . . . , (n + 1)/g}
satisfies `′k ≡ 2g mod n + 1. We continue this until we return to M. In Figure 2, we
indicate the first and the `-th arcs of ϕ.
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Clearly R ≥ ρ. If k ≤ (n + 1)/3, then ρ = Mλ ≥ M/3 > M(2/3π). So suppose
that k > (n + 1)/3. Referring to Figure 2, it is now clear that R = |OC |, and so
R = |OC | > |OB | = ρ/ cos

(
π(k − g)/(n + 1)

)
. Now g = gcd{k, n + 1} ≤

gcd{2k, n + 1} = gcd{n + 1 − 2k, n + 1} ≤ n + 1 − 2k = (n + 1)λ, and so, using
3πλ/2 ≤ π/2,

cos

(
π(k− g)

n + 1

)
= sin

(
π
( λ

2
+

g

n + 1

))
≤ sin

( 3πλ

2

)
≤ 3πλ

2
.

The result follows.

3 Reduction to the Case Nz ≤ 2

Let Z = Zn, defined in the introduction. Let Sn+1 denote the symmetric group on n+1
letters, and let Z/Sn+1 denote the set of orbits in Z under the natural action of Sn+1.
Let ψ : Z → Z/Sn+1 denote the natural map, and give Z/Sn+1 the quotient topology.
It is a compact Hausdorff space. We also denote by Z ′ the set of (z1, . . . , zn+1) ∈ Z
such that the z j ’s are distinct.
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Now let X denote the simplex consisting of the (x1, . . . , xn+1) ∈ Rn+1 such that
x j ≥ 0 for each j and such that

∑n+1
j=1 x j = 1. We also denote by X ′ the set of

(x1, . . . , xn+1) ∈ X such that x j > 0 for each j.

Proposition 3.1 The spaces Z/Sn+1 and X are homeomorphic, the homeomorphism
mapping Z ′/Sn+1 onto X ′.

Proof We first define f : X → Z as follows. Given x = (x1, . . . , xn+1) ∈ X, let s j =
x1 + · · ·+x j−1 for j = 1, . . . , n+1 (so that s1 = 0), and let s̄ = (s1 + · · ·+sn+1)/(n+1).
Now let

f (x) = (e2πi(s1−s̄), . . . , e2πi(sn+1−s̄)).

Clearly f (x) ∈ Z, and the map f is continuous. Let F = ψ ◦ f . Then F : X → Z/Sn+1

is continuous, and we shall now show that it is a bijection. Since X is compact and
Z/Sn+1 is Hausdorff, this will imply that F is a homeomorphism.

Let z = (z1, . . . , zn+1) ∈ Z. Fix one of the z j ’s, say z1. Then re-order the z j ’s so that
they are arranged in anti-clockwise order on the unit circle, starting from z1. We may
therefore write z j+1 = z je2πix j , j = 1, . . . , n + 1 (the subscripts are understood to be
modulo n+1 here and below), where x = (x1, . . . , xn+1) ∈ X. Let s j , j = 1, . . . , n+1,
and s̄ be as in the definition of f (x), and let f (x) = (w1, . . . ,wn+1). Then z j = ξw j

for each j, where ξ = z1e2πis̄. As both z and f (x) are in Z, we must have ξn+1 = 1.
Suppose that, from the z j ’s arranged in anti-clockwise order on the circle, we start

from z2 instead of z1. Proceeding as above, this leads to x ′ = (x2, . . . , xn, xn+1, x1) ∈
X. Let s ′j and s̄ ′ be defined from x ′ according to the definition of f (x ′). Then it is
routine to check that s ′j = s j+1 − x1 for j = 1, . . . , n, and that s ′n+1 = 1 − x1. It
follows that s̄ ′ = s̄ − x1 + 1/(n + 1), and so s ′j − s̄ ′ = s j+1 − s̄ − 1/(n + 1) for
j = 1, . . . , n and s ′n+1 − s̄ ′ = 1 − s̄ − 1/(n + 1). Hence f (x ′) = (w ′1, . . . ,w

′
n+1),

where w ′j = e−2πi/(n+1)w j+1 for j = 1, . . . , n + 1. Repeating this argument, we see

that if we start from zν+1, we get x(ν) = (xν+1, . . . , xn+1, x1, . . . , xν) ∈ X, for which
f (x(ν)) = (w(ν)

1 , . . . ,w(ν)
n+1), where w(ν)

j = e−2πνi/(n+1)w j+ν for each j. So if ξ above

equals e−2πνi/(n+1), then f (x(ν)) = (zν+1, . . . , zν+n+1). Hence F(x(ν)) = ψ(z), and so
F is surjective.

To see that F is injective, suppose that x = (x j) ∈ X and x ′ = (x ′j) ∈ X, and that
F(x ′) = F(x). So f (x ′) = (w ′j) is a permutation of f (x) = (w j). If x j = 1 for j = `

and x j = 0 for all other j, then w j = e2π`i/(n+1) for all j, and it is easy to check that
x ′ must equal x. So suppose that x and x ′ are not of this form. Pick k so that x ′k > 0.
Then w ′k+1 6= w ′k. Let ν ∈ {0, . . . , n} be the largest index such that wk+ν = w ′k. Then
as both the w j ’s and the w ′j ’s are distributed in an anticlockwise order around the
unit circle, we must have w ′j = w j+ν for each j. It follows that x ′j = x j+ν for all j. So

x ′ = x(ν), and the above calculation shows that w ′j = e−2πνi/(n+1)w j+ν . Hence ν = 0,
so that x ′ = x. So F is injective. The statement about Z ′/Sn+1 and X ′ is now clear.

Corollary 3.2 Sn,k ⊂ Σn,k

Proof We first show that if w ∈ Sn,k does not lie onϕn,k, then the winding number of
w with respect toϕn,k is positive. For by the first paragraph in the proof of Lemma 2.1,
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the winding number of 0 is k. If w is on a ray {tζ : t ≥ 0}, where |ζ| = 1, which does
not pass through the intersection of any two arcs of ϕn,k, then this ray meets ϕn,k

at exactly k distinct points, corresponding to k distinct arcs of ϕn,k. Each time the
ray crosses an arc, the winding number is reduced by exactly 1, and so the winding
number of w is positive for w ∈ Sn,k. By continuity, the w ∈ Sn,k not on ϕn,k which
lie on the finitely many remaining rays also have positive winding number.

Suppose that w ∈ Sn,k\Σn,k. The curve ϕn,k is σk◦ϕn, where ϕn : [0, 2π(n+1)]→
Z/Sn+1 is the map θ 7→ ψ

(
(e−inθ/(n+1), eiθ/(n+1), . . . , eiθ/(n+1))

)
. By Proposition 3.1,

we can contract ϕn to a point in Z/Sn+1, and so ϕn,k contracts in Σn,k to a point. So
the winding number of w is zero, contradicting the previous paragraph.

Corollary 3.3 Let W = {(w1, . . . ,wn) ∈ Cn : wk = wn+1−k for each k}. The map
σ : ψ(z) 7→

(
σ1(z), . . . , σn(z)

)
is injective Z/Sn+1 →W , and gives a homeomorphism

of Z ′/Sn+1 onto an open subset of W . If z ∈ Z ′ and n + 1 6= 2k, then σk(z) is an interior
point of Σn,k ⊂ C.

Proof As already noted, σk(z) = σn+1−k(z) for all z ∈ Z. Notice that when n = 2k−1
is odd, wk must be real for any (w j) ∈W . For either parity of n, W is homeomorphic
to Rn. If z = (z j) ∈ Z, z ′ = (z ′j) ∈ Z and σk(z) = σk(z ′) for each k, then by (1.3) the

polynomial
∏n+1

j=1(X − z j) has the same coefficients as
∏n+1

j=1(X − z ′j), and hence the
same roots. So z ′ is a permutation of z. Hence σ is injective. By the last proposition,
Z ′/Sn+1 is homeomorphic to X ′, which is homeomorphic to an open subset of Rn.
Hence by the invariance of domain theorem (see [Ll, Theorem 3.3.2], for example),
σ maps open subsets of Z ′/Sn+1 onto open subsets of W . Since the k-th projection
W → C is an open map unless n = 2k− 1, the last statement is clear.

Lemma 3.4 If z ∈ Z and σk(z) is a boundary point of Σn,k, then Nz ≤ 2.

Proof Suppose that z is a counterexample to the statement for which Nz is maximal.
By the last part of Corollary 3.3, we have 3 ≤ Nz < n + 1. Let a, b, c, . . . be the
distinct values of the z j ’s and Ma ≥ Mb ≥ · · · be their respective multiplicities. Then
Ma ≥ 2. We may suppose that, say, z1 = a, z2 = b and z3 = c are distinct. Write

σk(z) = z1z2z3σk−3(z4, . . . , zn+1) + (z1z2 + z1z3 + z2z3)σk−2(z4, . . . , zn+1)

+ (z1 + z2 + z3)σk−1(z4, . . . , zn+1) + σk(z4, . . . , zn+1)

= z1z2z3A + (z1z2 + z1z3 + z2z3)B + (z1 + z2 + z3)C + D, say,

where A = B = 0 if k = 1 and A = 0 if k = 2. Let z1z2z3 = e3iα, and write z j = eiαz ′j
for j = 1, 2, 3. Then z ′1, z ′2 and z ′3 are distinct, of modulus 1, and z ′1z ′2z ′3 = 1. So if we
let w = σ1(z ′1, z

′
2, z
′
3), then σ2(z ′1, z

′
2, z
′
3) is the complex conjugate of w, and so

σk(z) = e3iαA + e2iαw̄B + eiαwC + D.

By the above corollary, the point w is an interior point of Σ2,1, and so there is an
ε > 0 such that for all r ∈ [0, ε] and all θ ∈ R, there are distinct complex numbers
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z ′ ′1 , z ′ ′2 , z ′ ′3 of modulus 1 such that z ′ ′1 z ′ ′2 z ′ ′3 = 1 and z ′ ′1 + z ′ ′2 + z ′ ′3 = w + reiθ. Given
such numbers, let z∗j = eiαz ′ ′j for j = 1, 2, 3, and let z∗ = (z∗1 , z

∗
2 , z
∗
3 , z4, . . . , zn+1).

We get

σk(z∗) = e3iαA + e2iα(z ′ ′1 + z ′ ′2 + z ′ ′3 )B + eiα(z ′ ′1 + z ′ ′2 + z ′ ′3 )C + D

= e3iαA + e2iα(w̄ + re−iθ)B + eiα(w + reiθ)C + D

= σk(z) + r(Bei(2α−θ) + Cei(α+θ)).

Write B = ρBeiθB and C = ρC eiθC , where ρB, ρC ≥ 0. Then

(3.1) Bei(2α−θ) + Cei(α+θ) = eiβ(ρBe−i(θ+γ) + ρC ei(θ+γ))

for β = (θB + θC + 3α)/2 and γ = (θC − θB − α)/2. Suppose that ρB 6= ρC . Then as
θ increases, the expression in (3.1) traverses the rotation by β radians anticlockwise
of the ellipse x2/a2 + y2/b2 = 1, where a = ρB + ρC and b = |ρB − ρC |. So if we
let r ∈ [0, ε] vary, then r

(
e2iαBe−iθ + eiαCeiθ

)
traverses the scaling down by a factor

of ε of this ellipse and its interior. So σk(z) is an interior point of Σn,k, contrary to
assumption. So we must have ρB = ρC . This cannot happen when k = 1, as then
B = 0 and C = 1. So k ≥ 2 below.

Suppose now that ρB = ρC = ρ. Then σk(z∗) = σk(z) + 2rρeiβ cos(θ + γ). So
taking θ = π/2−γ, we have σk(z∗) = σk(z). Hence, varying r > 0, we have infinitely
many triples t∗ = (z∗1 , z

∗
2 , z
∗
3 ) of distinct numbers of modulus 1 and product z1z2z3

for which z∗ = (z∗1 , z
∗
2 , z
∗
3 , z4, . . . , zn+1) satisfies σk(z∗) = σk(z).

Let S = {z4, . . . , zn+1} and let N = |S|. Note that Nz ≤ N + 2 because z1 = a ∈ S.
There are only finitely many t∗ for which z∗1 , z

∗
2 , z
∗
3 ∈ S. In fact, there are only finitely

many t∗ for which |{z∗1 , z∗2 , z∗3} ∩ S| = 2, since z∗1 z∗2 z∗3 is constant. On the other
hand, if {z∗1 , z∗2 , z∗3} ∩ S = ∅, then Nz∗ = 3 + N > Nz, contradicting our choice of z.
Hence there is a j0 ≥ 4 such that {z∗1 , z∗2 , z∗3}∩S = {z j0} for infinitely many t∗. Since
Nz∗ = N +2 for the corresponding z∗, and since Nz ≤ N +1 if Mb > 1, we again get a
contradiction unless z is a permutation of an n + 1-tuple (a(`),w`+1, . . . ,wn+1), where
a,w`+1, . . . ,wn+1 are distinct and a(`) indicates that a occurs ` times in z. We have
` = Ma ≥ 2, and may assume that our counterexample z has ` as small as possible.
This implies that z j0 = a,= z∗1 , say. Now

σk(z) = σk(z∗) = z∗2 z∗3σk−2(a, z4, . . . , zn+1) + (z∗2 + z∗3 )σk−1(a, z4, . . . , zn+1)

+ σk(a, z4, . . . , zn+1).

Since z∗2 z∗3 remains constant and z∗2 + z∗3 changes for different such t∗, we must have
σk−1(a, z4, . . . , zn+1) = 0.

We can apply the above reasoning to (z1, z2, z3) = (a,w j1 ,w j2 ), for any distinct
j1, j2 ∈ {` + 1, . . . , n + 1}, and get σk−1(a(`),w`+1, . . . , ŵ j1 , . . . , ŵ j2 , . . . ,wn+1) = 0,
where ŵ j indicates that the term w j is omitted. Now taking any j3 ∈ {`+1, . . . , n+1}
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distinct from j1 and j2, we get

0 = σk−1(a(`),w`+1, . . . , ŵ j1 , . . . , ŵ j2 , . . . ,wn+1)

= w j3σk−2(a(`),w`+1, . . . , ŵ j1 , . . . , ŵ j2 , . . . , ŵ j3 , . . . ,wn+1)

+ σk−1(a(`),w`+1, . . . , ŵ j1 , . . . , ŵ j2 , . . . , ŵ j3 , . . . ,wn+1).

But we may interchange the roles of j2 and j3 here, and as w j2 6= w j3 , we have

σk−2(a(`),w`+1, . . . , ŵ j1 , . . . , ŵ j2 , . . . , ŵ j3 , . . . ,wn+1)

= σk−1(a(`),w`+1, . . . , ŵ j1 , . . . , ŵ j2 , . . . , ŵ j3 , . . . ,wn+1) = 0.

Starting from the second of these equations and repeating this process, we eventually
find that σk−1(a(`)) = 0, which is impossible, because σk−1(a(`)) =

(
`

k−1

)
ak−1.

4 The Case Nz = 2

Throughout this section, r, s ≥ 1 are integers such that r + s = n + 1, and a, b are
complex numbers of modulus 1, not necessarily satisfying arbs = 1. We consider an
n + 1-tuple (a(r), b(s)) consisting of r a’s and s b’s. We always assume that r ≤ s and
2k < n + 1, so that k < s. It is clear that

(4.1) σk(a(r), b(s)) =
∑
ν

(
r

ν

)(
s

k− ν

)
aνbk−ν ,

where the sum is over the ν for which 0 ≤ ν ≤ r and 0 ≤ k− ν ≤ s.
We next express σk(a(r), b(s)) in terms of the Jacobi polynomial P(α,β)

m , where
(m, α, β) = (r, k − r, s − k). Notice that if k < r then α ≤ −1, so that the usual
conditions α, β > −1 placed on Jacobi polynomials are not satisfied. But most of
the formulas in [Sz], as noted there, remain valid for arbitrary α and β. The roots of
our P(α,β)

m are always in (−1, 1]. For if r ≤ k, then the roots are distinct and in (−1, 1)
[Sz, Theorem 3.3.1], while if r > k then by [Sz, (4.22.2)], the roots of P(k−r,s−k)

r are

those of P(r−k,s−k)
k (all distinct and in (−1, 1)), together with r − k 1’s.

Lemma 4.1 Assume that a 6= b. Then

(4.2) σk(a(r), b(s)) =

(n+1
k

)(n+1
r

)bk−r(a− b)rP(k−r,s−k)
r

( a + b

a− b

)
.

Proof This is immediate from (4.1) and [Sz, (4.3.2)], replacing n, α, β and x there
by r, k− r, s− k and (a + b)/(a− b), respectively.

Note that the formula σk(a(r), b(s)) = (a − b)kP(r−k,s−k)
k

(
(a + b)/(a − b)

)
can be

derived by the same method, but we do not use this.

Corollary 4.2 Suppose that a 6= b, and write b = aeiθ and t = cot(θ/2). Then
|σk(a(r), b(s))| depends only on t. In fact, let (m, α, β) = (r, k − r, s − k), and let
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x1, . . . , xm be the zeroes of P(α,β)
m . Then ψn,k,r(t) = |σk(a(r), b(s))| is given by

ψn,k,r(t)2 =
(

n + 1

k

)2

22m

(
n + 1

m

)−2 |P(α,β)
m (it)|2

(t2 + 1)m
(4.3)

=
(

n + 1

k

)2 m∏
j=1

t2 + x2
j

t2 + 1
.(4.4)

Proof Observe that it = (1 + eiθ)/(1− eiθ) and e−iθ − 1 = 2/(it − 1). Then (4.3) is
immediate from (4.2). By [Sz, (4.21.6)], the coefficient of zm in P(α,β)

m (z) is 2−m
(n+1

m

)
,

and since the x j ’s are real, we get (4.4) from

P(α,β)
m (z) = 2−m

(
n + 1

m

) m∏
j=1

(z − x j).

Corollary 4.3 The function ψn,k,r(t) is even, and is increasing on [0,∞).

Proof Since x j ∈ [−1, 1] for all j, the derivative of the right hand side of (4.4) is
positive.

We next need some sums involving the zeroes of P(α,β)
m .

Lemma 4.4 Let x1, . . . , xm be the zeroes of P(α,β)
m . Then

m∑
j=1

x j =
m(β − α)

α + β + 2m
,(4.5)

m∑
j=1

(1− x2
j ) =

4m(α + m)(β + m)(α + β + m)

(α + β + 2m)2(α + β + 2m− 1)
,(4.6)

and

(4.7)
m∑

j=1

(x j − x3
j ) =

4m(α + β)(β − α)(α + m)(β + m)(α + β + m)

(α + β + 2m)3(α + β + 2m− 1)(α + β + 2m− 2)
.

Proof Write P(α,β)
m (x) = C(xm−σ1xm−1 +σ2xm−2−σ3xm−3 + · · · ). By [Sz, (4.21.6)],

C = 2−m
(
α+β+2m

m

)
. One finds using [Sz, (4.21.2)] that σ1 equals the right hand side

of (4.5). Since σk = σk(x1, . . . , xm) for each k, (4.5) follows. We also get

σ2 =
∑
i< j

xix j =
m(m− 1)

(
(α− β)2 − (α + β)− 2m

)
2(α + β + 2m)(α + β + 2m− 1)

,

and using
∑m

j=1 x2
j = σ2

1 − 2σ2, we get (4.6). Finally, using [Sz, (4.21.2)] again, we
get

σ3 =
m(m− 1)(m− 2)(β − α)

(
(α− β)2 − 3(α + β)− 6m + 2

)
6(α + β + 2m)(α + β + 2m− 1)(α + β + 2m− 2)
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and then using
∑m

j=1 x3
j = 3σ3 + σ3

1 − 3σ1σ2, we get (4.7).

Proposition 4.5 With notation as in Corollary 4.2, suppose that

(4.8)
r(n + 1− r)

n(t2 + 1)
≥ 2 log

( 3π

2

)
.

Then ψn,k,r(t) < Rn,k, and so σk(a(r), b(s)) is an interior point of Σn,k.

Proof Write simply ψ(t) for ψn,k,r(t), and M for Mn,k =
(n+1

k

)
. In (4.4), we write

(t2 + x2
j )/(t2 + 1) = 1− (1− x2

j )/(t2 + 1), take logarithms, use− log(1− u) ≥ u for
any u < 1, and get

−2 log

(
ψ(t)

M

)
≥ 1

t2 + 1

m∑
j=1

(1− x2
j ).

Applying (4.6) to the (m, α, β) of Corollary 4.2, we get

(4.9) − log

(
ψ(t)

M

)
≥ 1

t2 + 1

2kr(n + 1− k)(n + 1− r)

n(n + 1)2
.

Now consider the cases k/(n + 1) ≤ 1/3 and k/(n + 1) > 1/3 separately. In the
first case, we use the fact that−x(1− x)/ log(1− 2x) is a decreasing function on the
interval [0, 1/2), to see that

− k

n + 1

(
1− k

n + 1

)/
log
(

1− 2k

n + 1

)
≥ −1

3

(
1− 1

3

)/
log
(

1− 2

3

)
=

2

9 log(3)
.

Hence, using (4.8),

− log

(
ψ(t)

M

)
≥ 1

t2 + 1

4

9 log(3)

r(n + 1− r)

n

(
− log

(
1− 2k

n + 1

))
≥ 8 log(3π/2)

9 log(3)

(
− log

(
1− 2k

n + 1

))
> − log

(
1− 2k

n + 1

)
,

and so

ψ(t) < M
(

1− 2k

n + 1

)
= ρn,k ≤ Rn,k.

Now suppose that k/(n + 1) > 1/3. Write λ for (n + 1 − 2k)/(n + 1). Then by
Lemma 2.1, we need only show that ψ(t) ≤ Mλ/ sin(3πλ/2). By (4.9), this will hold
if

(4.10)
1

t2 + 1

r(n + 1− r)

n
≥

2 log
(

sin(3πλ/2)/λ
)

1− λ2
,

noting that k(n + 1− k) = (n + 1)2(1− λ2)/4. We leave it to the reader to verify that
the right hand side of (4.10) is a decreasing function of λ on (0, 1/3) and has limit
2 log(3π/2) as λ→ 0. So (4.8) implies that (4.10) holds in the case k/(n + 1) > 1/3.
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5 The Openness Conditions

To show, for a 6= b and r, s ≥ 2, that σk(a(r), b(s)) is an interior point of Σn,k, it is not
possible to use standard open mapping theorems, because the appropriate Jacobian
determinants are zero. One can see this as follows. Let z = (z1, . . . , zn+1) ∈ Zn, and
let ε j(t), j = 1, . . . , n + 1, be real valued functions defined and differentiable in an

interval about 0. Assume that
∑n+1

j=1 ε j(t) = 0 for all t and that ε j(0) = 0 for all

j. Let z(t) = (z1eiε1(t), . . . , zn+1eiεn+1(t)) and σ(t) = σk

(
z(t)
)

. It is not hard to show

that σ ′(0) = i
∑n+1

j=1 σk−1(z1, . . . , ẑ j , . . . , zn+1)z jε
′
j(0). When z = (a(r), b(s)), this

shows that σ ′(0) = i
(

aσk−1(a(r−1), b(s)) − bσk−1(a(r), b(s−1))
)

A = iξA, say, where
A =

∑r
j=1 ε

′
j(0). Thus σ ′(0) is always a real multiple of iξ.

The openness conditions we derive below can be obtained by considering σ ′ ′(0),
but it is simpler to use the next lemma, which appeals to the convexity of the arcs of
ϕn,k for n = 2 and k = 1. In fact, a routine calculation shows that
(5.1)

ϕ ′n,k(θ)ϕ ′ ′n,k(θ) =
n2

(n + 1)3

(
n− 1

k− 1

)2(
(n + 1) sin(θ) + i(n + 1− 2k)

(
1− cos(θ)

))
,

which has positive imaginary part. So any arc of any ϕn,k is convex, in the sense that
it lies to the right of the tangent vector to any point of that arc.

Lemma 5.1 Let a = eiα and b = eiβ , where α < β < α + 2π. Then for ρ > 0
sufficiently small and any t ∈ [−π, π], there are numbers z1, z2, z3, z4 of modulus 1
such that z1z2z3z4 = a2b2 and

z1 + z2 + z3 + z4 = 2a + 2b + ρei(t+(α+β)/2),

where for 0 ≤ t ≤ π we can choose z4 = b, and for−π ≤ t ≤ 0 we can choose z4 = a.

Proof For γ = (α + 2β)/3 and θ = β − α, we have 0 < θ < 2π, a = eiγe−2iθ/3,
b = eiγeiθ/3 and a + 2b = eiγϕ2,1(θ). Now ϕ ′2,1(θ) = (4/3) sin(θ/2)e−i(π+θ/6), and
sin(θ/2) > 0. By the convexity of the first arc of ϕ2,1, there is a ρθ > 0 such that
ϕ2,1(θ) + ρe−i(t+θ/6) ∈ Σ2,1 for 0 ≤ ρ ≤ ρθ and 0 ≤ t ≤ π. See Figure 3, in which we
write ϕ in place of ϕ2,1.
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If (z ′1, z
′
2, z
′
3) ∈ Z2 and σ1(z ′1, z

′
2, z
′
3) = ϕ2,1(θ) + ρe−i(t+θ/6), let z j = eiγz ′j for j =

1, 2, 3, and let z4 = a. Then z1z2z3z4 = a2b2 and, using γ − θ/6 = (α + β)/2, we get

z1 + z2 + z3 + z4 = a + eiγ
(
ϕ2,1(θ) + ρe−i(t+θ/6)

)
= 2a + 2b + ρei(−t+(α+β)/2).

Applying the above to b̄ = e−iβ and ā = e−iα in place of a and b, respectively,
for any t ∈ [0, π] and any small ρ ≥ 0, we get w1,w1,w3,w4 such that w4 = b̄,
w1w2w3w4 = ā2b̄2, and w1 + w2 + w3 + w4 = 2ā + 2b̄ + ρei(−t−(α+β)/2). So we let
z j = w̄ j for each j.

Corollary 5.2 The main theorem holds in the case k = 1.

Proof Let z ∈ Zn and let σ1(z) be a boundary point of Σn,1. Then Nz ≤ 2 by
Lemma 3.4. Now suppose that z = (a(r), b(s)), where a 6= b have modulus 1, s ≥ r ≥
1, r + s = n + 1, and arbs = 1. Replacing (a, b) by (ā, b̄) if necessary, we may assume
that a = eiα and b = eiβ , where α < β < α+ 2π. If r ≥ 2, by replacing two of the a’s
and two of the b’s in z by the z1, z2, z3, z4 of Lemma 5.1, it is clear that σ1(a(r), b(s)) is
an interior point of Σn,1. So r = 1 must hold.

Corollary 5.3 Suppose that a 6= b have modulus 1, that k, r, s ≥ 2 and r + s = n + 1,
and that arbs = 1. If (1.5) and (1.6) hold, then σk(a(r), b(s)) is an interior point of Σn,k.

Proof Writing a = eiα and b = eiβ , we may assume that α < β < α + 2π. For
ρ > 0 sufficiently small, and for t ∈ [−π, π], let z1, z2, z3, z4 be as in Lemma 5.1. Let
z = zρ(t) = (z1, z2, z3, z4, a(r−2), b(s−2)).

Suppose that 0 ≤ t ≤ π. Write z ′ = (a(r−2), b(s−1)). Then

σk(z) = z1z2z3σk−3(z ′) + σ2(z1, z2, z3)σk−2(z ′) + σ1(z1, z2, z3)σk−1(z ′) + σk(z ′),

omitting the first term on the right if k = 2. Using σ2(z1, z2, z3) = z1z2z3σ1(z1, z2, z3),
z1z2z3 = a2b, and σ1(z1, z2, z3) = 2a+b+ρei(t+(α+β)/2), and writing σk−1(z ′) = ρ1eiθ1

and σk−2(z ′) = ρ2eiθ2 , we get

σk(z) = σk(a(r), b(s)) + ρeiδ ′(ρ1eiψ ′ + ρ2e−iψ ′)

for δ ′ = (θ1 + θ2 + 2α + β)/2 and ψ ′ = t + (θ1 − θ2 − α)/2.
Similarly, writing z ′ ′ = (a(r−1), b(s−2)), σk−1(z ′ ′) = ρ3eiθ3 and σk−2(z ′ ′) = ρ4eiθ4 ,

for−π ≤ t ≤ 0 we get

σk(z) = σk(a(r), b(s)) + ρeiδ ′ ′(ρ3eiψ ′ ′ + ρ4e−iψ ′ ′)

where δ ′ ′ = (θ3 + θ4 + α + 2β)/2 and ψ ′ ′ = t + (θ3 − θ4 − β)/2.
The hypotheses (1.5) and (1.6) are that ρ1 > ρ2 and that ρ3 > ρ4. Writing

σk

(
zρ(t)

)
= σk(a(r), b(s)) + ργ(t), as t increases from −π to π, γ(t) traverses in

the anticlockwise direction a simple closed curve containing 0 in its interior which
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consists of two half ellipses (which meet at the points±ρei(α+β)/2σk−1(a(r−1), b(s−1))).
The result follows.

We now express the openness conditions in terms of Jacobi polynomials. Recalling
that (1.5) is just (1.6), with r replaced by r − 1, we shall work with (1.6). In the
notation of Corollary 4.2, (1.6) holds if and only if ψn−3,k−1,r−1(t) > ψn−3,k−2,r−1(t),
which by (4.3) is equivalent to

(5.2)
n− k

k− 1
|P(k−r,n−r−k)

r−1 (it)| > |P(k−r−1,n−r−k+1)
r−1 (it)|.

Lemma 5.4 Let a 6= b, b = aeiθ and t = cot(θ/2). Assume that t 6= 0. Then (1.6)
holds if and only if

(5.3) Re
P ′(it)

P(it)
< 0,

or, equivalently,

(5.4) −Re
(

P ′(it)P(−it)
)
> 0,

where P(z) = P(k−r−1,n−r−k)
r (z). When t = 0, (1.6) is still equivalent to (5.4), and if

P(0) 6= 0, to (5.3).

Proof Writing Pm(z) for P(k−r−1,n−r−k)
m (z), and using [Sz, (4.5.4)], we see that (5.2)

is equivalent to

(5.5)
n− k

k− 1
|(k− 1)Pr−1(it)− rPr(it)| > |(n− k)Pr−1(it) + rPr(it)|.

As the roots of Pr are real, we have Pr(it) 6= 0 if t 6= 0. So the last inequality can be
written |w− c| > |w + d|, for w = Pr−1(it)/Pr(it), c = r/(k− 1) and d = r/(n− k).
For any w ∈ C, |w − c| > |w + d| if and only if Re w < (c − d)/2. So (5.2) holds if
and only if

(5.6) Re
Pr−1(it)

Pr(it)
<

r(n + 1− 2k)

2(k− 1)(n− k)
.

By [Sz, (4.5.7)],

(n− 1)(t2 + 1)P ′r (it) = −r
(

(n− 1)it + n + 1− 2k
)

Pr(it) + 2(k− 1)(n− k)Pr−1(it).

Dividing both sides by Pr(it) and taking real parts, we get

(n− 1)(t2 + 1) Re
P ′r (it)

Pr(it)
= −r(n + 1− 2k) + 2(k− 1)(n− k) Re

Pr−1(it)

Pr(it)
.
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Hence (5.6) is equivalent to (5.3). Clearly (5.3) and (5.4) are equivalent. When t = 0,
(5.2) implies that P(0) 6= 0, because of (5.5), and the argument used above when
t 6= 0 can be applied.

Corollary 5.5 If a 6= b, b = aeiθ and t = cot(θ/2) 6= 0, then (1.6) holds if and only if

(5.7)
m∑

j=1

x j

t2 + x2
j

> 0,

where x1, . . . , xm are the zeroes of P(α,β)
m (z), for (m, α, β) = (r, k− r − 1, n− r − k).

Proof This is clear from (5.3) because P ′(z)/P(z) =
∑m

j=1 1/(z − x j).

Lemma 5.6 Let 0 ≤ α < β, m ≥ 1, and let x1 > · · · > xm denote the zeroes of P(α,β)
m .

Suppose that f is a real-valued function which is odd and increasing on [−x1, x1]. Then

m∑
j=1

f (x j) > 0.

Proof Let y1, . . . , ym denote the zeroes of the ultraspherical polynomial P(α,α)
m , also

written in decreasing order. By [Sz, (4.1.3)], if y is a zero of P(α,α)
m , then so is −y.

Since f is odd, the sum
∑m

j=1 f (y j) equals 0. But y j < x j for all j by [Sz, Theorem 6.
21.1]. So x1 > y1 ≥ 0 and xm > ym = −y1 > −x1, showing that all the x j ’s and y j ’s
lie in [−x1, x1]. Also, f (y j) < f (x j) for each j, since f is an increasing function. The
result follows.

Corollary 5.7 For any 0 ≤ α < β and m ≥ 1, let x1 > · · · > xm denote the zeroes of
P(α,β)

m . Then (5.7) holds if |t| > x1. In particular, (5.7) holds if |t| ≥ 1. In fact, the sum
is positive if |t| ≥ 0.8.

Proof Letting f (x) = x/(t2+x2), we have f ′(x) = (t2−x2)/(t2+x2)2 > 0 if |t| > |x|.
So Lemma 5.6 shows that (5.7) holds if |t| > x1, and so if |t| ≥ 1.

To prove the last statement, let

f (x) =
x

t2 + x2
− 1

3(t2 + 1)3
{(3t2 − 1)(x − x3) + (3t4 + 6t2 − 5)x}.

Then

f ′(x) =
(1− x2)2

(
5t4 + (3t2 − 1)x2 + t2

)
(t2 + 1)3(t2 + x2)2

,

which is obviously non-negative for any x if 3t2 ≥ 1. Hence
∑m

j=1 f (x j) > 0. But by

(4.5) and (4.7), the sums
∑m

j=1 x j and
∑m

j=1(x j − x3
j ) are positive. Hence (5.7) holds

for any t such that 3t2 − 1 ≥ 0 and 3t4 + 6t2 − 5 ≥ 0. In particular, this is true if
|t| ≥ 0.79561.

Corollary 5.8 Let a 6= b, b = aeiθ and t = cot(θ/2). Let 2 ≤ k, r < (n + 1)/2.
Then (1.5) holds if |t| ≥ 0.8, and (1.6) holds if |t| ≥ 0.8, except perhaps in the case
n = 2r = 2k, when it holds for |t| ≥ 1 at least.
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Proof If r < k, then applying Corollary 5.7 to (m, α, β) = (r, k− r−1, n− r−k), we
see that (5.7) and hence (1.6) holds if |t| ≥ 0.8. If r ≥ k, then by [Sz, (4.22.2)], the
zeroes of P(k−r−1,n−r−k)

r are the zeroes y1, . . . , yk−1 of P(r+1−k,n−r−k)
k−1 together with

r + 1− k 1’s. So (5.7) holds if and only if

(5.8)
r + 1− k

t2 + 1
+

k−1∑
j=1

y j

t2 + y2
j

> 0.

Assuming that r + 1 − k < n − r − k, i.e., n > 2r + 1, this is true for |t| ≥ 0.8 by
Corollary 5.7 applied to (m, α, β) = (k − 1, r + 1 − k, n − r − k). So (1.6) holds
if |t| ≥ 0.8 if n > 2r + 1. If n = 2r + 1, then r + 1 − k = n − r − k, and so the

sum
∑k−1

j=1 y j/(t2 + y2
j ) is zero (see the proof of Lemma 5.6). So again (5.8) holds if

|t| ≥ 0.8.
When n = 2r, then by [Sz, (4.1.3)], the left hand side of (5.8) equals

r + 1− k

t2 + 1
−

k−1∑
j=1

u j

t2 + u2
j

,

where u1 > · · · > uk−1 are the zeroes of P(n−r−k,r+1−k)
k−1 = P(r−k,r−k+1)

k−1 . If z1 > · · · >
zk−1 are the zeroes of P(r−k,r−k)

k−1 , then by [Sz, Theorem 6.21.1], z j < u j for each j. For
f (x) = x/(t2 + x2), f (u j) − f (z j) = f ′(ξ j)(u j − z j) ≤ (1/t2)(u j − z j) for some ξ j

between z j and u j . So by (4.5),

k−1∑
j=1

u j

t2 + u2
j

=
k−1∑
j=1

f (u j) =
k−1∑
j=1

(
f (u j)− f (z j)

)
≤ 1

t2

k−1∑
j=1

(u j − z j)

=
1

t2

k−1∑
j=1

u j =
1

t2

k− 1

2r − 1
.

This is less than (r + 1− k)/(t2 + 1) if |t| ≥ 0.8 and k < r, and if |t| ≥ 1 and k = r.
Replacing r by r − 1, (1.5) holds if |t| ≥ 0.8 for any 2 ≤ k, r < (n + 1)/2.

Lemma 5.9 The set of t > 0 such that (5.4) holds is an interval (tr,∞) for some
tr = tn,k,r ≥ 0. For any n, k (with 2 ≤ k < (n + 1)/2), at least one of the numbers tr

and tr−1 is 0, and so, given any b 6= ±a, at least one of (1.5) and (1.6) must be true.

Proof Let F(t) denote the left hand side of (5.4). That is,

F(t) = −1

2

(
P ′(it)P(−it) + P ′(−it)P(it)

)
.

Then F ′(t) =
(

P ′ ′(it)P(−it)− P ′ ′(−it)P(it)
)/

2i. Let us write

P ′(it)

P(it)
=

m∑
j=1

1

it − x j
= −

m∑
j=1

x j

t2 + x2
j

− it
m∑

j=1

1

t2 + x2
j

= A(t) + iB(t), say.
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Then P ′(it)P(−it) − P ′(−it)P(it) = 2i|P(it)|2B(t), and B(t) < 0 for all t > 0. By
[Sz, Theorem 4.2.1],

(5.9) (1 + t2)P ′ ′(it) +
(

(n + 1− 2k)− (n + 1− 2r)it
)

P ′(it) + r(n− r)P(it) = 0.

After some routine manipulations, we get

0 = (1 + t2)
(

P ′ ′(it)P(−it)− P ′ ′(−it)P(it)
)

+ (n + 1− 2k)
(

P ′(it)P(−it)

− P ′(−it)P(it)
)
− (n + 1− 2r)it

(
P ′(it)P(−it) + P ′(−it)P(it)

)
= 2i[(1 + t2)F ′(t) + (n + 1− 2k)|P(it)|2B(t) + (n + 1− 2r)tF(t)].

Thus, for any t > 0,

(5.10) (1 + t2)F ′(t) > −(n + 1− 2r)tF(t).

Suppose that F(t ′) > 0 and that F(t ′ ′) < 0 for some t ′ ′ > t ′ ≥ 0. Then if the
minimum of F(t) on [t ′, t ′ ′] occurs at t = t0, then F(t0) ≤ F(t ′ ′) < 0, and so
F ′(t0) > 0 by (5.10). This is clearly impossible, and so the first statement is proved.

By [Sz, (4.21.7)], P ′(z) = 1
2 (n− r)P(k−r,n+1−r−k)

r−1 (z), a constant times the polyno-
mial corresponding to P(z), in which r has been replaced by r − 1. It follows that, if
t 6= 0, (1.5) holds if and only if

Re
P ′ ′(it)

P ′(it)
< 0,

Suppose that tr > 0 and tr−1 > 0. Let 0 < t < tr−1, tr. Then Re P ′(it)/P(it) ≥ 0 and
Re P ′ ′(it)/P ′(it) ≥ 0. So Re P(it)/P ′(it) ≥ 0 too. But this is impossible, because
(5.9) implies that

(1 + t2) Re
P ′ ′(it)

P ′(it)
+ (n + 1− 2k) + r(n− r) Re

P(it)

P ′(it)
= 0.

It is clear that the left hand side of (5.4) has the form

(5.11) c0 + c1t2 + · · · + cr−1t2(r−1).

Although we have not proved it in general, we have observed that for small r, the
coefficients c1, . . . , cr−1 are all positive. When this holds, the first part of Lemma 5.9
is clear. For (5.4) holds for all t if and only if c0 > 0. So tr = 0 when c0 > 0. If c0 ≤ 0,
tr is the unique t ≥ 0 such that the expression in (5.11) is zero. In this case,

(5.12) cr−1t2(r−1)
r ≤ c1t2

r + · · · + cr−1t2(r−1)
r = |c0|

gives a useful estimate for tr.
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6 Proof of the Main Theorem

Recall that our method for proving the main theorem is to show that if a, b are distinct
numbers of modulus 1 such that arbs = 1, and if k, r ≥ 2, then either (1.7) or both
(1.5) and (1.6) hold. In either case, σk(a(r), b(s)) is an interior point of Σn,k.

We proved the theorem in the case k = 1 in Corollary 5.2, and so from now on,
we assume that k ≥ 2.

Proposition 6.1 Suppose that a, b are distinct numbers of modulus 1 such that arbs =
1. Suppose that 2 ≤ k, r < (n + 1)/2 and that (n, k, r) is not (4, 2, 2), (6, 3, 2), (6, 3, 3)
or (8, 4, 2). Then either (1.7) or both (1.5) and (1.6) hold. Thus σk(a(r), b(s)) is an
interior point of Σn,k.

Proof As usual, write b = aeiθ and let t = cot(θ/2). Suppose first that r ≥ 9 and
n > 2r. Then (4.8), and so (1.7), holds for |t| ≤ 0.8. By Corollary 5.8, both (1.5) and
(1.6) hold if |t| ≥ 0.8.

Next suppose that r ≥ 12 and n = 2r. Then (4.8), and so (1.7), holds for |t| ≤ 1.
By Corollary 5.8, both (1.5) and (1.6) hold if |t| ≥ 1. The cases n = 2r, r = 9, 10, 11,
are dealt with in Lemma 6.2 below, thereby completing the proof in the case r ≥ 9.

For r = 6, 7, 8, Corollary 5.8 still applies, but (4.8) holds for all |t| ≤ 0.8 and
n > 2r only once n ≥ 33, n ≥ 22 and n ≥ 20, respectively. The cases (i) r = 6,
12 ≤ n ≤ 32; (ii) r = 7, 14 ≤ n ≤ 21 and (iii) r = 8, 16 ≤ n ≤ 19 are dealt with in
Lemma 6.2 below, completing the proof of the proposition in the case r ≥ 6.

We now deal with the cases r = 2, 3, 4, 5. The parameter q = n + 1− 2k is useful
here. For r = 3, 4, 5, our method involves obtaining estimates for the tr of Lemma 5.9
of the form tr ≤ Cr/

√
n for small constants Cr.

The Case r = 2 In this case, the openness conditions (1.5) and (1.6) are (5.4) for
r = 1 and r = 2, respectively. When r = 1, the left hand side of (5.4) is the positive
constant q(n− 1)/4, and so (1.5) is automatically satisfied. Taking r = 2 in (5.4) and
dividing by q(n− 2)/32, we find that condition (1.6) means that

(6.1) (n− 1)(n− 2)t2 + q2 − (n− 1) > 0.

If q2 > n − 1, (6.1) is true for all t , and so both (1.5) and (1.6) hold for all t , and
so σk(a(r), b(s)) is an interior point of Σn,k for all a 6= b. Also, t2 = 0 in this case.

If q2 ≤ n− 1, (6.1) holds if and only if |t| > t2, where t2 is the positive square root
of
(

(n− 1)− q2
)/(

(n− 1)(n− 2)
)

. Write ψ(t) in place of ψn,k,2(t), in the notation
of Corollary 4.2. By Corollary 4.3, to prove the theorem when r = 2, it is enough to
show that ψ(t2) < Rn,k. Taking r = 2 in (4.3), and writing M =

(n+1
k

)
as usual, we

find that
q2

(n + 1)2
− ψ(t)2

M2
=

(
(n + 1)2 − q2

)(
q2 − (nt2 + 1)2

)
n2(n + 1)2(t2 + 1)2

,

which, when t = t2, equals(
(n + 1)2 − q2

)
(n2q2 − 4(n− 1)2)

n2(n + 1)2
(

(n− 1)2 − q2
) ,
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which is obviously positive for all q ≥ 2. Hence ψ(t2) < Mq/(n + 1) = ρn,k ≤ Rn,k

for q ≥ 2, by Lemma 2.1. When q = 1, we see from (4.3) that

ψ(t2)2

M2
=

4(n2 + n− 1)

n2(n + 1)2
.

This is less than (2/3π)2 for all n ≥ 10, and so again ψ(t2) < Rn,k in those cases.
Finally, if 4 ≤ n ≤ 9, and q = 1, the possibilities are (n, k) = (4, 2), (6, 3) and

(8, 4). Routine numerical calculations show that Rn,k = 2.5, 8.15565 and 28.54762,
respectively. On the other hand, ψ(t2) equals 4.359, 10.672 and 29.492. So the cases
(n, k) = (4, 2), (6, 3) and (8, 4) need to be treated by different methods (see Section 7
below).

Notice that for all n, k we have shown that t2 ≤ 1/(n−1)1/2. For either q2 > n−1,
in which case t2 = 0, or q2 ≤ n−1, in which case t2

2 = (n−1−q2)
/(

(n−1)(n−2)
)
≤

(n− 2)
/(

(n− 1)(n− 2)
)

= 1/(n− 1).

The Case r = 3 For r = 3, dividing the left hand side of (5.4) by q(n − 3)/768, we
get the condition

(n− 1− q2)(3n− 5− q2) + 2(n− 2)
(

(n− 4)q2 + 2(n− 1)
)

t2(6.2)

+ (n− 1)(n− 2)2(n− 3)t4 > 0.

The coefficients of t2 and t4 being positive, we see that this holds for all t if and only
if q2 < n− 1 or q2 > 3n− 5, in which case t3 = 0. If n− 1 ≤ q2 ≤ 3n− 5, then t3 is
the t ≥ 0 such that the expression on the left in (6.2) equals 0. By (5.12),

(n− 1)(n− 2)2(n− 3)t4
3 ≤

(
q2 − (n− 1)

)
(3n− 5− q2) ≤ (n− 2)2,

and so t4
3 ≤ 1

/(
(n− 1)(n− 3)

)
< 1/(n− 3)2. So t3 ≤ 1/(n− 3)1/2 for any n, k.

Notice that (4.3) implies that for (m, α, β) = (r, k−r, n+1−k−r), and M =
(n+1

k

)
,

ψn,k,r(t) ≤ M|p(α,β)
m (it)|,

where p(α,β)
m is the monic polynomial obtained from P(α,β)

m by dividing by

2−m
(
α+β+2m

m

)
. Taking r = 3, we get p(α,β)

3 (x) = x3 − σ1x2 + σ2x − σ3, where σ1 =
3q/(n+1), σ2 = −3(n+1−q2)big/

(
n(n+1)

)
and σ3 = −q(3n+1−q2)

/(
n(n2−1)

)
.

First assume that 1 ≤ q2 < n − 1. Then t3 = 0 and t2 ≤ 1/(n − 1)1/2. Using
1 ≤ q2 < n− 1, it is routine to show that |σ1| ≤ 3/(n− 1)1/2, |σ2| ≤ 3/(n− 1) and
that |σ3| ≤ 2/(n− 1)3/2. Hence for |t| ≤ t2 = max{t2, t3},

|p(α,β)
3 (it)| ≤ 9/(n− 1)3/2.

This is less than 2/3π < Rn,k/M for all n ≥ 14. On the other hand, if |t| >
max{t2, t3}, then both (1.5) and (1.6) both hold.
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Suppose next that n − 1 ≤ q2 ≤ 3n − 5. Then max{t2, t3} = t3 < 1/(n − 3)1/2.
Using n − 1 ≤ q2 ≤ 3n − 5, we find that |σ1| ≤ 33/2/(n − 3)1/2, |σ2| ≤ 6/(n − 3)
and |σ3| ≤ 2/(n− 3)3/2. Hence for |t| ≤ t3,

|p(α,β)
3 (it)| ≤ (9 + 33/2)/(n− 3)3/2,

which is less than 2/3π for all n ≥ 20. If |t| > t3, then both (1.5) and (1.6) hold.
Thus the theorem is proved for r = 3 and all n ≥ 20. The cases 6 ≤ n ≤ 19 are

dealt with in Lemma 6.2 below, except for the case (n, k, r) = (6, 3, 3).

The Case r = 4 Taking r = 4 in (5.4), and dividing by q(n − 4)/36864, we get the
condition c0 + c1t2 + c2t4 + c3t6 > 0, where

c0 =
(

q2 − (3n− 5)
)(

q4 − 2(3n− 7)q2 + 3(n− 1)(n− 3)
)
,

c1 = 3(n− 3)
(

(3n3 − 22n2 + 41n− 22)− 2(n2 − 9n + 10)q2 + (n− 6)q4
)
,

c2 = 3(n− 4)(n− 3)(n− 2)
(

(n2 − 1) + (n− 5)q2
)

and

c3 = (n− 1)(n− 2)2(n− 3)2(n− 4).

Since n ≥ 2r = 8, it is clear that c1, c2, c3 > 0. Now write

c0 =
(

q2 − (3n− 5)
)

(q2 − x2)(q2 − x1)

for x1, x2 = 3n − 7 ±
√

2(3n2 − 15n + 20). Notice that x1 < n − 1 < 3n − 5 < x2.
So c0 > 0 if q2 > x2 and if x1 < q2 < 3n − 5, in which case (1.6) is true for all t ,
and t4 = 0. If c0 ≤ 0, t4 is the solution t ≥ 0 of c0 + c1t2 + c2t4 + c3t6 = 0. We now
estimate t4 using (5.12).

First, suppose that 3n − 5 ≤ q2 ≤ x2. Then |c0| =
(

q2 − (3n − 5)
)

(x2 − q2) ·
(q2−x1) ≤

(
q2−(3n−5)

)(
(x2−x1)/2

) 2 ≤
(

(x2−x1)/2
) 3

=
(

2(3n2−15n+20)
) 3/2

.

So by (5.12), t6
4 ≤

(
2(3n2 − 15n + 20)

) 3/2
/c3 < 63/2/(n− 3)3.

Next, suppose that q2 ≤ x1. For such q, |c0| is maximized by taking q = 1, and
so |c0| ≤ 9(n − 2)2(n − 4). Thus by (5.12), t6

4 ≤ |c0|/c3 ≤ 9
/(

(n − 1)(n − 3)2
)
<

63/2/(n− 3)3.
Hence we have the estimate t4 < 61/4/(n − 3)1/2 in all cases. Since t3 ≤ 1/(n −

3)1/2, we have max{t3, t4} < 61/4/(n − 3)1/2 in all cases. So if |t| > 61/4/(n − 3)1/2,
then both (1.5) and (1.6) hold.

Now (4.8) holds at t = 61/4/(n − 3)1/2 once n ≥ 24. So the theorem is proved
when r = 4 and n ≥ 24. The cases 8 ≤ n ≤ 23 and r = 4 are dealt with in Lemma 6.2
below.

The Case r = 5 Taking r = 5 in (5.4) and dividing by q(n− 5)/2949120, we get the
condition c0 + c1t2 + c2t4 + c3t6 + c4t8 > 0 for

c0 =
(

q4 − 2(3n− 7)q2 + 3(n− 1)(n− 3)
)(

q4 − 10(n− 3)q2 + 15n2 − 80n + 89
)
,
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c1 = 4(n− 4)×
[

(n− 8)q6 − 2(3n2 − 32n + 49)q4

+ (15n3 − 180n2 + 529n− 452)q2 + 6(n− 1)(n− 3)(5n− 9)
]
,

c2 = 6(n− 3)(n− 4)
[

(n− 6)(n− 7)q4 + 10(n− 1)(n− 6)q2

+ (n− 1)(5n3 − 50n2 + 159n− 138)
]
,

c3 = 4(n− 2)(n− 3)(n− 4)2(n− 5)
[

(n− 6)q2 + 2n(n− 1)
]
,

and
c4 = (n− 1)(n− 2)2(n− 3)2(n− 4)2(n− 5).

It is obvious that c2, c3, c4 ≥ 0. To see that c1 > 0, note that c1 = 4(n − 4) f (q2) for
a cubic polynomial f (x). The quadratic f ′(x) has negative discriminant, and so f (x)
is an increasing function. Since f (0) = 6(n−1)(n−3)(5n−9) > 0, f (q2) is positive
for all q.

Next notice that c0 is the product of two quadratics in q2. If x1 < x2 are the
roots of x2 − 2(3n − 7)x + 3(n − 1)(n − 3) = 0, and x3 < x4 are the roots of
x2− 10(n− 3)x + 15n2− 80n + 89 = 0, one finds that x1 < x3 < x2 < x4. So c0 > 0,
and therefore t5 = 0, unless x2 ≤ q2 ≤ x4 or x1 ≤ q2 ≤ x3. We now estimate t5 in
these last cases.

If x2 ≤ q2 ≤ x4, then |c0| = (q2−x1)(q2−x2)(q2−x3)(x4−q2). Since x3 < q2 ≤ x4,

the product (q2 − x3)(x4 − q2) is at most
(

(x4 − x3)/2
) 2

= 2(5n2 − 35n + 68) ≤
10(n− 3)2. Also,

(x3− x1)(x3− x2) = 4(n− 4)(2(n− 5) +
√

2(5n2 − 35n + 68)) ≤ 24(n− 3)(n− 4).

Hence |c0| ≤ 240(n− 3)3(n− 4) < 44(n− 3)3(n− 4). By (5.12), t8
5 < 44/(n− 5)4,

so that t5 < 2/(n− 5)1/2.
Now suppose that x1 ≤ q2 ≤ x3. Then |c0| = (q2− x1)(x2− q2)(x3− q2)(x4− q2).

Now (q2− x1)(x2− q2) ≤
(

(x2− x1)/2
) 2

= 2(3n2− 15n + 20) < 6(n− 2)2 because

q2 is between x1 and x2. Also, (x3− q2)(x4− q2) ≤ (x3− x1)(x4− x1) = 4(n− 4)
(

2 +√
2(3n2 − 15n + 20)

)
≤ 12(n − 1)(n − 4). So |c0| ≤ 72(n − 1)(n − 2)2(n − 4). As

72 < 44, (5.12) again implies that t5 < 2/(n− 5)1/2.
Since t4 ≤ 61/4/(n− 3)1/2 < 2/(n− 5)1/2, we have max{t4, t5} < 2/(n− 5)1/2 in

all cases. So if |t| ≥ 2/(n− 5)1/2, then both (1.5) and (1.6) hold for r = 5.
Now (4.8) holds for r = 5 and t = 2/(n − 5)1/2, provided that n ≥ 20. This

completes the proof of the case r = 5 when n ≥ 20.

The Case n ≤ 32 The above steps have dealt with the proof of the proposition with
the exception of some cases for which n ≤ 32 and r ≥ 3. The next statement deals
with the remaining cases:

Lemma 6.2 Suppose that a 6= b, b = aeiθ and t = cot(θ/2). If n ≤ 32, 2 ≤ k <
(n + 1)/2, 3 ≤ r < (n + 1)/2 and (n, k, r) 6= (6, 3, 3), then at t = 2/5, (1.5), (1.6) and
(1.7) all hold. Hence for any t either (1.7) or both (1.5) and (1.6) hold.
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Proof We wrote a very simple computer program which verified the first statement.
It is based on (4.3) and (5.2) and the estimate for Rn,k in Lemma 2.1. We can use
the overestimate 22/7 for π, and work entirely with rational numbers. There are
2029 triples (n, k, r) to check (though many of these were eliminated in the above
steps, and in fact, fewer than 500 cases remain). The second statement follows from
Lemma 5.9 and from the first statement in Corollary 4.3.

7 The Last Four Cases

As we have seen, the method of the last section does not apply to the cases (n, k, r) =
(4, 2, 2), (6, 3, 2), (6, 3, 3) and (8, 4, 2). In these cases, it is enough to show that
ϕn,k,r(θ) ∈ Sn,k for 0 < θ ≤ π (corresponding to the first half of the first arc of
ϕn,k,r).

In Figure 4, the solid curve is the boundary of S4,2, made up of parts of ϕ4,2. The
dotted curve is ϕ4,2,2. We have indicated by an arrow on its first arc the direction in
which ϕ4,2,2 is traversed. In this case, the openness conditions fail on this arc exactly
when |t| ≤ t2 = 1/

√
3, which corresponds to 2π/3 ≤ θ ≤ 4π/3. In the figure, these

points are those between the two bold dots. We need only show that ϕ4,2,2(θ) ∈ S4,2

if 2π/3 ≤ θ ≤ π.
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While it is obvious from this figure that (the first half of the first arc of) ϕ4,2,2 lies in
S4,2, one can give a more formal proof along the following lines. Let A = ϕ4,2(π) =
2eπi/5 and B = Ā. Consider the tangents to ϕ4,2 at A and B. Let D = (5/2)eπi/5

be the point where the first and third arcs of ϕ4,2 meet, and let E = D̄. Consider
the quadrilateral Q which is bounded by the above two tangent lines and by the lines
through O and D and through O and E. Now Q ⊂ S4,2 because of the convexity of
the arcs of ϕ4,2. Using (4.2), one can calculate the principal argument of ϕ4,2,2(θ),
and show that, for 0 ≤ θ ≤ π, it is in modulus at most π/5. This implies that
ϕ4,2,2(θ) lies in the sector bounded by the rays through O and D and through O and
E. More direct calculations show that ϕ4,2,2(θ) lies between the tangents at A and at
B provided that π/2 ≤ θ ≤ π. Hence ϕ4,2,2(θ) ∈ Q ⊂ S4,2 if π/2 ≤ θ ≤ π. We omit
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further details. See Figure 4b.
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Similar considerations apply for the other three cases, which we illustrate in the next
two figures. In Figure 5, we indicate only one arc of each of ϕ6,3,2 and ϕ6,3,3.
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In Figure 6, we indicate S8,4 and all arcs of ϕ8,4,2.
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Università di Sassari
via Vienna 2
07100 Sassari
Italy

https://doi.org/10.4153/CJM-2002-008-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-008-x

