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Special points on the product of two modular curves
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Abstract. We prove, assuming the generalized Riemann hypothesis for imaginary quadratic fields,
the following special case of a conjecture of Oort, concerning Zarsiski closures of sets of CM pointsin
Shimura varieties. LeX be an irreducible algebraic curved?, containing infinitely many points of
which both coordinates ageinvariants of CM elliptic curves. Suppose that both projections ffom

to C are not constant. Then there is an integee> 1 such thatX is the image, under the usual map,

of the modular curv&p(m). The proof uses some number theory and some topological arguments.
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1. Introduction

It is well known that thej-invariant establishes a bijection betwe€rmand the

set of isomorphism classes of elliptic curves o@ersee for example [10]. The
endomorphism ring of an elliptic curve over C is eitherZ or an order in an
imaginary quadratic extension@f in the second cadi is said to be a CM elliptic
curve (CM meaning complex multiplication). A complex numbeis said to be

CM if the corresponding elliptic curve ovet is CM. A point (21, ) in C? is
defined to be CM if botlx; andz, are CM. The aim of this article is to determine

all irreducible algebraic curves in C? containing infinitely many CM points. In
other words, we want to determine all irreducible polynomfais C[z1, z2] that
vanish at infinitely many CM points. The motivation for doing this comes from
a conjecture of Frans Oort (see [7, Chapter IV, Sect. 1] for a precise statement),
saying roughly that the irreducible components of the Zariski closure of any set of
CM points in any Shimura variety are sub Shimura varieties. For the irreducible
components of dimension zero this is trivially true. For those of dimension one
Oort’'s conjecture was in fact stated earlier by Yves Ands a problem in [2,
Chapter X, Sect. 1].

We viewC? as the Shimura variety which is the moduli space of pairs of elliptic
curves. Then the irreducible sub Shimura varieties of dimension one are the fol-
lowing: C x {z2} with z2 a CM point,{z1} x C with 21 a CM point, or the image
in €2, under the usual map, of the modular culggn) for some integen, > 1.
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Recall that, fom > 1, Yp(n) is the modular curve classifying elliptic curves with a
cyclic subgroup of orden, or, equivalently, cyclic isogenies of degredetween
elliptic curves. The usual map froip(n) to C? sends an isogeny to its source
and target, i.e¢: B1 — Epis sentto(j(E1), j(E2)). We will prove the following
result, giving evidence for the conjecture just mentioned.

THEOREM 1.1 Assume the generalized Riemann hypothesis for imaginary quad-
ratic fields. LetC be an irreducible algebraic curve ii? containing infinitely
manyCM points and such that neither of its projectionstas constant. The@

is the image oty(n) for somen > 1.

REMARK 1.2. In the proof of Theorem 1.1 we will see that the state of the art in
analytic number theory is such that the Riemann hypothesis is ‘almost not need-
ed’ (see Remark 5.4). It is clear that Theorem 1.1 implies similar statements for
curves contained in the product of two modular curves. In particular, if one assumes
GRH, Oort’s conjecture is true for curves contained in the product of two modular
curves. O

REMARK 1.3. Ben Moonen has proved Oort's conjecture for the sets of CM
points in moduli spaces of abelian varieties such that there exists a prime number
p at which all the CM points are canonical in the sense that they have an ordi-
nary reduction of which they are the Serre-Tate canonical lift (see [7, Chapter IV,
Sect. 1]). Yves Andr has proved the conclusion of Theorem 1.1 with the Riemann
hypothesis replaced by the assumption that the Zariski closué iof Pt x P!
meets{oo} x C only in points(co, z2) with z a CM point (see [1]). In the case
whereC' meets the union ofoco} x C andC x {oo} only in oo x oo he has a very
simple proof. O

The idea of the proof of Theorem 1.1 is the following. We use the Galois action on
the set of CMj-invariants to show that for all but finitely many CM poirits;, x7)

onC the CMfields ofr; andz, coincide. Then we consider intersectiongbivith

its images under certain Hecke operators. The Riemann hypothesis impli€s that
is actually contained in some of these images. To finish, we consider an irreducible
componentX of the inverse image of' in H x H, the product of the complex
upper half plane by itself, and show that the stabilizeKah SLy(R) x SLz(R) is

of the kind it should be.

REMARK 1.4. At the time this article came back from the referee (June 1997),

Yves Ande succeeded in proving the conclusion of Theorem 1.1 unconditionally,
using a result of Masser on Diophantine approximation ang-fia@ction. O
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2. Some facts about CM elliptic curves

Before we start with the proof of Theorem 1.1, we need to recall some facts about
CM elliptic curves. These facts can be found for example in [10, Appendix C,
Sect. 11]. First of all, CM elliptic curves are defined ogetet K be an imaginary
quadratic extension @, with a given embedding iQ@. LetOx C K be the ring of
integers. Every subring @¥ of finite index is of the fornOg ; .= Z + fOx fora
unique integef > 1. Forf > 1letSk ; be the set of isomorphism classes of pairs
(E, ), with E an elliptic curve ove anda: O,y — EndE) an isomorphism

of rings inducing the given embedding Af into Q via the action on Li€E). The
groupG i = Gal(Q/K) acts onSk ;. But also the Picard group Ri0Ox ;) acts

on Sk by the following formula

(Ea [L]) = B ®OK,f L7 (21)

whereL is an invertibleO x ;-module, L] its equivalence class a@l@oK,f L the
cokernel of the map: E? — E? if p: O% ; — O% ; has cokerneL (view p as a
matrix with coefficients irOk ). If we choose an embedding @fin C and write
E(C) asC modulo a lattice\, then(E ®o¢,. , L)(C) is the quotient o ®¢, , L

by A ®oy , L. The actions by7, and Pi¢Oxk,r) on Sk, commute.

PROPOSITION 2.2The sefSk fis aPig(Og, r)-torsor, i.e., the action oPic(Og, r)
is free and has exactly one orbit

Proof. (Sketch.) For everyE, «) andA as above, Eng, ,(A) = Ok y. More-
over,Og, ris of the formz[z]/(g). It follows thatA is an invertibleO i ;-module O

It follows thatG i acts onSk ¢ via a morphisnG' g — Pic(Og, r). This morphism

is surjective and unramified outsigie The Frobenius element at a maximal ideal
m not containingf is the elemenfmn]~! of Pic(Ok ;) (all this can be seen from
deformation theory, using the theorem of Serre—Tate, or from class field theory).
Let Hy  be the Galois extension @f corresponding to this quotient R@y r)

of G k. We remark that we havH i s = K (j(£)) for all (£, o) in Sk ;.

3. The two CM fields are almost always equal

LetCc C €2 be asin Theorem 1.1 (i.e., it is irreducible, it contains infinitely many
CM points and its two projections t© are not constant). Since all CM points have
coordinates imQ, C¢ is defined ovel, in the sense that it is the locus of zeros of
an irreducible polynomial, call if, with coefficients inQ. It will be convenient
for us to work with a curve defined ové), hence we leCC be the union of the
finitely many conjugates af’-. ThenC'is defined by the produdt of the Galois
conjugates off, if we take f such that it has a nonzero coefficient@n Let d;
andd, be the degrees af with respect to the second and first variable. THen

is the degree of théth projection fromC to C. For z in C we will denote the
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endomorphism ring of the corresponding elliptic curve by @ndFor a CM point

z in C we will call Q ® Endz) the CM field ofz. Note that the isogeny class of
a CM elliptic curve over consists of all elliptic curves with the same CM field.
We want to prove thaf' is the image inC? of someYy(n). Our first step in this
direction is the following proposition.

PROPOSITION 3.1LetC be as above. For all but finitely many CM poifis, )
in C the CM fields ofr; andz, coincide

Proof. Suppose thatz1, 22) is a CM point inC'(Q) such that the two CM fields
K; and K3 are different. Sinc€’ is defined ove, Q(z1,z2) has degree at most
dy overQ(z1) and degree at mosgi overQ(z2). Let L be the field generated l#y;
andK>, andM the intersection of. (1) andL(x2). Letus write Endz;) = Ok, 1,
fori = 1 and 2. The field.(z;) is an abelian Galois extension bf of degree at
least|Pic(Ok;.f,)|/2. The degrees df(x1, z2) overL(z,) andL(z1) are equal to
those ofL(z1) andL(xz3) over M, respectively. This gives us:

Pic(Ox, 1) < 2d;[M : L). (3.2)

We will now work to get a suitable upper bound {ét : L]. The group G4IL(z1,
x2)/Q) is an extension of GalL/Q) by the abelian group G@l(z1,z2)/L).
Hence the action of GéL(x1, z2)/Q) on Gal L(z1, z2)/L) by conjugation factors
through an action of GaL/Q). In the same way, GélL/Q) acts on the two groups
Gal(L(z;)/L), which we view as subgroups of G&l;(z;)/K;). Now GalL/Q)

is equal to GdlK1/Q) x Gal(K2/Q), hence equal t@ /2% x Z/2Z. The action
of Gal(L/Q) on Gal L(z;)/L) factors through G&K,/Q) and as such coincides
with the restriction of the action of Ga@k’; /Q) on Gal K (x;)/ K;) = Pic(Ok,, 1)

LEMMA 3.3. Let K be a quadratic imaginary field anfl > 1. Then the non-trivial
element of Gal(K/Q) acts as—1onPic(Og, ;).

Proof. The endomorphism + 1 of Pig O f) factors through the norm map
from Piq Ok, ) to PidZ). O

Now note that Gdl\//L) is a quotient of both G&L(z;)/L), so the action of
Gal(L/Q) onitis by the non-trivial character given by the first projection, but also
by the second projection. This implies that Gdl/L) is killed by multiplication

by two.

LEMMA 3.4. Let K be an imaginary quadratic field anfl > 1. Then the dimen-
sion of theF,-vector spacePic(O, ) ® F» is at most the number of odd primes
dividing the discriminantisc( O, ;) of Ok ; plus ten

Proof. (Sketch.) The exact bound we give does not matter so much, so we just
give some indications. First one notes that there is an exact sequence

(K ® Q)* — Pic(Ok ) — Pic(Ok f[3]) — O. (3.4)
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Let S := Spe¢Ox ([1/2]) andT = Spe¢Z[1/2]). The Kummer sequence gives
a surjection from 4 (Set, F2) onto the 2-torsion subgroup of RE&), which has the
same dimension as Ri§) ® F>. One deals with ISy, F2) by projecting tdle:. O

Since GalM/L) is killed by 2 and a quotient of a subgroup of R, ),
we have

log,[M : L] < |{2 # p|disci(Ok; 1)} + 10, i€ {1,2}. (3.5)
On the other hand, we have Siegel's Theorem (see [8]), stating that

log |Pic(Ox, ,)| = (3 + 0(1)) log|disci O, ),

(disc( Ok, f,)| = 00). (3.6)

Combining Equations (3.5) and (3.6) shows t{Rit(Ok; r,)|/[M : L] tends to
infinity as the discriminant of) k, ;, tends to infinity. But then Equation (3.2) can
hold for only finitely many(z1, x2). This ends the proof of Proposition 3.1. O

REMARK 3.7. The proof of Proposition 3.1 shows actually more: the function
on the set of CM points 0@’ that send$z1, z2) to f1/ f2 takes only finitely many
values. Using this, one can reduce the proof of Theorem 1.1 to the case where
there are infinitely many CM points1, z2) on C with Endz1) = End(z2) (one
replaces” by its image under a suitable Hecke correspondence). As we do not
know how to exploit this, we do not go into further detail. O

REMARK 3.8. Proposition 3.1 was also proved by Yves Anitr[1], and also by
Ching-Li Chai (not published). O

4. Intersecting C with something

We continue the proof of Theorem 1.1. So we débe as before. At this point

we already know that we have infinitely many CM poifts, z2) on C for which

x1 andz, are isogeneous because they have the same CM field. We have to prove
that there is an integer > 1 such that for infinitely manyz1, ) there exists an
isogeny of degree betweenr; andz,. A direct approach for this is the following.
Consider a CM poinfz1, z2) such that:; andz, have the same CM field, sdy,

and an isogeny from; to 2, of minimal degree, say. One can get an upper bound

for n in terms of the discriminants of the Efad). By Remark 3.7, one can assume
that Endz1) = Endz2) = Ok, and get an upper bound farfrom Minkowski’s
Theorem on ideals of small norm representing elements of the class group; the
bound is a constant timadisciOx_;)|*/?. Then one considers the intersection

of C with Yp(n). The degrees of both projections fro¥g(n) to C are equal to
i(n), wherey(n) = n[],,(1 + 1/p). The Picard group df* x P* (over a field,
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sayQ) is isomorphic toZ x 7, the isomorphism sending an effective divisor to
the degrees of its two projections B3. The intersection form is the following:
(a,b) - (¢,d) = ad + bc. Hence the intersection number of the Zariski closures in
P! x P! of C andYy(n) is¢(n)(dy+dz). Since both curves we intersect are defined
overQ, the intersection contains all Galois conjugate$sf =), of which there
are|Pic(Ok,r)|. So if |Pic(Ok,f)| exceeds)(n)(d1 + dz), the proof is finished,
since then the intersection is not proper. Unfortunately, Equation (3.6) does not
imply such an inequality.

Nevertheless, the idea of intersectifigvith something is a good one. Natural
‘somethings’ to take are images ©fitself under Hecke correspondences. Again,
we consider a CM poinfz1,z2) on C such that the CM fields of; and z»
coincide. LetK, f1 and f> be defined by: En@;) = Ogk,y,. Let f be the least
common multiple off; andf,. The field generated b « , andH g, is contained
in H, s, and one easily checks thél ; has degree at most three over it. Hence the
orbit of (z1, z2) under the action ofi x has at leas|Gal(H x,;/K)|/3 elements.
Recall from Section 2 that we can identify GHlk ;/K) with Pic(Ok f). Foro
in Gal(Hg,;/K) corresponding to the clagg] of an invertible ideall of Ok y,
there are isogenies fromy to o(x1) and fromz, to o(x2) whose kernels are
isomorphic, ag) g ;-modules, taOk /1. Hence if we take such thatOg (/1
is a cyclic group of some order, theno(x;) is in T, (x;) for i equals 1 and 2,
whereT, is the correspondence d@hthat sends an elliptic curve to the sum (as
divisors) of its quotients by its cyclic subgroups of oraerLet us note that this
T, is not the same as the correspondencedhat is usually called’, if n is
not square free, since the usual one involves a sum over all subgroups ofgrder
Let T,, x T;, be the correspondence @hx C that is the product of’, on each
factor: it sends a paiE1, E») of elliptic curves to the sum of theg#1/G1, E2/G2),
whereG; is a cyclic subgroup of order in E;. Then(x1, z2) is in the intersection
of Cand(T;,, x T,,)C, becauser; is in T,,(o(z;)) and (o(z1),0(z2)) is in C.
Since bothC' and(T,, x T,,)C are defined ove®), their intersection contains all
Galois conjugates ofz1, z2). Hence the intersection has at lefic(Ox ¢)|/3
elements. Let us now calculate the degrees of the projectiofis,0f 7;,)C to C.

By definition, (7, x T;,)C consists of théz, y) such that there exist andv in C

with (u, v) in C, and cyclic isogenies of degregrom « to z and fromw to y. Let

x be inC. Then there arg(n) u's with z € T;,(u). For each such a there arel;

v’s with (u,v) on C. For each such a there are)(n) y's in T;,(v). This shows

that the degree of the first projection(@, x T,,)C is 1 (n)?dy. Of course, for the
second projection one has the analogous result. So, for the intersection number of
C and(T;, x T,,)C we find 211d2(n)?2. We conclude that ifPic(Oy f)| is bigger

than Gl1dy(n)?, thenC is contained in(T,, x T,,)C. The next thing to do is to

see if there do exist idealswith the required properties.
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Letxy, z2, K andf be as above. Letbe a prime number that splitsin , i.e.,
suchthal ; ®F, isisomorphic td, x F,. ForI we take one of the two maximal
ideals containing. As explained above, we have the following implication

6d1da(p + 1)? < |Pic(Ok ;)| implies C C (T, x T)C. (4.1)

Equation (3.6) tells us thdPic(Ox )| = |disci(Ox,;)|?+°). So we wanp to
be at most something #disci( O, ;)|*/4. More precisely:

PROPOSITION 4.2Suppose that there exists> 0 such that, wherkK ranges
through all imaginary quadratic fields angl through all positive integers, the
number of primep < |disci(O ;)|Y/4~< that are split inOx ; tends to infinity as
|disc{ Ok r)| tends to infinity. Then there are infinitely many prirpesich thaiC'
is contained in(7), x T,,)C.

Proof. Because we have infinitely many CM poilfis, z2) onC, we know that
the discriminantgdisci(Ok r)| associated to them as above tend to infinity. The
implication (4.1) and Equation (3.6) give us the infinitely many required primes.

5. Existence of small split primes

The aim of this section is to prove the hypothesis in Proposition 4.2. It turns out
that this is no problem at all if one assumes GRH for imaginary quadratic fields
and uses the resulting effective Chebotarev Theorem of Lagarias, Montgomery and
Odlyzko as stated in [9].

For K an imaginary quadratic fieldf a positive integer and > 2 a real
number, letrk ¢(x) be the number of primeg < « that are split inOg , let
di = |disci(Ok)| and letdy ¢ := |disc(Ok,;)|. Note thatdy ; = f2ds. As
usual,letL{z) := [5 dt/log(t). Theorem 4 of [9] and the second remark following
it say that, forz sufficiently big and for allK” as above for which GRH holds, one
has

Imka(z) — iLi(2)| < 22Y?(log(dk) + 2log(z)). (5.1)

Since the number of primes dividingis at most log(f), Equation (5.1) implies

ms ) > o0 (Li (2) 'ng(” - ';’3&72) (log(dx) + 2log(x))
2log(x) log(f)
e ) (5.2)

If z tends to infinity, L{z) log(z) /= tends to 1 and log:)?/«%? tends to 0. One
checks easily that far sufficiently big (i.e., bigger than some absolute constant),
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and bigger than lo@ ;)?(log(log(d f))?, one has logr) log(dx ) /322 < ¢ <

1, with ¢ independent of and f. Under the same conditions, l@g log(f)/z
tends to zero ifr tends to infinity. This means that we have proved the following
proposition.

PROPOSITION 5.3Let C be as befordi.e., as in the beginning of Secti@).
Assume GRH for all imaginary quadratic fields. Then there exist infinitely many
primesp such thatC' is contained in7}, x T},)C. 0

REMARK 5.4. Of course, the question remains whether one can prove the hypoth-
esis of Proposition 4.2 without assuming GRH. Etienne Fouvry tells me the fol-
lowing. He shows that for > 0 and alln, the set ofd, ; such that the number

of primesp < dj K.f that are split inOk ¢ is at mostn, has density zero (i.e., the
numberofsucldKf < zis o(z) for z — oo). Moreover, he says that the exponent

4 is critical, in the sense that one can prove that fog all 0, the number of primes

p< all/4+E that are splitinDg ; tends to infinity aglx ; tends to infinity. To prove
thls he uses a result of Linnik and Vinogradov in [6], see also [4]. The central
point in [6] is an upper bound for short character sums by Burgess, in which the
exponentl—l1 + £ appears. Thié has not moved in the last 30 years. O

6. Some topological arguments

In this section we finish the proof of Theorem 1.1 by combining Proposition 5.3
with the following theorem, which gives yet another characterization of modular
curves.

THEOREM 6.1.LetC in C? be an irreducible algebraic curve. Léj andds be

the degrees of its two projections @ Suppose thad; andd, are both nonzero,
and that we have& C (T;, x T,,)C for some square free integer > 1 that is

composed of primas> max{5, d; }. ThenC'is the image ofYp(m) in C? for some
m > 1.

Let us first show that this theorem and Proposition 5.3 imply Theorem 1.1. So
let Cc andC be as in the beginning of Section 3. Recall thais the union of the
finitely many Galois conjugates of the irreducible compor@nof it. We know
that there are infinitely many primgssuch that' is contained in(7}, x 7,,)C.. For
such a prime, let7, denote the correspondence@rinduced byl x T},. By
this we mean the following. The correspondefigex 7;, on C? is given by the map
from Yp(p) x Yo(p) to C? x C? that sends a poirfip, 1) to (s(¢), s(¥), t($), t(v))),
wheres andt stand for source and target, respectively. Take the inverse image of
C x C'inYy(p) x Yo(p), and delete its zero-dimensional part; that, together with its
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two mapsta’, isT¢,,. We have to show that a suitable prodiigt,, . .. T¢p, with
r > 1 and thep; distinct induces a non-trivial correspondence fréfnto itself,
because then we can apply Theorem 6.Ltowith n = p1...p,. Let S be the
finite set of irreducible components©f Then eachli-;, induces a correspondence
Ts,onS thatis surjective in the sense that both maps fiap to S are surjective.
Moreover, the Galois grou@ acts transitively orf, and allT’s , are compatible
with this action. Letzg in S correspond t@c. If there is somd’s , such thatzg is
in T's ,z0, We can take: = p. So suppose that for &lls , we haverg ¢ T's ,zo.
Then we have for all’'s , and allz thatz ¢ T's ,2. One now easily sees that there
arepy, ..., p, distinct with 1< r < |S] andzg € Ty, - .. Ts p, o

Proof. (Of Theorem 6.1.) We take an integeas in the theorem we are proving.
LetT¢,, be the correspondence Ghinduced byI;, x T, in the sense explained
above. (In fact, for everything that follows we could also replagg, by one of
its irreducible components, but it is useful to see how to exploit all of it.) We view
Tc,, asasubsetdf x C. The image off ,, under the magpry, pry) fromC x C
to C x C is the imagel;, of Yp(n) in C x C. Consider the commutative diagram

C C

(6.2)

TC,n Tn

in which the vertical maps are induced by the projections fvm C andC x C
on the first factor.

LEMMA 6.3. The map fronT¢ ,, to the fibred product’ x¢ T;, induced by(6.2)
is surjective

Proof. By construction, all four maps in (6.2) are finite as morphisms of (possi-
bly reducible) algebraic curves. Therefore, the map filgm, to C' x T}, is also a
finite morphism of algebraic curves. Hence to show that it is surjective, it suffices
to show thatC' x¢ T}, is irreducible, or, equivalently, that the tensor product of the
function fields ofC' andYy(n) overC(y) is a field. For this, it is enough to prove
that the tensor product witty(n) replaced byy (n) is a field ' (n) is the modular
curve parametrizing elliptic curves with a symplectic basis of thdwrsion). The
function field ofY'(n) is Galois overC(j) with Galois group Sk(Z/nZ)/{£1}.
The group Sk(Z/nZ) is isomorphic to the product of the &(F,, ), 1 < ¢ < r; one
checks easily that it has no non-trivial subgroup of index at ri@sthis means
that the function fields of andY (n) are linearly disjoint. O

For reasons to become clear soon, we now first prove the following lemma.

LEMMA 6.4. The orbits inC of Ti-,, are not discrete for the strong topolagy
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Proof. The morphism prfrom C to C is proper, hence the image of a closed
subset ofC' is closed inC. In particular, the image of the closure of any subset of
C'is the closure of its image. Hence it is enough to see that the imagesfithe
orbits of T ,, are not closed. Let be inC, and lety be its image irC. Lemma 6.3
implies that ptT¢ ,« = T,y, hence we just have to show that the orbit<iof
T,, are not closed. For this we vie® as the quotient of the complex upper half
planeH by the group Sk(Z) via the mapr: 7 — 5(C/(Z + Z7)). Letz be inC,
and choose in 7~ 1z. Then for alla andb in Z, (7 + a) andnx(n’7) are in the
orbit of 2 underT,,. By composing these operations, we see #{afr + a) and
7(7 + n~%a) are in the orbit ofz. Takinga nonzero and big shows that the orbit
is not closed. (In fact, it is easy to show, using> —7~1, that all orbits inC of
T, are dense.) O

We viewC x C as the quotient afl x H by the groud" := SLy(Z) x SLy(Z), via
the map

T HXxH—CxC, (r1,72) — (J(C/(Z +Zm)),j(C/(Z + Z7))). (6.5)

Let X be an irreducible component of the analytic subvarietyC of H x H.
The groupG = SLy(R) x SLp(R) acts transitively orHl x H. We will study its
subgroupG x, the stabilizer ofX. What we have to prove is théty is the graph
of an inner automorphism of $SIR); this automorphism then tells us for which
m our curveC is the image ofYp(m). The decisive step in the proof of this is to
see thalG x is not discrete (ifC is an arbitrary curve ilt?, thenG'y is typically
discrete).

LEMMA 6.6. The groupGx is an analytic subgroup af.

Proof. The action ofG on H x H is algebraic (it is given by fractional linear
transformations). The subgrodpy consists of exactly those elemepts G that
satisfy, for allz in X, the two conditiongyz € X andg—'z € X. All these
conditions are analytic. |

LEMMA 6.7. The kernels of the two projections fraky to SLy(RR) are discrete
Proof. This kernelK, say for the second projection, is the same as the sta-

bilizer of X in the subgroup SY{R) x {1} of G. For all 7 in H, it stabilizes

X, =X N (H x {r}), which is discrete sincé, > 0; hence the connected com-
ponentK° of K stabilizes every element &f .. We conclude thak ® acts trivially

on X. Now the stabilizer in Sk(R) of the element of H is SO(R). Because

d1 > 0, K° is contained in all conjugates of &), the intersection of which

is {+1}. O

LEMMA 6.8. The image inSL(Z) of I'x, the stabilizer ofX in I', under the
sth projection, has index at modj.
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Proof. We do the proof for = 2. We factor the mag:H x H — C x C as
follows

HxH—-CxH-—CxC. (6.8.1)

LetY be the image ofX in C x H. ThenY is an irreducible component of the
inverse imageZ of C'in C x H. Let S be the set of in C such that every in
7~ 1c is contained in more than one irreducible componentofC. Then$ is
contained in the finite subset 6fconsisting of singular points and points of which
at least one of the coordinates is{i@, 1728}. LetC’ beC — S, and letX’ andY”’
be the inverse images, K andY’, respectively, o’. The map fromX’ to C’ is
the quotient for the action df x, hence the map frort’ to C” is the quotient for
the action of pyI"x. It follows that ppl'x is the stabilizer in SK(Z) of Y in Z,
so the set SK(z)/pr,I'x is the set of irreducible components&f But Z is also
the fibred product of pr C — C andH — C, which implies thatZ has at mosi,
irreducible components. O

Lemmas 6.6, 6.7 and 6.8 are in fact valid for any cuéven C? for which dy
andd, are nonzero. The next one crucially exploits tbat (7}, x T3,)C.

LEMMA 6.9. The topological grougr x is not discrete

Proof. The subgrougsx of G is analytic, hence closed. It contaifig. The
inclusionC C (T, x T,,)C implies that it contains some less trivial elements as
well. The correspondencd&, on C can be described as follows. Takén C; take
its inverse image i, apply the map — n7 = (§ 2)7 to it and take its image in
C; that isT),z. Another way to say this is: take representatiyén GL(Q) (there
aret(n) of them) for the quotient set SLZ)(SE)SLZ(Z)/SLZ(Z); then forz in C
andr in H mapping to it,7,, z is the image of the sum of ther. It follows that for
each(i, j) such thatt;,;) X is contained inr—1C we get an elemeny; ; in Gx
of the form

_ n 0 _ n 0
9i,j = Vig,1- <n 12 (O 1) 1 12 (O 1)) *Yi,5,2

with «; ;1 and; 2 in I'. Forcin C andz in X mapping toc, T¢ ¢ is the image
of the sum of they; ;«. Let H be the subgroup of x generated by y and these
elementsy; ;. We will prove thatH is not discrete. LeH be the closure off.
We take an elementin X. The map from= to H x H sendingyg to gz is proper,
because the stabilizers of elementsiok H are compact. HencHz is also the
closure ofHz. The subsef{z of X is discrete if and only if its image Q' is
discrete, sincé{ containsl' x and the mapX — C'is the quotient for the action
of I"x. By construction, the image df z in C'is the orbit ofz for T ,, which, by
Lemma 6.4, is not discrete. This proves thagt is not discrete. O
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We can now quickly finish the proof of Theorem 6.1. Consider the Lie algebra
Lie(Gx), which by Lemma 6.9 is nonzero. Lemma 6.7 tells us that the two pro-
jections prLie(Gx) are nonzero. But pkie(G x) is normalized by pt"x, which

is Zariski dense in S{(R) by Lemma 6.8. Since L{&EL,(R)) is simple, it follows
that prLie(Gx) is equal to Li€SLy(R)) for bothi. So, since Sk(R) is connected,
Gx projects surjectively on both factors SR) of G. Now we apply what is
called Goursat's Lemma: Iéf be a subgroup of a produ€y x G, such that the
projectiong; andp, from H to G1 andG are surjective, then kér;) and ketpy)

are normal subgroups @f, andG,, respectively, and? is the inverse image of
the graph of an isomorphism betwe@h/ ker(pz) andGz/ ker(p1). The kernel of
pr,: Gx — SL(R) is a normal subgroup of SIR), viewed as SE(R) x {1}.
Since it is discrete and contaigg, —1}, it is {1, —1}. The same holds for the
other projection, and-x is the inverse image iGr of the graph of an analytic
automorphismg say, of Sl(R)/{£1}. Every such automorphism is inner. Since
the p'x have finite index in Sk(Z), it follows thato is induced from an inner
automorphism of the algebraic group5). The algebraic group of automorphisms
of Sy g is PGLyg. Since the map GI(Q) — PGL,(Q) is surjective (for example
by Hilbert 90),0 is given by conjugation by some elemenin GL,(Q). SoG x

is the set{(h, +ghg~1) | h € SLy(R)}. Letz be an element ok, and write it as

x = (7, h7) with 7 in Handh in SLz(R). SinceG x z isin X, which is of dimension
two, the stabilizer ofr in G x has dimension at least one. LEtbe the stabilizer

of 7 in the connected component of identdf,, for the action oiG% on the first
factorH; then the stabilizer i+ for the action on the second factor is the conjugate
g *hHh~ g of H. SinceH is of dimension one and connected (it is isomorphic
to SO(R)) we must haved = g *hHh g, i.e.,g~h normalizesH. Since the
normalizer of SQ(R) in SLy(R) is just SQ(R) itself, this means thag—4 is in

H, or, equivalently, thakr = g7. This meansthak = {(r,¢7) | 7 € H}. We may
replaceg by multiplesag of it, with ¢ a nonzero rational number. So we can and
do suppose thajz? is contained irz.? and thatz?/¢7? is cyclic, say of ordefn.

Itis now clear thatC is Yp(m). O

7. Some remarks

REMARK 7.1. Our proof of Theorem 1.1 shows in fact that, assuming GRH, for
each pair(di, d2) of positive integers there exists an effectively computable num-
ber B(dy, dz), such that on every irreducible curégin C? of bi-degree(ds, da)
that is defined ove®) and not a modular curve there are at mBsti1, d») CM
points. (Note that under GRH, the statement {Rat( O )|/|Pic(Ok)[2]| — oo is
effective.) O

REMARK 7.2. Itis not true that all irreducible curvésin €2 with C C (T, xT},)C
for somen > 1 are the image of soni&(m). Here we construct some examples.
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Letn > 1. Letw, be the Atkin—Lehner involution ofp(n): it sends an isogeny
to its dual. The corresponden@g on C has the following description. Farin

C, take its inverse image ikip(n), take the image of that under, and then the
image inC. It follows that for an irreducible curv€’ in C? such that at least
one of the irreducible components of its inverse imagkim) x Yp(n) is stable
under the involutior{w,,, w,) we haveC C (T,, x T;,)C. Let Z be the quotient of
Yo(n) x Yo(n) by thatinvolution. Bertini’'s Theorem, see for example [5, Thm 6.3],
gives the existence of whole families of curvesinvith irreducible inverse image
in Yo(n) x Yo(n). TakeC to be the image iit? of such an inverse image. O

REMARK 7.3. The condition that be square free in Theorem 6.1 should not
be necessary; it is due to the laziness of the author. O

REMARK 7.4. It is very tempting to try to generalize the methods of this arti-
cle to the general case of Oort’s conjecture. O
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