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Abstract

Several procedures for locating fixed points of nonexpansive selfmaps of a weakly compact convex
subset of a Banach space are presented. Some of the results involve the notion of an asymptotic center
or a Chebyshev center.

1980 Mathematics subject classification (Amer. Math. Soc.): 47 H 09, 47 H 10.

Throughout this paper X denotes a uniformly convex Banach space, K a convex
set and f.K^Ka nonexpansive mapping. In [3] it is shown that the asymptotic
center (see below) of each bounded sequence of iterates is a fixed point under / .
In this paper we consider the fixed point properies associated with closely related
centers; those that arise when sequences of subsets, rather than singletons, are
considered.

Let {Sn} be a sequence of sets in a Banach space Y with L)Sn bounded and let K
be a nonempty closed convex subset of Y. For each n = 1,2,... and each x ^ K
set

(1) rn(x) = sup{\\x-y\\:ye \J S
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(2) rn = M{rn(y):y^K},

(3) r(x) = inf{rn(x):« = l ,2 , . . .} ,

(4) r = M{r(y):y<EK}.

The set cn = {x e K: rn(x) = /•„} is frequently referred to as the Chebyshev
center (of Um>nSm) with respect to K. A familiar fact about Chebyshev centers is
that they are nonempty convex sets whenever Y is reflexive or K is weakly
compact. In certain Banach spaces (see [2]), uniformly convex ones included, the
Chebyshev centers are known to be singleton sets.

More recently (see [8]) the set c = {x e K: r(x) = r} has been introduced and
termed the asymptotic center with respect to K, whilst the number r is called the
asymptotic radius (of the sequence of sets or singletons with respect to K).
Clearly

(5) r{c)<r{x)

wheneverx e K\ {c}.
To simplify notation we shall write r({Sn), k) and s?{{Sn), K) for the

asymptotic radius and center respectively of {Dm>nSm} with respect to K.
Arguments such as those used in [3] and [4] show that in a uniformly convex

Banach space the Chebyshev centers {cn} converge to the asymptotic center

3.1 THEOREM 1. Let S be a non-empty subset of a uniformly convex Banach space
X, and let f: X -» X be nonexpansive. If U{f"[S]} is bounded then c, the
asymptotic center of {f[S]m. n = 1,2...} with respect to X, is a fixed point of f,
thatisf(c) = c.

Furthermore, if£ is any other fixed point off, then
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PROOF. For n > 2 we have

\Jfm[s]

J /-i[S]

<sup{||c-z||:ze \J f"[S]

Thus rn{f(c)) < /"n-iCc) for each n, and hence r(f(c))^r(c). However as
r(c) = r(fn[S], X) it follows that /(c) is in j*(fm[S], X) and, by remarks in
Section 2, that /(c) = c.

To prove (6) first observe that for any fixed point z off,

sup{||* - z\\:xef[S]} = sup{||/(*) - / ( z ) | | : * e / -

implying that

sup{||x - z||: x e U f"[S]\ =

Thus (6) is equivalent to r(c) < r(£), which is true by (5).

Let X, S, and/be as in the above theorem.

3.2 If 0 # S c * and 5 is bounded with/[5] c 5, then obviously U{/"[5]:
n > m] = fm[S]. We conclude that if cm is the Chebyshev center of fm[S] then
c = limcm exists and is a fixed point of/.

3.3 Theorem 1 can be restated in terms of a mapping f:K-*K where Â  is a
closed and bounded convex set in X. In this case the asymptotic center is taken
with respect to K. One could also relax the nonexpansive condition on / in a
manner similar to that employed in [3].

4.1 THEOREM 2. Let S be a nonempty subset of a uniformly convex Banach space
X, and letf: X -* X be nonexpansive. / /U{ f"[S]} is bounded and for some natural
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k and I we have rk = rk+l, then rk = rk+1 = • • • = rk+l and f(ck) = ck = • • • =
ck+/; hence alsof(ck+n) = ck+nfor n = 1,2,...,/. (Here r, and c, are as in Section
2.)

PROOF. Clearly rk > rk+l > • • • > rk+l, so rk = rit+1 = • • • = rk+l. It suffices
then to prove the theorem for / = 1. Now ck+1 is the unique point with the
property that Dtt>k+ifn[S] c B(ck+l, rk+l). However

/ (U/" = U
n^k + l

showing that ck = ck+1. Since/is nonexpansive,

sup{\\f(ck)-f(y)\\:ye \J f[S]\ < supl\\ck - y\\:y e \J/"[
K n>k ' V n>k

Thus \Jn>k+lf"[S] c B(f(ck), rk) = B(f(ck), rk+1), showing that f(ck) = ck+1

4.2 Under the hypothesis of Theorem 2, a finite (rather than infinite, as in
Theorem 1) procedure leads to the location of a fixed point. As the following
example shows the fixed point obtained may, or may not coincide with that
obtained via the asymptotic center.

EXAMPLE. Let K = {(x, y, z) e R3: z > 0, x2 + y2 + z2 < 1} and define / :
K -* K by /((x, y, z)) = (y, 0, z). Clearly / is nonexpansive. The sets K and / [ K ]
both have Chebyshev radius 1 and Chebyshev center (0,0,0). For n > 2 f[K]
has Chebyshev radius 1/2 and center (0,0,1/2), showing the asymptotic center of
f"[K] is (0,0,1/2). Thus Theorems 1 and 2 may both be used to locate a fixed
point of/, however the fixed points obtained do not coincide.

4.3 The assumption that X is uniformly convex is used only to guarantee the
existence of a unique asymptotic center for {/"[S]} in Theorem 1, and of a
unique Chebyshev center for each/"[5], k ^ n ^ k + I, in Theorem 2. Any other
condition leading to the existence and uniqueness of such centers may be
substituted for uniform convexity, (see [2], [9]).

4.4 Theorem 2 can also be restated in terms of a mapping/: K -* K where K is
a closed bounded convex set in X. In this case the Chebyshev centers and radii
would be taken with respect to K. A result of Floret [6], Theorem 2, shows that if
co(/[.£]) = K (where co denotes the closed convex hull) then the Chebyshev
center of K is a fixed point of / . If co( f[K]) = K the Chebyshev radii of
co(f[K]) and K are equal, thus in view of the remarks in 4.3, his result follows
from a theorem similar to Theorem 2.
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The concept of asymptotic regularity is due to Browder and Petryshyn [1]. In
[5] it was modified to uniform asymptotic regularity. If S is a subset of a Banach
space Y, the mapping h: S -* S is said to be uniformly asymptotically regular if
\\h"+1(x) - h"(x)\\ -» 0 uniformly over S. It was shown there that if K is convex
and bounded and g: K -> K is nonexpansive then / = \(g + / ) is uniformly
asymptotically regular (here / is the identity mapping). The mappings / and g
have identical fixed point sets. Procedures for locating fixed points are much
simpler for uniformly asymptotically regular maps, as shown by the next result.

5.1 THEOREM 3. Let h: S -* S be a uniformly asymptotically regular self-mapping
of a set S in a Banach space Y. Then Sw = C\{h"[S]: n = 1,2,...} is the fixed point
set ofh.

PROOF. Let F be the fixed point set of h. Certainly F c Su. To show that
Su c F let £ e Su and suppose, for a contradiction, that h(£) * £. Let e = ||/J(£)

- HI and let n be sufficiently large to imply that \\hn+l(x) - h"(x)\\ < e for all
x e S . L e t i e S b e such that h"{x) = £. Then e = \\h{£) - £|| < \\hn+\x) - hn\\
< e, a contradiction.

5.2 COROLLARY 1. Let K be a closed bounded convex set in a uniformly convex
Banach space X, let f: K -* K be nonexpansive and uniformly asymptotically
regular, and let 0 # S c Ka = D{/"[A"]: n = l , 2 , . . . } . Then the Chebyshev
center of S with respect to K is a fixed point of f, and hence is in Ku.

PROOF. A S / [ 5 ] = S this follows from Theorem 2.

5.3 COROLLARY 2. Let Kbe a weakly compact convex subset of a Banach space Y,
and f: K -* K be nonexpansive. Suppose in addition that K has normal structure
(see [7]). By a theorem of Kirk [7] the set of fixed points F offis non-empty. Then
g = \(f + I) is uniformly asymptotically regular, and applying Theorem 3 to
g, Ku = F is the fixed point set of both f and g.

5.4 A N EXAMPLE. It is tempting to assume that in Theorem 3 the se t s / " [# ] , in
some sense, converge to Ku and in particular that the Chebyshev radii of f[K]
converge to the Chebyshev radius of Ku. The following example shows this is not
the case.
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Let K be the unit ball in the Hilbert space I2. For x - (xk) =
(x1,x2,...,xk,...) e A"set

Clearly/is nonexpansive,/(K) c K, and/"(x) = ((1 - j)nxk). Also

It is readily seen that the above tends to 0 as n -* oo.
Lete* = (0.0, . . . ,0,1,0, . . . ) . Then

fc-1 times

i/n(^)ll=(l-i)"-
Thus letting k' be such that for all k > k', (1 - \)n > 1 - e, it follows that
ll/"(e/t)ll > 1 - e for A; ^ A:'. It can now be concluded that the Chebyshev radius
otf(K) is 1 for all n. However n/"[AT] = {0}.

Note that this example can easily be modified so thatD/"[^T] is more than a
singleton.

6.1 In this section we present a procedure for locating a fixed point o a
nonexpansive map / from a weakly compact convex set K with normal structure
to itself, without passing to an alternative map (for example, j(I + / ) ) . In general
this method involves a transfinite process.

Let Ko = K and suppose that for each ordinal fi < a,Kp has been defined such
that f(Kp) c Kp and Kp is a weakly compact convex subset of Ky, for all y < /}.

Ka_1)}, A"a_j), a not a limit ordinal,

« = \ P) Kp, a a limit ordinal.
P<«

It is shown in [8] that if x e K then the asymptotic center of {/"(*)} is
mapped by/into itself. With essentially the same proof it can be shown that the
same is true for an arbitrary set 0 # 5 c A". That is

We conclude (in either case) that f(Ka) c Ka. Also, by properties of the asymp-
totic center stated in Section 2 and properties of the intersection, in either case Ka

is a weakly compact convex subset ofKe, for all /J c a.
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It is also shown in [8] that if C is convex with normal structure, contains more
than one point, and C 2 f l B 3 ^n+i> n = 1>2,..., thens/({Bn},C) is a proper
subset of C. It follows that for each ordinal a, Ka is a proper subset of Kp, B < a
unless Kp is a singleton and hence there is a smallest ordinal A such that Kx is a
singleton. We conclude with

THEOREM 4. With f, and A as above, the singleton Kx is a fixed point off.

6.2 Theorem 4 can be restated in a form similar to that of Theorems 1 and 2.
Let K c Y be such that either K is closed and Y is reflexive or K is weakly
compact. Let/: K -» Kand assume that S c ^ i s such that U/"[5] is bounded. In
either case, the asymptotic center of {/"[S]}, KQ, is a weakly compact subset of
Y with f(K0) c # 0 . Hence the above procedure can be applied to this choice of
KQ, rather than K itself.

6.3 As in Theorem 1, the fixed point obtained by the above procedure may be
characterized as follows.

THEOREM 5. Let / , K, Ka and Kx be as above and let Kx = {c}. Then for every
fixed point £ off, and each ordinal a,

inf{sup{||* - c||: x e/»[*„]}: n = 1,2,...}

« i

PROOF. Let a be fixed. Then the left side of (7) is r(c) and the right side is r(£),
where r(x) is defined by (3) with Bn = f[Ka]. As c e Ka+l = j/(f[Kal Ka),
r{c) = r and the theorem follows from (4).
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