
16
Strong interactions and field theory

16.1 Overview

16.1.1 Phenomenological approach to hadron scattering

We have considered the phenomenological theory of strong interactions.
In the last 20 years the theory was developing in two parallel directions.
The questions were:

� how the interaction takes place in a relativistic situation, irrespec-
tively to who is interacting;

� how the mass spectrum of hadrons is built up; what type of laws can
be extracted not knowing the microscopic dynamics?

Qualitatively, high-energy processes are understood. Such general conse-
quences of the complex angular momentum theory as the uniformity of
particle production in rapidity, the shrinkage of the diffractive cone and
the logarithmic multiplicity growth, are in good qualitative agreement
with the experiment. Why is there no good quantitative agreement?

In the expression for the Regge radius,

R2 = R2
0 + α′ ln

s

m2
,

the pomeron slope – the impact parameter diffusion coefficient – turned
out to be numerically small :

α′/R2
0 ∼ 1/12 .

The hadron radius increases very slowly with the energy, and hence
different simplifying properties that we have discussed in these lectures
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16.1 Overview 419

will never manifest themselves; the true high-energy asymptotics will
never be reached. We do not understand the reason why this is
so.

Nevertheless, the qualitative agreement exists, since, although the
growth of the radius is not sufficient, a relatively homogeneous distri-
bution in rapidity is established in nature.

In what concerns the possible structure of the mass spectrum of
hadrons, exploring this problem has led to the notion of ‘duality’.∗

16.1.2 Duality

Take some field theory based on a certain number of interacting fields
(bare particles). If the coupling constant is sufficiently large, bound
states (and resonances) will appear and enter the theory on equal foot-
ing with the input particles. A complicated, but legitimate, structure
of the physical particle spectrum will emerge, driven by unitarity and
analyticity.

We know that each Regge pole in the j-plane feels unitarity thresholds
which, generally speaking, essentially deform its trajectory. However, ex-
perimentally this is not true. In a large interval of t all known Regge
trajectories are linear with quite a good accuracy.

This fact looks rather strange and calls for explanation. How is it that
all along a distance of several GeV the linearity persists?

One possibility is that a large mass scale may be there, hidden at the
quark level (quark masses?)† the fact that it is mesons and baryons –
bound states of quarks – that propagate at macroscopic distances is a
secondary thing, less important for the dynamics.

Another attempt to explain the linearity consists of introducing into the
theory, from the very beginning, an infinitely large number of particles and
connecting their spins (placing them on the Regge trajectories). This way
we make a step beyond the QFT framework not by abandoning locality
but by introducing an infinite number of fields.

Why does this lead to linear trajectories specifically?
We know that all the singularities (including trajectories) are deter-

mined by unitarity, i.e. by the interaction. Hence, to insert, e.g. a
√
t

singularity by hand, does not seem clever or harmless.
The simplest analytic choice is a straight line.

∗ The concept of duality gave birth to string theory.
† On the appearance of a large mass scale in the vacuum channel, see Shifman and Vainshtein,

2005 (ed.).
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420 Strong interactions and field theory

Let us approximate the scattering amplitude by the sum over s-channel
particle poles:

A(s, t) = =
∞∑
n

n 

n 
σ 
m + corrections. (16.1)

One could think that the hadron interaction that we observe is strong
already because there are many particles to exchange in (16.1). Within
this logic, one might hope the corrections to such ‘Born’ approximation
to be small.

Did we draw in (16.1) everything we had to? Should we not include
also the poles in the t- and u-channels?

This would have been necessary if the number of particles was finite, or,
at least, if the series in (16.1) converged well. However, the situation here
is not so simple: since we are planning to include particles with arbitrarily
high spins σn, the behaviour of Pσ(cos θs) at σ → ∞ is a worry. At t > 0
(cos θs > 1) the Legendre polynomials Pσ increase as a power of σ. Hence,
the series makes sense only in the physical region of the s-channel (t < 0)
and diverges at t > 0.

What does the divergence of the series mean for the amplitude A(s, t)?
It is just a singularity in t. We know, however, that all the singularities
are either poles or thresholds. We want to construct the Born amplitude
which does not take into account the interactions; consequently, there
may be only poles. Thus, we are unable to write an amplitude that would
have poles only in s.

Here lies the basic idea of duality: the requirement that the series has in
t just the necessary poles, those corresponding to particles (resonances)
that can be exchanged in the t-channel of the reaction. The scattering
amplitude can be alternatively expanded in terms of the t-channel poles:

A(s, t) =
∞∑
n

=
∞∑
n

. (16.2)

The equality of the sums over s- and t-channel resonances (duality of
the two representations) guarantees the self-consistency of the construc-
tion. Essentially, the duality idea is the only way to introduce an infinite
number of particles in the theory.

Obviously, the duality relation (16.2) imposes severe restrictions on the
possible structure of the particle spectrum. How can we write a suitable
meromorphic function having only poles? As it turns out, the problem
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can be solved quite easily (Veneziano, 1968):

A(s, t) =
Γ(−α(s))Γ(−α(t))
Γ(−α(s) − α(t))

= B(−α(s),−α(t)) ≡
∫ 1

0
dx(1 − x)−α(s)−1x−α(t)−1

(16.3)

where α is a linear trajectory: α(t) = t (in units α′ = 1). This function
has poles in each integer point both in the s- and t-channels. It is clear
that having written a function symmetric in s and t, I have satisfied the
duality relation automatically.

5 

1                         2 

3 

4 

Actually, one can go even further and con-
struct, in particular, a 2 → 3 scattering ampli-
tude. It contains many pair invariants; contin-
uing into each particular channel, sik > 0, we
must obtain a series of the corresponding reso-
nance poles.

It is easy to draw a diagram having poles, say,
in s12 and s45. Can one invent a contribution
that would have, in addition, poles in s35?
It is clear that this is impossible: as soon as
particles 4 and 5 combine into a pole, there is no  

1                 2

3

45

information left about the momentum p5 that could correlate with p3

(only information about spins can be carried up the graph). As a result,
dual multi-particle amplitudes consist of a sum of all possible tree dia-
grams with poles in all sub-channels.

There is a technical difficulty: the amplitude must factorize; moreover,
the residues must be positive. The task of constructing the meson ampli-
tude close to the real hadron spectrum is almost completed. The case of
baryons turns out to be more difficult.

How will the Born dual amplitude behave at s → ∞? If the asymptotic
behaviour were arbitrary, there would be no hope that the pole approx-
imation is any good. In this case the correction terms to (16.1) which
have the form of loops and are responsible for the unitarization of the
amplitude would have to be significant.

From the point of view of the t-channel pole expansion in (16.2),
the reggeon behaviour A ∝ sα(t) seems to be very natural. Indeed, the
Veneziano formula matches this expectation, meaning that the theory
embedded a priori not just many particles but the true Regge families.
To see this we take the limit of large (−s) in the integral representation
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422 Strong interactions and field theory

(16.3) and make use that −α(s) � 1:∫ 1

0
dx(1 − x)−α(s)−1x−α(t)−1 =

∫ 1

dxx−α(t)−1 e−α(s) ln(1−x)

≈
∫ ∞

0

dx

x
x−α(t) eα(s)x =

∫ ∞

0

dy

y

(
y

−α(s)

)−α(t)

e−y

∝ (−α(s))α(t) = (−s)α(t).

(16.4)

Actually, we could use the well-known Stirling formula for Γ in order to
derive the asymptotics of the B function. The integral representation is,
however, more suitable for generalizations.

Multi-particle diagrams also exhibit multi-regge behaviour:

 

1                 2

3

45

∼ (−s23)α(t12) · (−s34)α(t45)

As for the problem of unitarization, almost no progress has been
achieved apart from a telling technical achievement.

It turns out that in the case of an infinite number of particles, in the
same way as in the usual QFT, instead of inserting the imaginary part in
the dispersion integral one can draw a Feynman diagram automatically
satisfying the unitarity conditions. However, here the loop diagrams have
more subtle properties. Due to (16.2), there is a variety of remarkable
equalities between absolutely different graphs, for example,

==

The sharp turn from the attempts to do without the internal structure of
hadrons (local features of the objects) was, I think, due to experiments,
namely, those on deep inelastic scattering.

16.2 Parton picture

The concept of Feynman–Bjorken partons was invented to explain the
deep inelastic scattering phenomenon but may have a deeper significance.

Using perturbative language, we have seen that at high energies there
emerged significant simplifications in a wide class of hadron interaction
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16.2 Parton picture 423

processes. Is it possible to see these simplifications without appealing to
the perturbation theory, not with the help of reggeons, but directly from
the field theory?

16.2.1 Parton wave function of a high-energy hadron

How does field-theoretical description relate to the usual quantum me-
chanics? Why do we use Feynman graphs rather than the wave function
as in the non-relativistic theory? Can one return to the wave function in
QFT?

In a field theory, if we make a snapshot of a particle we will see many
particles whose number changes with time. The NQM wave function de-
pends on the coordinates of all the particles in the system; even if we
manage to invent a QFT wave function, it would be a multi-component
object.

What is a physical particle?
Even if I start with a bare object, it ‘dresses up’, and in the course of

propagation develops into a multi-particle system:

t 

1 

x 2 

x 3 

x 
Ψ =

⎛
⎜⎜⎜⎜⎝

ψ1(t,x1)
ψ2(t,x1,x2)

· · ·
ψn(t,x1,x2, . . . ,xn)

· · ·

⎞
⎟⎟⎟⎟⎠ .

An ensemble of such Green functions determines probability amplitudes
for finding 2, 3, etc. particles at a given time in definite points in space.

A wave function is a convenient object to use; it is normalized in a
definite way, the integrals of the squared wave function determine proba-
bilities of various physical processes.

So why don’t we use a wave function in quantum field theory?
Recall that the QFT diagrams necessar-

ily contain the space–time configurations in
which some particles originate directly from
the vacuum rather than from the original
particle itself. Even in the simplest case of
the self-energy correction diagram, the order
of interaction times is arbitrary, and I would
have to include into consideration all sort of
virtual process going on in the vacuum.

t 

In a quantum field theory, a free particle is not a dynamically closed
system. Rather, it is like an object in a medium – in the ‘external’ field
of vacuum fluctuations.
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424 Strong interactions and field theory

(a)

t1 t2
t2 t1

(b)

Fig. 16.1 Configurations t21 > 0 and t21 < 0 in the self-energy graph.

For certain graphs, it is straightforward to dis-
tinguish vacuum processes that do not affect the
particle propagation. However, as soon as our par-
ticle and a vacuum fluctuation interact with one
another (even in the future!), the picture becomes
confusing; it is no longer possible to tell what be-
longs to the particle under consideration, and what
to the vacuum.

If the longitudinal momenta of particles in the intermediate state of a
virtual decay of their energetic parent, E � m, in Fig. 16.1(a) are of the
same order, x1/x2 = O(1), the energy difference becomes small:

ΔE =
√

m2 + p2 −
√

m2
1 + p2

1 −
√
m2

2 + p2
2 
 m2

2p
− m2

1⊥
2x1p

− m2
2⊥

2x2p
.

If you now integrate over t1, t2, an essential time interval between the
interaction points will be very large – proportional to the initial energy,
t2 − t1 ∼ 1/ΔE ∝ E. As for the configuration of Fig. 16.1(b), the energy
defect here is enormous:

ΔE = 0 −
(√

[1] +
√

[2] +
√

[3]
)
∝ E,

and the lifetime of such a fluctuation is instead small: |t2 − t1| ∼ 1/E. In
order for our conclusion about the first graph (Fig. 16.1(a)) to hold, trans-
verse momenta of intermediate state particles must be limited; otherwise,
there would be no cancellation.

Let us sketch the calculation of contributions of these two time-ordered
regions. The self-energy diagram contains two-particle Green functions:

Σ(p) =
∫

d4x12 eipx21G(x21)G(x21).

If x0 = t > 0, we close the integration contour in the lower half-plane of
the energy component k0 to obtain

G(x) =
∫

d4k

(2π)4i
e−ikx

m2 − k2 − iε
=
∫

d3k
(2π)3

e−i(t
√
m2+k2−x·k)

2
√
m2 + k2

. (16.5)
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Thus, when we integrate over positive times, t21 > 0 (Fig. 16.1(a)),

∫ ∞

0
dt21 eit21

(
p0−

√
[1]−

√
[2]
)
∼ 1

p0 −
√
m2

1 + k2
1 −
√

m2
2 + k2

2

.

When t21 < 0, the sign of the phase in the Green functions (16.5) flips:

∫ 0

−∞
dt21 eit21

(
p0+

√
[1]+

√
[2]
)
∼ 1

p0 +
√

m2
1 + k2

1 +
√

m2
2 + k2

2

.

(Clearly, the integral over d3k must converge for our estimate to make
sense.) With the growth of energy, the real time-ordered processes of
the type (a) give larger and larger contributions as compared to vacuum
fluctuations (b).

You may ask: does it make sense to separate two time-ordering regions
in the diagram which is relativistic invariant as a whole? If I choose to
sit in a reference frame where the energy is finite, E = O(m), the vacuum
processes would again be inseparable from the particle, and the simplifi-
cation would disappear.

The point is, in a high-energy scattering process there is always at least
one fast particle, and our consideration is valid. Already at this point it
becomes apparent that the wave function Ψ that we are about to introduce
will be by no means a Lorentz invariant object.

16.2.2 Feynman scaling

Let us see what will happen in more complicated diagrams. I want to
stress again that our first and basic assumption is that the transverse
momenta of the particles involved are bounded from above: k2

⊥ <∼ m2.
In Lectures 5 and 10 we have discussed the

‘ladder’ (multiperipheral) kinematics and saw
that it is most efficient to share the large momen-
tum roughly equally at each step of the particle
multiplication: k1‖ ∼ k2‖ ∼ 1

2p‖. Obviously, this is
so only on average; there are always fluctuations,

p 1

k2

1/2

1/4

1/8

k

imbalanced configurations which give, however, a smaller contribution.
Thus, when we consider more and more complicated diagrams with an
increasing number of particles, we get an ever-slower particle in the inter-
mediate state. After

n̄ ∼ ln
p

m

/
ln 2
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426 Strong interactions and field theory

steps we get a slow particle with kn ∼ m, and my logic of unimportance
of the interaction with the vacuum breaks down.

interaction with the vacuum 

We come to the picture of a system of point-like particles – a ‘comb’ of
partons inside an incident fast hadron – which ‘scratches’ the vacuum by
its soft end (the so-called ‘wee’ partons).

Such a picture can be characterized by a probability amplitude ψ which
is almost a wave function. In the coordinate space, it can be normalized:

ψn(t; r1, r2, . . . , rn),
∑
n

∫ n∏
i=1

d3ri · |ψn(t, {ri})|2 = 1.

In the momentum space, we have

ψn(k1,k2, . . . ,kn),
∑
i

ki = p .

The introduction of such an object does break the Lorentz invariance, but
only slightly – at the level of the slowest parton in the ensemble. To see
how this comes about, let us try to invent a Hamiltonian for our multi-
component wave function. We take for simplicity the λϕ3 interaction,
represent the field as the sum of creation and annihilation operators, ϕ =
ϕ† + ϕ, and drop the two terms corresponding to the vacuum processes:

(ϕ† + ϕ)3 = (ϕ†)3 + ϕ3 + 3
[
(ϕ†)2ϕ + ϕ†ϕ2

]
=⇒ (ϕ†)2ϕ + ϕ†ϕ2.

The two remaining terms describe the splitting, 1 → 2, and the fusion
processes, 2 → 1. Let us look at a stationary state,

Eψ = Ĥψ,

and write down the dynamical equation for the n-parton wave function
component:

E ψn =
n∑

i=1

Ei ψn + g
∑
i

ψn−1(k1, . . . ,ki + ki+1, . . . ,kn)

+ g
∑
i

∫
dp′ ψn+1(k1, . . . ,ki−1,p′,ki − p′, . . . ,kn).

Here the first – kinetic – term on the r.h.s. is the sum of parton energies,
the second one is responsible for the splitting of one among (n− 1) partons
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into two, and the last term – for the fusion of two partons in the (n + 1)
state into one.

Let us examine the simplest, two-parton state:[
E(p) − E1(k1) − E2(k2)

]
ψ2(k1,k2) = h · ψ1(k1 + k2) + h′ · ψ3 . (16.6)

Calculating the splitting term h,

 

1

k2

p k
= g

d3k1

2k01(2π)3
d3k2

2k02(2π)3
d3p1

2p0(2π)3
· (2π)3δ(p −k1 −k2)

=⇒ g

2p
· dΓ(k1) dΓ(k2),

and expanding the difference of energies,

E(p) − E1(k1) − E2(k2) 

1
2p

[
m2 − (m2 + k2

1⊥)
p

k1‖
− (m2 + k2

2⊥)
p

k2‖

]
,

we observe that the common factor 1/2p cancels, leaving us with[
m2 − (m2 + k2

1⊥)
p

k1‖
− (m2 + k2

2⊥)
p

k2‖

]
ψ2 = g ψ1 + · · · .

We conclude that the Hamiltonian depends not on the parton longitudinal
momenta themselves, but on their ratio to the initial momentum, ki‖/p.
In other words, the wave function is a function of the rapidity difference

ξ − ηi 
 ln
p

ki‖
; η = 1

2 ln
k0 + k‖
k0 − k‖

, ξ = 1
2 ln

E + p

E − p
.

This is the manifestation of the (partial) relativistic invariance: as long
as the partons are fast enough for the expansion of the energy roots Ei in
(16.6) to be applicable, the parton wave function remains invariant under
the boosts along the direction of the large initial momentum p.

What next? Since the incident particle is a cloud of virtual particles –
the partons, we can investigate the parton wave function by studying
the integrals, representing the parton number density, two-parton correla-
tions, in other words – the density matrix characterizing the multi-parton
state: ∑

n

∫
ψn({ki})ψ∗

n({ki})
∏
j �=�

dΓ(kj) = n(k�),

∑
n

∫
ψn({ki})ψ∗

n({ki})
∏

j �=�,m

dΓ(kj) = n(k�, km), etc.
(16.7)
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I 

φ 

ξ 
η 

II 

III

Fig. 16.2 Possible regimes of the parton-density behaviour at small momenta.

16.2.3 Parton density inside a hadron

Let us fix the momentum k of one of the partons and integrate over all
the others, to obtain an inclusive parton density :

φ(k‖,k⊥) =
∑
n

1
(n−1)!

∫ n−1∏
i=1

d3ki

2k0i(2π)3
· |ψn(k,k1, . . . ,kn−1)|2 .

One can imagine different possibilities.

(1) Multi-parton fluctuations ‘bounce’ from the vacuum and collapse
back into the original particle, not producing enough ‘wee’ partons,
line I in Fig. 16.2. Such a regime is typical for weakly interacting
systems when the coupling is small and the perturbation theory
works.

(2) A fast growth of the wee-parton density (line II) is a signal of an
instability. This shows that the interaction does not stabilize the
system; the density of particles in unit volume increases indefinitely,
signalling an intrinsic instability. In particular, in the λϕ3 theory
the situation is most likely like this (no vacuum state).

(3) The vacuum plays the rôle of the boundary, but with account of
production and re-absorption of partons, a certain constant density
of slow partons emerges (line III).

The key hypothesis of the parton model is that, one way or another, as a
result of a balance between parton emission and recombination processes,
the mean parton density does occur in nature. In essence, this is the
condition for a particle to exist ‘independently of the vacuum’, in the
sense that the fast part of the parton ‘comb’ does not depend on the
reference frame (is invariant under η → η + const), and hence, does not
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know about the vacuum:

dn = φ(ξ − η) dη → φ∞ dη, ξ − η � 1.

As for the transverse momentum dependence of the parton density, not
much can be said about it from the first principles. At the same time,
it is important to bear in mind the hypothesis which is crucial for the
parton picture, namely that the transverse momentum integrals converge
at some finite scale

〈
k2
⊥
〉
∼ m2.

A plausible picture for the double differential distribution

dn(η,k2
⊥) = φ(ξ − η,k2

⊥)
dη d2k⊥
2(2π)3

can be drawn based on two observations. Firstly, if successive parton
emissions are independent of each other, then, as we have discussed in
Lectures 5 and 9, the random walk pattern emerges, and in the impact
parameter space we have

φ(ξ − η,ρ2) ∝ exp
{
− ρ2

γ(ξ − η)

}
. (16.8a)

Secondly, a fluctuation with a typical lifetime 1/μ may have a total number
(multiplicity) of slow partons of order unity. Therefore, the distribution
(16.8a) has to be properly normalized:

φ(Δη,ρ2) =
C

γ Δη
exp
{
− ρ2

γ Δη

}
,

∫
d2ρφ(Δη,ρ2) = C. (16.8b)

No surprise, this is nothing but the vacuum pole amplitude, with the
pomeron slope α′ = 1

4γ.

16.2.4 Partons and reggeons

Importantly, an analysis in terms of the partons essentially coincides with
the analysis of high-energy scattering amplitudes that we carried out in
these lectures.

Indeed, let us take the simplest ladder-type diagram, fix the momentum
k of one of the partons and integrate over all the others.

t″, x″ t, x

k

t ′,  x ′  
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430 Strong interactions and field theory

An integration of the product of the amplitude and the conjugate ampli-
tude over the position of the parton x yields (in the time-ordered region,
t′ < t < t′′) the Green function describing the propagation from x′ to x′′:∫

G(t− t′,x − x′)
↔
∂tG

∗(t′′ − t,x′′ − x) d3x = G(t′′ − t,x′′ − x′).

Hence, integrating over all particles, we arrive at the diagram

p 

k                      k 

p 

=⇒
p 

k                         k 

p

which is, essentially, the scattering amplitude. Thus, studying the parton
density, we in fact investigate the scattering amplitude. If we substitute
the Regge expression for the forward scattering amplitude, sα ∼ (p/k)α,
the pomeron pole, α(0) = 1, gives us a homogeneous parton density dis-
tribution,

dn(k) ∼ dk

k
=

dx

x
= dη,

– the famous Feynman plateau in rapidity.
Our theory of the asymptotic behaviour of hadron scattering amplitudes

provides an insight into the structure of the hadron wave function, and
such a duality has a general physical significance.

The deuteron is a long-living object; the proton and the neutron inside
the deuteron collide from time to time, but most of the time they are well
separated. Does this picture apply to arbitrarily large energies?

Yes: this would mean that the deuteron always behaves as an object
that consists of two independently interacting particles.

No: the parton clouds of the two nucleons eventually overlap at high-
enough energies, so that by looking at the results of the collision
with the target, it is impossible to tell if we had a deuteron for a
projectile.

As we already know, this dilemma is related to the choice between the
strong- or weak-coupling regimes of the reggeon field theory.

The knowledge of the properties of the strong interaction between slow
partons is lacking. In spite of this, from the point of view of the parton
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picture, the asymptotic equality of the cross sections of all hadron pro-
cesses looks rather natural.

In the laboratory reference frame a slow parton from the incident
hadron interacts with the target; in the centre-of-mass frame it is slow
partons from the wave functions of the colliding hadrons that interact
with each another, in which case the hadron–hadron cross section is given
by the product of the universal slow-parton interaction cross section and
two parton densities.

=

ga

gb

a

b

a

b

 

.

In either picture the density of slow partons at the tip of a long parton
comb is universal – independent of the parent hadron (factorization).
Moreover, according to the logic of the parton picture, a hadron is almost
never in a sterile state: it is always represented by a ‘comb’.

In the reggeon language this means that the probability of emitting a
pomeron is one. Therefore, the pomeron–hadron residues, and thus the
total hadron–hadron interaction cross sections,

σab ∝ ga gb ∝
〈∑

s,s′

σss′(x, x′)

〉
,

turn out to be independent of the types of hadrons.‡

16.2.5 Hadrons ‘inside’ a parton

What is new in what the parton picture tells us about the strong inter-
action?

When a soft parton interacts with the target, the coherence of the
system breaks down. The partons of the ‘comb’ get released and, emitting
their own ‘ladders’, separate from one another producing some number of
hadrons in the final state.

The most interesting question is how the transition from partons to
hadrons occurs. One can formulate some sort of an uncertainty principle.

‡ For a detailed discussion of hadron–hadron and lepton–hadron interactions in the framework
of the parton picture see Gribov’s lecture entitled ‘Space–time description of the hadron
interactions’ in Gribov (2003).
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432 Strong interactions and field theory

We say that a hadron consists, on average, of 〈n〉 ∼ ln p partons. It is clear
that the opposite should also hold; the wave function of a single parton
‘contains’ 〈n〉 hadrons:

Δnpart × Δnhadr ∼ ln p .

How to visualize the conversion of a single parton into hadrons?
I have told you that the interaction of slow partons determines strong

processes, while to explore the nature of the point-like constituents one
has to employ electromagnetic and weak probes. This is not entirely true.

If we look at rare processes with large momentum transfers, significant
simplification occur in a purely strong interaction as well. In particular,
the parton → hadrons transition can be studied in a rare process of a
large-angle scattering of energetic partons.

Such scattering produces a constituent with large transverse momentum
p⊥. With the increase of p⊥ it becomes less and less likely that the other
partons from the wave function of the incident hadron will follow suit
and recombine with the struck parton. Therefore, an isolated parton will
fragment on its own, producing a shower of hadrons.

Once we measure, say, a single energetic pion at 90o in the cms of the
hadron collision, with a unit probability it has to be accompanied by a
bunch of hadrons with logarithmic multiplicity.

Moreover, by the conservation of the trans-
verse momentum, in the direction opposite to
that of the triggered particle in the transverse
plane there must be also ln p⊥ particles that
originate from the recoiling parton.

Hadrons with large transverse momenta are
rarely produced in hadron collisions: the inclu-
sive distribution falls fast with p⊥. However,
as soon as we have triggered one such parti-
cle, there is no additional suppression for having
other large-p⊥ hadrons in the final state.

ln  p 

ln  p

Observation of hadron jets, and especially of a recoiling jet in hadron
collisions with the production of large p⊥ particles verifies the parton
picture.

16.2.6 e+e− annihilation into hadrons

The annihilation of e+ and e− into hadrons is the cleanest process from
the point of view of the parton picture. In the first order in αem an electron
and a positron may either scatter or annihilate, producing any charged
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particle and its antiparticle, e.g. μ+μ−.

e − 

e + 

e − 

e + +  

μ − 

μ 

e − 

e + 

q 

q

The corresponding cross section one calculates in a standard way in quan-
tum electrodynamics. What character should have the process of e+e−

annihilation into hadrons?
In quantum field theory the photon interacts with a point-like charge. If

the energy is large, an intermediate-state photon has a huge virtual mass
that can produce either a pair of energetic leptons or, equally well, a pair of
electrically charged partons (quark and antiquark) flying in the opposite
directions in the centre-of-mass of the collision. The strong interaction
switches on, and two bare partons convert into hadrons. If transverse
momenta in this transition process are, once again, limited, we will see
two jets of hadrons emerging from the annihilation point.

This process is especially interesting in the sense that its cross section
is easy to calculate since it has a purely electromagnetic nature. The cross
section falls with the energy as σ ∝ α2

em/s, but its ratio to the standard
QED μ+μ− production cross section tends to a constant given by a simple
expression

R(s) ≡ σe+e−→hadrons(s)
σe+e−→μ+μ−(s)



∑

i e
2
i

e2
. (16.9)

The sum runs over the species of partons that can be produced at a given
energy, i.e. with masses mi <

1
2

√
s.

Let us remark that at very high energies the production of hadrons in
e+e− collisions is dominated by another process in which hadrons origi-
nate from the ‘collision’ of virtual photons belonging to electromagnetic
coats of incident leptons:

t2e+ e+

t1
s1

s
2

s M2 dσ

dM2
∝ α4

em

M4

dt1
t1

dt2
t2

. (16.10)

The corresponding cross section is much smaller, of the order of α4
em.

However, it does fall with energy; since photon spin is one, the energy
behaviour is similar to the case of the pomeron exchanges, s1M

2s2∼s.
Moreover, the total hadron production cross section actually grows with
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434 Strong interactions and field theory

energy. Integrations over momentum transfers t1 and t2 in a broad in-
terval tmin ∼ M4/s � |ti| � s give rise to two logarithms ln s; one more
logarithmic enhancement originates from the integration over the rapidity
of the hadron block: M4 dσ/dM2 ∝ ln3 s.

At small energies R(s) of (16.9) was exhibiting resonance structures
(markedly, the ρ meson peak), and then froze at R 
 2. This value came
as a gift to the hypothesis of three coloured quarks:

1
e2

(
e2
u + e2

d + e2
s

)
× 3 =

((
2
3

)2 +
(
−1

3

)2 +
(
−1

3

)2)× 3 = 2.

Now it seems that above
√
s 
 3 GeV a new threshold opens up and a

new heavier quark (‘charm’) enters the game. Independently of the theory,
in the near future we will be witnessing an avalanche of new particles. A
new spectroscopy starts following that of the 1960s when the model based
on three light quarks managed to classify hadrons.

16.3 Deep inelastic scattering

Now that we have gained certain knowledge about strong interactions, let
us discuss some aspects of the lepton–hadron scattering that we did not
touch on in Lecture 4.

Recall the essence of the deep inelastic scattering (DIS) phenomenon:
a virtual photon seems to interacts with a point-like particle (‘parton’)
inside a target hadron, which parton has spin 1

2 and a limited transverse
momentum.

16.3.1 Photon interaction with nucleons and nuclei

To penetrate deep into the proton interior, the momentum transfer
∣∣q2
∣∣

has to be large. The energy transferred by the photon from the lepton to
the proton should also be large enough, W 2 =

∣∣q2
∣∣(ω − 1) � m2, in order

to have a multi-state hadron system produced.
Imagine hadrons were point-like. Then the direct interaction process of

Fig. 16.3(a) dies out at high energies as σ ∝ 1/s.
It is easy to see, however, that there are certain unusual processes due

to which the photon–hadron interaction cross section, although small, is
constant in the high-energy limit.

The photon may fluctuate into a hadron pair, as shown in Fig. 16.3(b).
The lifetime of such a state may be very large at high energies, t ∼ q0/μ

2.
This does not happen often because the electromagnetic coupling is nu-
merically small; we may find the photon in a ‘hadron state’ only in one of

https://doi.org/10.1017/9781009290227.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.017


16.3 Deep inelastic scattering 435

q

(a) (b) (c)

Fig. 16.3 Direct photon–proton interaction (a); energetic photon fluctuating
into hadrons (b, c).

137 occasions, so to speak. However, once a fluctuation like that occurred,
with respect to the hadron multiplication there is no perturbation theory,
so that the photon will develop a full-scale parton comb, as a hadron does.

Thus, with the probability O(αem) the photon would approach the tar-
get as an ensemble of hadrons. Among them there are slow ones which
will interact with the target providing σγN

tot (s) 
 const. The only difference
with the hadron–hadron scattering case is in the size of the corresponding
photon–pomeron coupling: gγ ∝ αem.

There exists a rather unexpected experimental check of the validity
of this picture. What would you expect for the cross section of photon
interaction with a nucleus? A nucleus with atomic number A has a ra-
dius R ∼ A1/3. Total hadron–nucleus cross sections behave as σhA

tot ∼ πR2;
strongly interacting particles get stuck, with a large probability, and hence
the cross section is proportional to the surface of the target.

On the other hand, since the electromagnetic interaction is weak, there
is no large absorption and therefore the photon may freely pass through
the nucleus. Therefore one would expect

σγA
tot = σγN

tot ·A ∼ σγN
tot ·R3.

But if our picture of a fluctuating photon is correct, at sufficiently high
energy the photon must interact with the nucleus with a hadronic cross
section σ ∝ R2!

The condition reads q0/μ2 � R, that is, the lifetime of the hadron lad-
der fluctuation exceeding the time it takes to traverse the nucleus (Ioffe,
1969).

If we are sitting in this kinematical domain, we do not explore, with
the help of a photon probe, the interior of the hadron target but sim-
ply observe a hadron–hadron interaction. We would see nothing like the
Rutherford scattering in this case.

If our goal is instead to study the internal structure of the nucleon,
we must cut off hadron-like configurations inside the photon. How to do
that? By restricting the lifetime of the photon in such a way that it would
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436 Strong interactions and field theory

have no time to develop a shower while passing through the nucleon, that
is, by making the photon sufficiently virtual:

q0
|q2|

<∼
1
μ

=⇒ 2mq0
|q2| = ω <∼

2m
μ

∼ 10.

So, the dimensionless parameter ω = −2pq/q2 that we have introduced in
Lecture 4 must be of the order of unity (but not too large) in order to see
the photon interacting with point-like partons inside the nucleon, to see
the Bjorken scaling, etc.

16.3.2 DIS in the parton picture and quarks as partons

We are going to apply the parton model to the DIS process. Since we have
a picture of the parton content of a fast hadron, let us choose a reference
frame q0 = 0 in which a fast hadron collides with a static electromagnetic
field along some direction z:

q2 = −q2
z , 2pq = −2pzqz, ω = −2pq

q2
= −2pz

qz
.

The photon will be absorbed by one of the partons with momentum k. By
which? It has to be a fast parton since otherwise an overlap of its wave
function with the photon field of the size Δz ∼ 1/ |qz| would be small. The
time the hadron passes through the field does not exceed 1/μ. For a long-
living fast parton with the ‘lifetime’ k/μ2 � 1/μ this is an instantaneous
interaction, and such interaction occurs with conservation of the energy.
This condition selects a parton with a definite momentum:

k′ = k + q, k′0 = k0 =⇒ |kz| 

∣∣k′z∣∣ =⇒ kz = −k′z = −1

2qz. (16.11)

After absorbing the photon, the struck parton flies in the opposite direc-
tion, k′z = −kz. What will happen with it afterwards is unimportant for
the DIS cross section. It is determined simply by the product of the Born
cross section for the photon absorption by a parton and the density of
partons with the given rapidity η:

dσ

dq2 dω
=

dσB
dq2

·
∫

φ(η,k2
⊥)

d2k⊥
(2π)2

, (16.12a)

ξ − η = ln
pz
kz

= ln
2pz
|qz|

= lnω. (16.12b)

Recalling that the parton density in the parton model depends only on
the rapidity distance to the parent proton (16.12b), the DIS cross section
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takes the form

dσ

dq2 dω
=

4πα2
em

q4

{
φ0(ω) · e2

part

[
1 − pq

ppe

]

+ φ1
2
(ω) · e2

part

[
1 − pq

ppe
+

1
2

(
pq

ppe

)2 ]}
,

(16.13)

where we have introduced the densities of partons with spin-1
2 and spin-

zero, accompanied by the corresponding electron scattering cross sections.
Apart from simple QED factors, this expression contains two unknown

functions φ of one variable ω. This is the Bjorken scaling. Experiments,
as we have already discussed in Lecture 4, show no presence of spin-zero
charges, φ0 
 0.

Thus, from the parton model we have derived the Bjorken scaling using
two hypotheses: φ = φ(ξ − η), that is the existence of the stationary par-
ton density, and, certainly, the hypothesis of limited transverse momenta
of partons inside the hadron wave function.

The expression (16.13) contains, obviously, the parton charge epart (in
units of the electron charge). If partons are quarks, these charges are
fractional numbers. Is there a way to measure them experimentally?

The parton density φ is not entirely arbitrary; it obeys certain nor-
malization conditions. If we integrate φ(η) over rapidity we obtain the
multiplicity of partons of a given species i:∫ ξ

0
dη φi(η) = Ni.

More informative is another sum rule, namely

∑
i

∫ ξ

0
dη φi(η) · eη =

p

m
, (16.14)

which expresses the fact that the total longitudinal momentum (energy)
of all the partons equals the momentum of the hadron they belong to.

The DIS cross section (16.13) contains the product e2
iφi, and one cannot

extract the charges without knowing the normalization of φ. Fortunately,
there is an additional source of information.

One may study weak processes like deep inelastic neutrino scattering,
νp → μ− + X. The weak interaction is insensitive to electric charges but
feels the presence of spin-1

2 partons in the proton. The mass of the inter-
mediate boson W± is apparently too large to make itself felt at presently
available energies, so that the behaviour of partons in weak DIS processes
can be described by means of the standard four-fermion Fermi interaction.
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438 Strong interactions and field theory

By combining the information coming from electromagnetic and weak
DIS, one attempts to extract electric charges of partons. Modulo some
uncertainties in the neutrino–quark scattering amplitudes, the results are
consistent with ∑

i∈proton

e2
i 
 1

(
= 2 ·

[
2
3

]2 +
[

1
3

]2 )
,

∑
i∈neutron

e2
i 


2
3

(
= 2 ·

[
1
3

]2 +
[

2
3

]2 )
.

Moreover, integrating and adding up the densities of quarks–partons of
different species, one can estimate the total energy-momentum carried by
charged partons inside the nucleon. The result is telling: about 50% of the
nucleon momentum in (16.14) belongs to some electrically neutral fields
(gluons?).

16.3.3 Structure of the final state

Let us address a very important question: what happens with the parton
system after one parton is kicked off.

We turned around one of the partons of what was a coherent system.
The relative invariant energy between the struck parton and its neigh-
bours becomes large, and therefore it is unlikely to interact with the rest
of the system. This means that we have prepared an isolated parton –
a bare field-theoretical object. Flying in the opposite direction, it will
‘decay’ into ln(qz/2) hadrons.

What about the rest of the parton comb that keeps moving in the initial
direction of the nucleon?

Coherence of the bottom part of the parton fluctuation in Fig. 16.4(a)
is not disturbed by the scattering. First slow partons with ki ∼ μ and
then, successively, faster partons will be absorbed; they will revert to
assembling the initial coherent proton. However, at the level of ki ∼ kz =
1
2 |qz| the parton ensemble becomes aware that its coherence had been
broken; the upper part of the fluctuation will get released, turning into
hadrons.

The resulting rapidity distribution of final-state hadrons is sketched in
Fig. 16.4(b). It has a characteristic hole in rapidity.

This would be the structure of the final state if quarks were not confined.
The answer may be different if there is some specific dynamics (beyond
our naive field-theoretical approach based on the locality of the interaction
in rapidity) that would force the struck quark to interact with the rest
of the parton ensemble in order to prevent the two separating hadron
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Fig. 16.4 (a) Coherent collapse of an undisturbed part of the parton wave
function in DIS; (b) rapidity distribution of final-hadrons with a ‘hole’.

systems from having fractional electric charges. Such an interaction could
fill in the gap between the negative rapidity (‘current fragmentation’) and
positive rapidity hadrons (‘target fragmentation’), leading to a uniform
hadron plateau – the dashed line in Fig. 16.4(b).

The existence of the hole in the hadron distribution is a key test for
quarks in the rôle of partons. Experimentally, there is no sign of a hole in
the proton fragmentation.

Thus we face a strange situation: on the one hand, the picture of quasi-
free quark-partons works in DIS; on the other hand, the mechanism that
forces the flying-away quark to ‘communicate’ with the rest of the proton
is unclear.

16.4 The problem of quarks

There were times when quarks were thought to have large proper masses
in order to explain their non-observation as free particles. Now, from
the DIS experiments we know that the masses of (u, d) quarks must be
smaller than 1 GeV. Thus, there has to be a special reason for quarks not
appearing in the physical spectrum – the confinement.

Whatever the reason for quarks to be confined inside hadrons, looking
at what happens in the e+e− annihilation it is clear that to ensure the
quark confinement in such a process is not easy.

The quark and the antiquark fly too fast, and separate too far, to be
able to interact with one another. Nevertheless, we expect two ‘jets’ of
hadrons in the final state. Therefore, the production of multiple qq̄ pairs
which then recombine to form mesons, Fig. 16.5, cannot be explained by
the re-interaction between the quarks created in the annihilation point.
It has to be the result of the reaction of the vacuum on the production of
two relativistic charges.
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q 

e− q 

e+

Fig. 16.5 Recombination of quarks into final-state hadrons in e+e−

annihilation.

In quantum electrodynamics such a process is accompanied by radia-
tion of soft photons (bremsstrahlung). Maybe in strong interactions an
analogous phenomenon also plays a rôle.‡

16.4.1 One-dimensional electrodynamics

We have an example of a field theory with confinement – the Schwinger
model. It is one-dimensional electrodynamics with massless fermions. It
does not answer the question why quarks are confined in the real world,
but it demonstrates nevertheless how the reaction of the vacuum results
in the formation of ‘hadrons’ (Schwinger, 1962).

In one spatial dimension two charges cannot be separated because they
interact as two infinite planes in our world, with their electromagnetic
energy increasing linearly with the distance:

E =
E2V

8π
, |E| = const.

Classically, a pair of planes with opposite charges will oscillate. In the
quantum case the system cannot have an arbitrary energy; it has to be
quantized. So, a boson spectrum with a definite mass must appear. If
we produce two planes with a large energy (as in e+e− annihilation), we
expect that many oppositely charged pairs of planes will be produced
giving rise to many bosons in the final state.

Let us study this theory in a more formal way. We have massless
fermions and a photon, and the standard electromagnetic interaction be-
tween them. Since our space is a line, a massless fermion moves with the
speed of light either in the positive or in the negative direction along it.

As we shall see shortly, an amplitude for the photon transfer into the
fermion pair is different from zero only when the fermions move in the

‡ Indeed, it is radiation of soft gluons that fills in the ‘Gribov hole’ (Gribov et al., 1987).
QCD bremsstrahlung plays a key role in the formation of final hadron states (Amati and
Veneziano, 1979; Marchesini and Webber, 1984).
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same direction (this is the consequence of the helicity conservation in the
electromagnetic interaction).

An invariant mass of a pair of massless particles moving in the same
direction is zero,

(k1 + k2)2 =k2
1 + k2

2 + 2(k10k20 − k1zk2z)=0 + 0 + 0, k1z/k10 =k2z/k20.

Therefore, we have two massless states – the photon and the qq̄ pair –
that mix, so there must be a splitting of the degenerate levels. (In fact,
qq̄ is not one state but many, with different quark energies, k10/k20.)

As a result, the discrete state – the photon – must acquire a finite mass.
Let us see how this occurs.

Πμν(k) = −e2

∫
d2p

(2π)2i
Tr
[
γμ

1
p̂
γν

1

p̂− k̂

]
= (gμνk2 − kμkν)Π(k2).

Let us calculate the imaginary part of the specific component Π00 of the
polarization tensor:

Im Π00 = −e2

∫
d2p

2
Tr
[
γ0p̂γ0(p̂− k̂)

]
δ+(p2)δ+((k − p)2). (16.15a)

The trace equals

−1
2

Tr
[
γ0p̂γ0(p̂− k̂)

]
= 2p0(k0 − p0) − p(k − p)]

= p0(k0 − p0) + pz(kz − pz).
(16.15b)

Since p0 = |pz| and k0 − p0 = |kz − pz|, the trace vanishes when the
fermions fly in opposite directions. When the momenta are parallel,
(16.15) yields

Im Π00(k2) = e2

∫ k0

0

dp0

2p0
2p0(k0 − p0)δ(k2) = e2k2

0δ(k
2) ≡ k2

z · Im Π(k2).

We get

Im Π(k2) = e2δ(k2) =⇒ Π(k2) =
e2/π

k2 − iε
.

The singularity at k2 = 0 of the polarization operator results in

Dμν =
(
gμν −

kμkν
k2

)
dt(k2), dt(k2) =

1
k2(1 − Π(k2))

=
1

k2 −m2
.

Thus, the gauge invariance is spontaneously broken and the photon ac-
quires a finite mass m2 = e2/π. (In the one-dimensional QED the charge
has the dimension of mass.) Massive photon is that very bosonic state
that represents a pair of planes.
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Given a finite photon mass, electric fields fall exponentially with
distance, E ∼ exp{−mr}. This would contradict the Maxwell equation
div E = 4πρ, unless the charge density ρ were in fact zero.

Indeed, by explicitly solving the theory one can show that the introduc-
tion of external currents provokes an appearance of the polarization cur-
rent, which results in a local compensation of electric charges. An ‘e+e−

annihilation’ process in one-dimensional electrodynamics causes the pro-
duction of multiple fermion pairs, resulting in the final-state structure
guessed at in Fig. 16.5.

16.4.2 A field theory for strong interactions?

The quark model has demonstrated that there is a simplicity in the spec-
trum of hadrons – mesons and baryons. Maybe there is a certain simplicity
not only in the mass spectrum but in a deeper sense. The apparent com-
plexity of hadron interactions does not exclude the simplicity at short
distances.

In spite of the fact that the quantum mechanics of electrons in the
Coulomb field is perfectly known, we would not dare to attempt to
quantitatively describe the structure of a final state in, say, the colli-
sion of two atoms of mercury. We just get a mess. But at high ener-
gies, and in specific observables, the simplicity of the internal structure is
manifest.

Should we approach the hadron dynamics from a short-distance side?
Although, as was mentioned in Lecture 4, the experimentally observed

Bjorken scaling is not described by any field theory, we cannot imagine
anything but a field theory based on simple point-like objects. Today
progress (if it may be called so) goes in the direction of returning to
quantum field theory with, possibly, a small coupling constant.

We saw in Lecture 2 that the effective pion–nucleon interaction coupling
constant is large, g2

πN/4π 
 14. But it may be that the coupling is large for
composite objects – hadrons – while the quarks (which sit inside and by
some reason cannot be freed) interact with a smaller constant. Otherwise,
why would a parton absorb a virtual photon in the DIS process like a
quasi-free particle?

Could it be possible to find a quantum field theory in which the inter-
action between the objects with small wavelengths is weak and the inter-
action with large wavelengths is strong? If such a theory will be found, we
will see a leap of interest; the complexity of hadrons will cease to be the
object of attention (as does the complexity of the Hg atom). Under focus
will be, rather, processes in which a relatively simple internal structure of
hadrons reveals itself.
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16.5 Zero charge in QED and elsewhere

The best developed quantum field theory is quantum electrodynamics.
What do we know about QED? On the one hand, it contains divergences,
on the other hand, it is renormalizable. What does this, essentially, mean?
Let us imagine that either the perturbation theory, or the theory itself,
is wrong at short distances. Hence, integrating over momenta, we can do
this correctly only up to a certain large momentum scale k < Λ.

What was the essence of progress in the 1950s? The uncertainty which
appears due to the existence of such a cutoff, is contained by two quanti-
ties: by the observable charge and the mass of the electron which, there-
fore, remain uncalculable. It is obvious, however, that one cannot simply
stop at that. Increasing the momenta of the external particles, sooner or
later Λ will make itself felt.

There are two ways to formulate the problem.

(1) Let the interaction have a simple (point-like) form at k ∼ Λ (and
at k > Λ no interaction whatsoever). At momentum scales k ∼ Λ
there are no corrections at all, and with the decrease of momenta,
the corrections become relevant.

(2) The second approach is, though less transparent, essentially equiva-
lent. Assume a given interaction at k ∼ m; I want to see what hap-
pens when k increases. This is a semi-phenomenological approach;
obviously, in a quantum field theory large distances are determined
by small ones and not the other way round.

The basic quantities of the theory that contain ultraviolet divergences
are the vertex part and the photon and electron Green functions. The
integrals that determine all the other quantities are converging.§

16.5.1 First approach

In the first approach one introduces the bare charge e0 at the ultraviolet
momentum scale Λ.

Each subsequent correction to the diagram adds the factor e2
0, one pho-

ton and two fermion Green functions and the momentum integration d4k.
However, it is not reasonable just to list all the corrections order by order
in perturbation theory.

As we have seen in the QED course (Gribov and Nyiri, 2001), the set
of Feynman diagrams can be rearranged into the series of the skeleton

§ For details of the renormalization programme in quantum electrodynamics see Gribov lec-
tures (Gribov and Nyiri, 2001) (ed.).
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444 Strong interactions and field theory

graphs that are built of the exact vertices (Γ) and exact photon (D) and
fermion Green functions (G). The topology of the skeleton diagrams is
such that they do not contain sub-diagrams that could be attributed to
the vertex or propagator corrections.

Skeleton diagrams have a remarkable feature: each of them contains a
single power of the logarithm of the ultraviolet cutoff, ln Λ. The reason for
this is simple: the integration momenta are mixed up, each momentum en-
ters a large number of lines, and hence, the multiple integrals converge up
to the last step. This is just the property of renormalizability of quantum
electrodynamics.

For large momenta k we write G 
 −g(k2)/k̂ and D 
 d(k2)/k2, and
the magnitude of the correction is determined in fact by the combination

e2
0 Γ2G2Dd4k → e2

0 Γ2(k2) g2(k2)d(k2) d ln k2.

The quantity

e2(k2) = e2
0Γ

2(k2)g2(k2) d(k2) (16.16)

is the invariant charge which characterizes the interaction strength at
the momentum scale k. This structure is common for all renormalizable
theories.

How can the perturbative series be summed up? Initially we assumed
the bare charge to be small, e2

0 � 1. Let us decrease the external momenta
p not too much, so that e2

0 ln Λ2/p2 <∼ 1. In this situation all powers of the
parameter e2

0 ln Λ2/p2 have to be resummed. My exact propagators and
the vertex function have the following structure:

Γ(p2) = γ1

(
e2
0 ln

Λ2

p2

)
+ e2

0γ2

(
e2
0 ln

Λ2

p2

)
+ e4

0γ3

(
e2
0 ln

Λ2

p2

)
+ · · · .

(16.17)

Neglecting the corrections of the type e4
0 ln(Λ2/p2) ∼ e2

0 � 1 we get the
so-called leading logarithmic approximation (LLA) in which the problem
was first solved by Landau et al. (1956).

The higher functions γn, with n ≥ 2 are rather complicated; they are
given by skeleton diagrams with the exact LLA vertices (Γ = γ1) being
propagators. Imagine that γi(x) in (16.17) are of the same order not only
for x <∼ 1 but for any x. In this case everything seems to be ideal. If,
however, γ1 turns out to be singular or zero (e.g. at large x values), the
higher-order terms have to be investigated seriously.

Actually, due to the Ward identity,

∂G−1(p)
∂pμ

= Γμ(p, p, 0),
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the ultraviolet logarithms in Γ and g cancel, Γ = g−1, and one is left with
the photon renormalization function only in (16.16):

e2(k2) = e2
0 d(k

2).

Corrections to the propagator and to the vertex depend on the properties
of the charged particle. Therefore, if not for the Ward identity, the charge
would not be such a universal quantity.

We have calculated the invariant charge in Chew and Low (1959):

e2(k2) =
e2
0

1 + e20
12π2 ln Λ2

k2

. (16.18)

What does this expression mean? We have a simple picture: the invariant
charge decreases monotonously with the increase of the wavelength (the
situation is just the opposite of what we would like to have in strong
interactions).

The expression (16.18) is valid for large virtual photon momenta. At
small

∣∣k2
∣∣ <∼ m2, under the logarithm the mass m appears, and for the

physical charge that determines, e.g. the Coulomb scattering we get

e2
c = e2(k2 = 0) =

e2
0

1 + e20
12π2 ln Λ2

m2

. (16.19)

Suppose that I have introduced in the theory a finite charge at small
distances corresponding to the large momentum scale Λ. Then at larger
distances the effective charge becomes smaller. Moreover, for a point-like
particle there is a complete screening ; if we decrease the size of the region
over which the bare charge e0 is smeared, the on-mass-shell charge van-
ishes: e2

c → 0 with r0 ∼ 1/Λ → 0. The polarization of the vacuum screens
the point-like charge totally, so that the observable electric charge has to
be zero; e2

c/4π = 0 instead of 1/137.
How can this be explained?
We used the hypothesis that the bare charge e2

0 is small. The LLA
cannot be blamed for such an unphysical result. Our approximation of
neglecting the higher-order corrections in (16.17) becomes even better,
since the true measure of the interaction strength – the effective charge
e2(k2) – is decreasing with the decrease of the virtuality.

There remains one unsolved problem: what, if e2
0 was large initially?

More than 20 years has passed since the discovery of the running QED
charge and of the zero-charge problem, but nobody has been able to ex-
plain why the large charge would be harder to screen than the small one.

May be there is a real ultraviolet cutoff Λ in nature? From the very
beginning, it was assumed that Λ could be related to the gravitational
radius. In such a scenario one would need to have ν = 13 elementary
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fermions (presuming that only fermions are polarizing the QED
vacuum).

In any case, pure quantum electrodynamics is a contradictory theory.

16.5.2 Second approach

The property of renormalizability means that all the divergences (depen-
dence on the cutoff Λ) have to enter the observable charge ec:

e2
c ≡ e2

0 · Z3(e2
0; Λ

2), d(e2
0; k

2,Λ2) = Z3(e2
0; Λ

2) · dc(e2
c ; k

2).

Does our solution satisfy the renormalizability property? It certainly does:

d(k2) =
1

1 + e20
12π2 lnΛ2

k2

=
1[

1 + e20
12π2 ln Λ2

m2

]
− e20

12π2 ln k2

m2

=
1

1 + e20
12π2 ln Λ2

m2

× 1

1 − e2c
12π2 ln k2

m2

≡ Z3 × dc(k2),

(16.20)

where e2
c is given by (16.19). The photon renormalization function,

Z3 =
1

1 + e20
12π2 ln Λ2

m2

,

embeds the whole dependence on Λ and on the bare charge e0, while the
renormalized photon Green function dc(k2) contains only the renormalized
charge e2

c = Z3e
2
0, as it has to be, owing to renormalizability.

Of course, this result for the Green function could have been obtained
in the renormalized perturbation theory, not introducing Λ at all. We
would notice that the fermion loop behaves at k2 � m2 as

(gμνk2 − kμkν) · e2
c ln

k2

m2
,

i.e. perturbation theory breaks down when e2
c ln(k2/m2) ∼ 1. Then, re-

peating the logics of the logarithmic approximation,

e2
c � 1; e2

c ln
k2

m2
∼ 1,

we would arrive at a geometrical progression, and the running coupling
e2(k2) would be expressed directly in terms of renormalized quantities:

e2(k2) = e2
c Γ2

cg
2
cdc = e2

c dc =
e2
c

1 − e2c
12π2 ln k2

m2

, (16.21)

where we have used the Ward identity.
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In such a chain of thoughts we keep e2
c to be fixed. If so, we get a stupid

result: e2(k2) develops a singularity (‘Landau pole’) with the growth of
k2. The reason for that is that we have made a contradictory assumption,
namely, that the observable charge e2

c can be taken as a finite quantity.
The effective charge e2(k2) is the true expansion parameter. Near the

pole, where e2
c ln k2

m2 
 1, it becomes large, and the higher corrections be-
come important and may help to solve the problem. The question is not
cleared yet.

There is a simple relation between the two methods: e2
0 = e2(Λ2).

This situation has also influenced other theories. For a long time it
seemed that the screening, and therefore the zero-charge problem, was
unavoidable in any quantum field theory, and this was the reason owing
to which the interest in field theories was lost.

Let us suppose, for a minute, that the sign in the denominator of (16.21)
would be the opposite:

e2(k2) =
e2
c

1 − e2c
12π2 ln k2

m2

=⇒ g2
c

1 + c g2
c ln k2

m2

, c > 0. (16.22)

How crazy is such an expression? It looks impossible at first sight. Indeed,
how could it be that, when we move away from the charge, we see it not
screened by the medium but, on the contrary, growing as if it pulled on
other charges of the same sign?

Indeed, in electrodynamics this does not happen. However, for the grav-
itational interaction where all masses attract each other, this scenario can
be easily imagined.

Such a system would be, obviously, unstable. Something must hap-
pen at large distances; the expression (16.22) contains an unphysical
ghost pole at small momenta k2. On the other hand, an instability
may be a welcome feature which might help us to understand why the
quarks cannot be separated at large distances but are confined inside
hadrons.

16.6 Looking for a better QFT

According to deep inelastic scattering experiments, for strong interactions
we need a theory with the interaction that weakens at small distances
(e.g. as (16.22) does). We also want the theory to be renormalizable. This
requirement does not follow from any physics. Nevertheless, to have a non-
renormalizable theory is for us, unfortunately, the same as not having a
theory at all.
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In order to see whether a given theory is renormalizable, it suffices to
look at the dimension of the coupling constant: [g] = [mα]. At large virtual
momenta p, a higher-order correction then has the structure (g2/p2)α. If
α > 0, the correction falls in the ultraviolet region, and the theory is super-
convergent (as is the λϕ3 theory). If, on the contrary, α < 0, the loop in-
tegral diverges in the ultraviolet, and the theory is non-renormalizable (as
the four-fermion Fermi interaction). When g is dimensionless, corrections
are logarithmic, g2 ln p2, and the theory is renormalizable.

16.6.1 Fermion and scalar fields

There was a time when the field theory with the interaction gψ̄γ5ψϕ was
considered as being related to reality, with nucleons and pions as elemen-
tary fields. We have seen already that the coupling constant g is then
very large, g2/4π 
 14. This is, however, on the mass shell, g(mπ,mN ).
What is the form of the effective interaction? Unfortunately, the same as
in electrodynamics:

g2(k2) =
g2
0

1 + c g2
0 lnΛ2

k2

, c > 0.

At small distances the interaction is even stronger. We face the same zero-
charge problem as in electrodynamics. In reality one has to add to this
interaction the quartic point-like interaction between pions, λϕ4. Even if
we do not introduce it from the beginning, it is induced by a logarithmi-
cally divergent diagram with a four-scalar field attached to the fermion
loop. Thus, the new vertex is necessary to achieve renormalizability of all
amplitudes, including that of the four-scalar particle interaction.

16.6.2 Vector fields: how to construct a renormalizable theory

Let us consider now a vector particle (as in electrodynamics). Will such
a theory be renormalizable? Generally speaking, vector theories are not
renormalizable.

The Green function for a vector particle with mass m is

Dμν(k) =
1

m2 − k2

[
kμkν
m2

− gμν

]
. (16.23a)

Where this structure comes from? The propagator of a vector particle,

−
3∑

λ=1

eλμ(k)eλν (k)
m2 − k2

, (16.23b)
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contains the sum over three polarizations (the overall minus sign guar-
antees that the residue is positive, since (eμ)2 < 0). Three polarization
vectors out of four, eλμk

μ = 0, λ = 1, 2, 3, correspond to a spin one parti-
cle; in the rest frame there are three spin projections, eλμ = (0, eλ). The
fourth vector, e0

μ = (1,0), describes a particle with spin zero – a scalar.
In order to eliminate the term proportional to kμkν/m

2 in (16.23a),
we could try to extend the sum in (16.23b) to all four polarizations, by
allowing the propagator to describe degenerate states of spin-zero and
spin-one objects. In this case, however, the scalar would be a ghost (would
enter with negative probability).

Thus, if we want to preserve unitarity, we must keep the kμkν term in
(16.23a), and this leads to a catastrophe: superfluous momenta multiply
the vertices, and integrals diverge at large loop momenta.

Why then is electrodynamics renormalizable? There is no necessity
to take special care about the ‘scalar’ polarization, since, owing to cur-
rent conservation, it is not produced, and the kμkν term can be simply
dropped.

Is the fact that the photon is massless important for the renormaliz-
ability of QED? Not at all. A theory containing a massive photon, and
conserved current, barely differs from electrodynamics. Unfortunately, it
is also no different from QED in what concerns us, namely, the problem
of zero charge; the mass in the photon propagator is unimportant in the
ultraviolet momentum region, k → ∞.

A few years ago it seemed that there are no other renormalizable quan-
tum field theories. This situation looks strange: we have a theory of
fermions interacting with the electromagnetic field. What about the other
particles? Can they interact with the electromagnetic field? We know that
the answer is yes for scalar particles, with only one subtlety: there have
to be two vertices,

γ 
+ . (16.24)

However, the scattering of scalar particles contains logarithmic diver-
gences,

+ ,

and the local four-scalar interaction has to be introduced. Thus, scalar
particles cannot interact with the electromagnetic field only.

https://doi.org/10.1017/9781009290227.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.017


450 Strong interactions and field theory

A scalar particle cannot be considered as truly point-like with respect
to the electromagnetic radiation; we are forced to introduce an additional
interaction (λφ4) which makes the particle somewhat ‘smeared’.

One wonders, whether only fermions can be point-like? This would be
in agreement with the fact that particles that are ‘sterile’ with respect to
strong interactions (point-like with respect to the weak interaction) are
only fermions (e, μ, ν).

What if we take a charged vector particle ?

k

1 2r
(16.25)

For renormalizability we have to require

qρ1Γμρσ(q1, q2) = qσ2 Γμρσ(q1, q2) = 0;

in addition, conservation of the electromagnetic current requires kμΓμρσ =
0. It can be easily seen that no vertex can satisfy the current conservation
relations simultaneously with respect to all three momenta. Does this
mean that charged vector particles do not exist at all?

We can, of course, imagine a vector particle as a bound state of a
fermion and an antifermion. In this case the electromagnetic interaction
will not reduce to that with a point-like particle with spin σ = 1, and the
renormalizability will not be broken. However, we do not know how to
write down such an interaction phenomenologically; moreover, we are not
able to calculate bound states of relativistic objects.

In terms of dispersion relations, how would the problem manifest
itself?

We have the term qμqν/m
2 in the charged-particle propagator, and, if

the vertices do not give zero, the amplitude increases. It turns out that the
condition qΓ = 0 (kΓ = 0) can be satisfied if the other two vector particles

C γ 

γ C 

in the vertex are real, that is, on-mass-shell
and with physical polarizations. (We shall
see this later explicitly.) If so, the term
qμqν/m

2 in the CC̄ → γγ amplitude can be
dropped as long as the external particles are
real.
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q3

q1

m2
s2

m2

(a) (b) (c)

Fig. 16.6 (a) Longitudinal term in the multi-photon annihilation amplitude.
(b) Energy growth of the imaginary part of the scattering amplitude. (c) Adding
a scalar-particle exchange.

Let us consider more complicated processes.
In the process of CC̄ annihilation into three
photons, everything is all right too: qμqν pieces
of the propagators of the internal virtual lines
q1 and q2 multiply the external vertices, and
their contributions vanish on the mass shell.

qμ
1 q

ν
1  qμ 

2  q
ν
2   

As to the production of four photons (Fig. 16.6) the situation changes.
In the amplitude Fig. 16.6(a), the term qμ2 q

ν
2 coming from the propagator

surrounded by two virtual lines q1 and q3, does not disappear. As a re-
sult, the imaginary part of the amplitude of CC̄ scattering via photons
displayed in Fig. 16.6(b) grows with energy, and the restoration of the am-
plitude requires a subtraction term – an arbitrary constant. This means
non-renormalizability of the theory, in the language of dispersion rela-
tions. Since the convolution of the momentum vector qμ2 with the vertex
Γ(q2, q3) must be zero when the particle 3 is on the mass shell,

q 
3 

q μ
2   

qμ2 Γμρσ(q2, q3) ∝ (m2 − q2
3). (16.26)

Hence, the propagator of the virtual particle 3 actually cancels in the
diagram, giving rise to a reduced diagram with two photons effectively
emerging from one point.

As I have already mentioned, the sign of the residue coming from the
badly behaving polarization is of ‘ghost’ type. Therefore, in principle, this
unwanted contribution can be cancelled by adding to the theory a normal
charged scalar particle ϕ as shown in Fig. 16.6(c). A simple tuning allows
one to make the sum of the diagrams (a) and (c) to have good asymptotics
(i.e. to cancel the divergences).

In the electrodynamics of scalar particles (as well as in the QFT with
interacting fermions and (pseudo)scalars discussed above), in order to
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have a renormalizable theory, we have to introduce an additional inter-
action. In the electrodynamics of vector particles the introduction of an
additional scalar field is required.

It turns out that the class of renormalizable theories can be enlarged
considerably by generalizing electrodynamics in a more serious way than
by just making the photon massive. What is the idea? How could one
approach the problem of renormalizability in a more general way, avoiding
the necessity of inventing the counter-term diagrams?

In electrodynamics a ‘scalar’ component of the vector field cannot be
produced even virtually due to the condition kμAμ = 0, which selects three
components of the photon field out of the four-vector Aμ. In fact a real
photon has not three, but two polarizations; the ‘longitudinal’ compo-
nent, Aμ(k) ∝ kμ, is not produced either (current conservation). Turning
to a theory of a vector field with a finite mass, three components appear.
Where do they come from? We inserted them into the massive Lagrangian
just by hand. Would it not be possible to write the third component sep-
arately, so that it would delicately join in, adding to the initially massless
two-component photon?

Let us ask ourselves whether a scalar field with zero mass can exist.
One may push in an arbitrary number of such particles with k = 0 in the
vacuum. The first thing that is likely to emerge is a constant field of φ
particles – a Bose condensate.

φ 

γ 
As soon as I introduce the interaction with

photons, a photon propagating in a constant
scalar field will experience Thomson scattering
and continuously accumulate a scattering phase,
in other words – it will acquire a finite mass.

Diagrammatically, a photon mixes up
with the scalar field; after diagonaliza-
tion the propagating states possess a
non-zero mass. Two components of the
photon and the (gradient of the) scalar
field combine into a three-component
massive vector field.

γ 

φ 

On the basis of this simple example one can try to construct a theory
of massive charged vector particles.

16.6.3 Conservation of current and cancelling diagrams
� When we try to construct renormalizable field theories, for particles

with spins σ ≥ 2 ultraviolet divergences appear which we do not know
how to deal with.
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� In the case of vector particles, σ = 1, QED has taught us that the
conservation of current can help to eliminate divergences. In partic-
ular, it is straightforward to construct a theory of a neutral massive
vector field.

� Turning to electrodynamics of charged spin one particles, we see that
there is no vertex that would provide current conservation with re-
spect to all three vector lines simultaneously.

Maybe, there exists a deeper symmetry which provides a stronger current
conservation than it can be seen just from the structure of the vertex?

Arriving at the vertices with virtual lines, kμkν gives not zero but
a quantity proportional to the departure from the mass shell, cf.
(16.26). This cancels the propagators and leads to a topologically simpler
diagram:

kμkν 

Is it not possible to invent a theory which would have such a diagram a
priori, to help to cancel the ‘longitudinal’ term?

In electrodynamics this was just the case. Let us take, for example, a
box diagram with e+e− annihilating into two photons and consider what
happens with the ‘longitudinal’ part of the photon Green function:

kμ kν p1 

p2 
(16.27a)

The photon momentum kμ, multiplying the vertex, produces

kμγ
μ = p̂1 − p̂2 = −(m− p̂1) + (m− p̂2);

the first term gives zero when it acts on a spinor describing an on-mass-
shell electron, (m− p̂1)u(p1) = 0 (Dirac equation), while the second term
cancels the virtual fermion propagator, resulting in a reduced graph,
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(16.27a). However, in QED we have also the second Feynman diagram,

k
μ k

ν

p1

p2
(16.27b)

Two diagrams cancel in the sum.
In the case of scalar charges, the cancellation between reduced graphs

(16.27) is incomplete (because of the momentum dependence of the γϕϕ
vertex). In this situation the diagrams with the four-vertex, γ2ϕ2, see
(16.24), participate to make the kμkν piece go away.

I wanted to demonstrate in terms of diagrams, what is required from
the new theories.

16.7 Yang–Mills theory

The current conservation in quantum electrodynamics had one more very
important interpretation: QED was constructed in such a way that a
photon mass could not appear there due to gauge invariance.

We want to construct a theory where, again, summing the full set of
diagrams, we get cancellation of dangerous kμkν terms. This would ensure
current conservation in spite of the impossibility to have conservation
directly in the three-particle vertex.

What is the connection to the photon mass?

Πμν(k) =
k 

p2 

p1 

Multiplying the polarization operator by the photon momentum,

kμγ
μ = p̂1 − p̂2 = (m− p̂2) − (m− p̂1),

we obtain, diagrammatically,

kμΠμν(k) = p1 − p 2 = 0.

The transversality of the photon polarization operator and, therefore,
non-appearance of photon mass, is a particular case of the cancellation of
divergences.
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16.7.1 Electrodynamics of massless vector particles

Guided by the idea that the absence of masses is already a hint to serious
cancellations, our first hope is to try to build up a theory of massless
charged particles.

Lint ∼ C̄CA

A 

C C
(16.28)

What is a charged particle? The charged field C can be represented as a
linear combination of two neutral fields, C1 and C2,

C =
C1 + C2√

2
, C̄ =

C1 − C2√
2

,

with positive- and negative-charge parity, correspondingly. Since a pho-
ton has negative charge parity, inserting this in the vertex (16.28), there
remain the transitions C1 + γ → C2 and C2 + γ → C1.

If the charged particles are massless as the photon is, it is natural to
consider three neutral fields C1, C2, C3 (C3 ≡ A) on equal footing, with
the interesting interaction

  
3 

k 2 

C1 

k 1 

C 3 

C 2 

k 
(16.29)

which is just another representation for the electromagnetic vertex
(16.25).

How to write an interaction so that the current is conserved? Let us
construct the tensor

Γμ1μ2μ3(k1, k2, k3) = gμ1μ2pμ3

(3) + gμ1μ3pμ2

(2) + gμ2μ3pμ1

(1),

where p is a linear combination of the momenta ki, e.g.

pμ(1) = a11k
μ
1 + a12k

μ
2 + a13k

μ
3 .

(It is dangerous to use higher powers of momenta, since this would increase
the divergence in the loop integrals.) Multiplying by the momentum, say,
k3, we get

k3,μ3Γ
μ1μ2μ3 = gμ1μ2(k3 p(3)) + kμ1

3 pμ2

(2) + kμ2
3 pμ1

(1). (16.30)

We need this expression to vanish upon multiplication by the physical
polarization vectors eλi

μi
(ki), i = 1, 2, which satisfy (eλi

μi
kμi

i ) = 0, when

https://doi.org/10.1017/9781009290227.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.017


456 Strong interactions and field theory

particles 1, 2 are on the mass shell: k2
1 = k2

2 = 0,

eλ1
μ1

(k1)eλ2
μ2

(k2) · k3,μ3Γ
μ1μ2μ3(k1, k2, k3) = 0.

Since we may choose the polarization vectors e(k1), e(k2) orthogonal
to the plane formed by the four-momenta {k1, k2, k3}, we must have
(k3p(3)) = 0 in (16.30). Representing p(3) as a linear combination

p(3) = a(k1 − k2) + b k3 (−k3 = k1 + k2),

(k3p(3)) = −a[ k2
1 − k2

2 ] + b k2
3 = 0,

we conclude that b = 0 (recall that k2
1 = k2

2 = 0). Hence,

pμ(3) = a(kμ1 − kμ2 ),

and the resulting form of the vertex is (up to an overall constant)

Γμ1μ2μ3 = gμ1μ2(k1 − k2)μ3 + gμ1μ3(k3 − k1)μ2 + gμ2μ3(k2 − k3)μ1 .
(16.31)

This is the sum of three electromagnetic vertices for a scalar particle.
Let us look again at the product (16.30):

k3,μ3Γ
μ1μ2μ3 = gμ1μ2(−k2

1 + k2
2) + kμ1

3 (k3 − k1)μ2 + kμ2
3 (k2 − k3)μ1 .

Substituting k3 = −(k1 + k2) we obtain

k3,μ3Γ
μ1μ2μ3 = gμ1μ2(−k2

1 + k2
2) + kμ1

1 kμ2
1 − kμ2

2 kμ1
2

= −(G−1)μ1μ2(k1) + (G−1)μ1μ2(k2),

where G−1 is the inverse transverse propagator of a vector particle,

(G−1)μ1μ2(k) = gμ1μ2k2 − kμ1kμ2 .

Thus, multiplying the vertex by the momentum of one of the particles
(‘photon line’), we have a difference of inverse propagators of two others
(‘charged lines’). We get the difference of the ‘reduced’ diagrams,

= −
k3 .

similar to that in quantum electrodynamics.
Is this everything we need? As often happens in bosonic theories, one

type of the vertex, (16.29), is not enough.
Recall the second-order QED interaction amplitude:

+ . . .+
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16.7 Yang–Mills theory 457

For spinor particles, σ = 1
2 , the sum of two Born amplitudes satisfied the

current conservation condition, kμMμν = 0. In the case of scalar charges,

however, it was necessary to add a four-particle
point interaction, because the triple vertex was
linear in momenta.

Exactly the same situation is there in our vector theory: for vector currents
to be conserved, one has to introduce a dimensionless four-particle vertex:

++ += +  . . .

(16.32)

16.7.2 Feynman diagrams and unitarity: Faddeev–Popov ghost

Having done so, the theory is formulated. As soon as we have Born terms,
perturbation theory can be constructed. How do we do this? A method
which always works is to use the unitarity conditions. We may take the
on-mass-shell Born amplitude on the r.h.s. of (16.32), square it, and re-
construct the higher-order scattering amplitude by its imaginary part,
employing the dispersion relation (with one subtraction). In principle,
there is no problem in carrying out this procedure; still, this is a rather
cumbersome way. Usually, we draw a Feynman diagram instead, which co-
incides with the dispersion expression. However, in the present case this
is not true.

To see what goes wrong, let us draw a diagram and take the imaginary
part by putting the cut particle lines on the mass shell, replacing the cut
propagators by the delta functions:

 

δ(k2
1  )

δ(k2
2  )

k1

k2

Which polarization states will emerge in the intermediate state? As a
rule, we expect two transverse polarizations to appear from the left and
the right, see Fig. 16.7(a), while the contributions of the longitudinal
polarizations have to be zero, owing to current conservation. However,
our four-particle amplitude (as well as the three-particle vertex Γ above)
satisfies the current conservation with respect to each external line only
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e e 

e e 

e 
(a) (b) (c) 

e

 

Fig. 16.7 Various combinations of intermediate state polarizations.

if all the other lines are on-mass-shell and with physical polarizations:

kμ1
1 Mμ1μ2μ3μ4 · eμ2(k2)eμ3(k3)eμ4(k4)=0; (e(ki)ki)=0, k2

i =0, i = 2, 3, 4.

Therefore, a situation like Fig. 16.7(b) (three transverse polarizations out
of four) will not appear in the imaginary part. The intermediate state
with two longitudinal polarizations shown in Fig. 16.7(c) will, however,
be present. Writing unitarity conditions, we summed, of course, only over
physical states, e⊥. Thus, the imaginary part of the Feynman diagram
differs from that in unitarity conditions. In fact we face here the first case
when the Feynman diagrams are not correct literally.

What can we do? A technical problem appears: is it possible, neverthe-
less, to represent the correct dispersion result in terms of diagrams, which
would provide us with the means to carry out calculations? The answer,
at the one-loop level, was given by Feynman. He suggested to introduce
a fictitious massless scalar particle (essentially, a single state e‖ can be
considered as a particle with σ=0), and subtract the corresponding loop,

−     
φ             φ 

C 
M 

A general prescription was given by Faddeev and Popov, namely: one
should introduce in the theory an additional field φ, with a normal vertex,
and handle it as a fermion, i.e. count every φ loop with a minus sign.

This example demonstrates that the Feynman technique ceases to be
transparent.

16.7.3 Gauge invariance and Lagrangian

Now we are going to discuss a different approach that leads to the theory
of interacting vector fields – the Yang–Mills theory.

So far we have considered only vector mesons. It is easy to introduce also
fermions. We should not forget, however, that up to now our construction
was symmetrical with respect to the indices 1 → 2 → 3 of the vector fields.
The symmetry of the theory with respect to the rotation in the ‘space’ of
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16.7 Yang–Mills theory 459

the three field components can be preserved if we introduce a doublet of
fermions, similar to a nucleon with two isospin states, N = (p, n).

But first let us elucidate the relation of the Yang–Mills theory with
electrodynamics. In the free fermion Lagrangian,

Lψ0 = ψ̄(x)
(
iγμ

∂

∂xμ
−m

)
ψ(x),

one can substitute

ψ → ψ′ = eiαψ, ψ̄ → ψ̄′ = e−iαψ̄, (16.33a)

with α = const, without affecting the equation of motion. This is, essen-
tially, the expression of the fact that a fermion and an antifermion can
not transform one into the other.

A prominent feature of quantum electrodynamics is that in this theory
one is allowed to carry out the transformation (16.33a) of the fermion
field, with the phase depending on the space–time point, α = α(x). (In
QED one can tell a fermion from an antifermion locally.) To keep the
action invariant under such transformation,

Lψ0 → L′
ψ0 = ψ̄′

(
iγμ

∂

∂xμ
−m − γμ

∂α(x)
∂xμ

)
ψ′,

one has to add to the Lagrangian the interaction with a vector field,

Lψ0 =⇒ Lψ = ψ̄

(
iγμ

∂

∂xμ
−m + γμAμ

)
ψ,

and simultaneously transform this field as

Aμ(x) → A′
μ(x) = Aμ(x) +

∂α(x)
∂xμ

. (16.33b)

The field Aμ changes, turns into some other field A′
μ. Hence, if A is the

dynamical variable itself, its proper action must be invariant with re-
spect to the gradient transformation (16.33b). Such an invariant photon
Lagrangian, as you know, is given by the square of the antisymmetric
electromagnetic stress tensor:

Fμν =
∂Aν

∂xμ
− ∂Aμ

∂xν
, L = Lψ +

1
4e2

FμνF
μν .

From the point of view of such an approach the Yang–Mills theory is
just an exact repetition of the same logic.

Let us introduce two fermions in the theory:

Lψ = Lψ1 + Lψ2 = ψ̄

(
iγμ

∂

∂xμ
−m

)
ψ (16.34)
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where ψ is a column,

ψ(x) =
(
ψ1(x)
ψ2(x)

)
,

like a nucleon with two isospin components, N = (p, n).
If there is degeneracy in the system (even with account of the inter-

action), I can consider these two levels as one field. With the help of a
unitary matrix, I can redefine (globally) who I call the ‘proton’ and who
the ‘neuteron’. Let us try to construct a theory in which such a ‘redefini-
tion’ can be carried out locally.

Consider a transformation,

ψ′(x) = S(x)ψ(x), ψ̄′(x) = ψ̄′(x)S−1(x); S†(x) = S−1(x),

with S(x) a unitary matrix.
Let us take the Lagrangian

Lψ = ψ̄(x)
(
iγμ

∂

∂xμ
−m + iÂ(x)

)
ψ(x), Â = γμAμ,

with Aμ an anti-hermitean 2 × 2 matrix of vector fields (an analogue of
photon), and rotate the spinor fields in it:

Lψ → ψ̄(x)
(
iγμ

∂

∂xμ
−m + iγμS

−1(x)
∂S(x)
∂xμ

+ iS−1ÂS

)
ψ(x). (16.35)

The Lagrangian stays invariant if the A field also transforms as follows:

Aμ → A′
μ = SAμS

−1 − ∂S

∂xμ
S−1; (16.36a)

Aμ = S−1A′
μS + S−1 ∂S

∂xμ
. (16.36b)

In order to have an invariant theory, the invariance of the action of the
fields Â is required with respect to the transformation (16.36). One ob-
serves that the field strength tensor

Gμν =
∂Aν

∂xμ
− ∂Aμ

∂xν
+ [Aμ Aν ] = Fμν + [Aμ Aν ]

transforms homogeneously, G′
μν = SGμνS

−1, and therefore the vector field
Lagrangian

LA =
1

4g2
Tr
(
GμνGμν

)
(16.37)

is invariant under the gauge transformation (16.36).

https://doi.org/10.1017/9781009290227.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.017


16.7 Yang–Mills theory 461

How is the field A built up? The 2 × 2 matrix has four components:

Aμ = I ·A0
μ +

3∑
a=1

τaAa
μ,

with τa the Pauli matrices. The field A0 here corresponds to the usual
electromagnetic interaction. It is generated by the (Abelian) transforma-
tion subgroup U(1) contained in the group of unitary 2 × 2 matrices:
U(2) = U(1) × SU(2). Let us exclude the photon and restrict ourselves
to fields TrA = 0, i.e. to Aa

μ with a = 1, 2, 3. The full Lagrangian of the
theory will have the structure

L = Lψ + LA = L0ψ + ψ̄γμ
∑
a

iAa
μτa ψ + L(Fμν)

+
1

2g2
Tr(Fμν [AμAν ]) +

1
4g2

Tr([AμAν ][AμAν ]). (16.38)

The last two terms generate those two vertices that we have drawn
above in (16.32). In terms of rescaled fields Ã = A/g, the three-boson and
fermion–vector boson vertices are proportional to the coupling constant
g, and the four-boson vertex proportional to g2.

We considered here SU(2) gauge symmetry. The discussed scheme can
be applied, however, to any unitary group SU(N). In particular, for N = 3
we introduce quarks of three colours and obtain N2 − 1 = 8 gluons, –
fundamental fields of the quantum chromodynamics.

16.7.4 Essential gauge invariance and cyclic variables

How can one work with such gauge theories? One of the ways to construct
a quantum theory is to use the functional integral:∫

ei
∫
L[A,ψ]dx dψ dψ̄ dAμ. (16.39)

Let us say a few words about the appearing problems. Making an effort
to have a gauge invariant theory, we arrived at an undefined system, since
we introduced more variables than it has in reality.

We operate with fields Aμ which can be substituted by other fields,
S−1A′

μS + S−1 ∂S
∂xμ

, not changing the action. Hence, the Lagrangian does
not depend on S, and this shows that in the functional integral (16.39)
there is integration over a large number of superfluous unphysical vari-
ables. The relation (16.36a) allows us to choose new physical fields in
different ways, e.g. so that A′

0 ≡ 0 (by solving the equation A0 = S−1 ∂S
∂x0

).
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Let us set Aa
0 = 0 and keep only the integration over three-vector po-

tentials Aa
i . Then, Ga

00 = 0, Ga
0i = ∂Aa

i /∂x0 ≡ Ȧa
i , and what remains is a

quite reasonable Lagrangian:

L(Ai, ψ) = Lψ − 1
2g2

[
Tr
(
ȦiȦi

)
− 1

2 Tr
(
GikGik

) ]
; (16.40a)

Gik =
∂Ak

∂xi
− ∂Ai

∂xk
+
[
Ai Ak

]
. (16.40b)

(The minus sign in front of the boson Lagrangian is due to my choice
of Ai as anti-hermitean matrices.) Since Gik do not contain the time
derivative, the last term in (16.40a) plays the rôle of the potential energy
of the self-interacting fields Aa

i ; the term (Ȧa
i )

2 is their kinetic energy.
Formally, this is not a relativistically invariant description, and usually

one chooses an invariant gauge fixing condition kμA
a
μ = 0.

We saw already in electrodynamics that there are two types of gauge
invariance.

� Firstly, the current conservation makes it possible to impose the con-
dition kμAμ = 0 in order to select three components of four.

� Secondly, a deeper consequence of the gauge invariance lies in the
fact that the photon is massless, and therefore a real photon has only
two field components.

The condition (k · Aλ) ≡ kiA
λ
i = 0 (λ = 1, 2) applies only to real photons.

In diagrams with virtual particles the longitudinal component of the elec-
tromagnetic potential, (k · A‖) �= 0, is acting and represents the Coulomb
field. This essential invariance allows us to write

Ai(x) = Bi(x) +
∂ϕ(x)
∂xi

; div B ≡ ∂

∂xi
Bi = 0.

The field ϕ here is absolutely essential inside the diagrams but does not
correspond to a free particle (does not ‘fly away’); real photons are de-
scribed solely by the two-component field Bi.

Our aim is to show that the theory with the Lagrangian (16.40) de-
scribes indeed massless vector particles. The equation A0 = S−1 ∂S

∂x0
that

we have used to eliminate the scalar component of the potential, fixed S up
to unitary matrices not depending on time. Arbitrary rotations depend-
ing on xi are still at our disposal. This allows us to look for an additional
invariance in our Lagrangian where no A0 is present and everything is
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determined. Let us write Ai in the form

Ai = v−1Bi v + v−1 ∂v

∂xi
(16.41)

and fix Ba
i by the condition

∂

∂xi
Ba

i = 0 (16.42)

in the same way as in electrodynamics. It is important to stress that this is
not a gauge transformation, just an attempt to separate physical degrees
of freedom. Note that since (16.41) has the form of a gauge transforma-
tion, Tr(G2

ik) does not depend on v. From the point of view of classical
mechanics, this makes v a cyclic variable, i.e. the one that has the kinetic
but not the potential energy (n the same way as the Coulomb field in
electrodynamics). A cyclic variable q in mechanics,

L = q̇2 +
∑
k

q̇2
k − U(qk),

changes linearly with time:

q̇ = const, q = ct + b.

This is actually the real difficulty of quantizing a gauge theory: there are
variables which do not oscillate but increase with time. It goes without
saying that if I measure components of the field strength, Ȧa

i , G
a
ik, all will

be fine. Nevertheless, a problem remains: perturbation theory cannot be
applied to such a Lagrangian possessing a cyclic variable.

Let us omit fermions and start with a free Lagrangian

LA0 ∝ 1
2

∑
i

Ȧ2
i −

1
4

∑
i,k

(
∂Ai

∂xk
− ∂Ak

∂xi

)2

. (16.43)

In the momentum representation,

Ai(x) =
1√
V

∑
k

ai(x0,k) eik·x, ai(x0,−k) = a∗i (x0,k),

we get

L ∝ 1
2

(
ȧiȧ

∗
i − |[ka]|2

)
= 1

2

(
ȧiȧ

∗
i − (δijk2 − kikj)aia∗j

)
, (16.44)

showing that the longitudinal component of the field, a ∝ k, does not
enter the potential energy. On the definite energy states, a(x0,k) =
e−ik0x0C(k), the Lagrangian (16.44) turns into

L ∝ 1
2

[
δij k

2
0 − (δijk2 − kikj)

]
CiC

∗
j .
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The expression in the square brackets is the inverse propagator:

D−1
ij (k) = δij k

2 + kikj , (16.45a)

Dij(k) =
1
k2

(
δij −

kikj
k2

0

)
. (16.45b)

You can verify that (16.45b) is indeed an inverse tensor to (16.45a):

3∑
α=1

D−1
iα (k)Dαj(k) = δij .

The free Green function acquires a pole in energy k0, and all the inte-
grals will diverge at k0 → 0, which divergence corresponds to the linear
growth with time of the longitudinal component of the vector field. The
Green function (16.45b) can be split into the sum of the transverse and
longitudinal contributions:

Dij(k) =
1
k2

(
δij −

kikj
k2

)
+

kikj
k2

0 k2
. (16.46)

The transverse part of the propagator, ki ·D⊥
ij(k) = 0, looks reasonable;

the longitudinal part contains an infrared divergence. Evidently, the latter
has to be defined additionally using some sort of iε (or ‘principal value’)
prescription of how to deal with the singularity at k0 = 0.

We conclude that a formulation without superfluous degrees of freedom
faces some difficulties owing to the increase of the longitudinal component
of the field with time.

What can we expect from the cyclic variable ϕ in quantum mechanics?
In classical mechanics it can be fixed arbitrarily. Since, however,

the equation of motion is ϕ̈ = π̇ = 0, the momentum is conserved,
and the wave function with a definite momentum eiπϕ is a stationary
state. The ground state corresponds to π = 0; it is the S-state in the ϕ
variable. In other words, the ground state does not depend on the cyclic
coordinate. In terms of operators,

δL
δv̇

∣∣Ω〉 = 0,

where Ω is any state of physical fields.
How does this S-state appear in terms of the action? We integrate over

all possible field trajectories in the functional integral. The usual saying
goes as follows: whichever field configuration is introduced at t = −∞, in
an infinite time the system arrives at the ground state. The functional
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integral up to A(t), ∫ A(t)

−∞
ei
∫
L[A(x)] dx dA,

is just the wave function of the vacuum. If, however, a certain field A does
not enter anything but the terms with derivatives in the Lagrangian, the
integral does not depend on the value of A; the integrand contains only
the differences over which the integral is taken. Hence, the system occurs
automatically in a S-state in cyclic variables which enter only the kinetic
energy.

16.7.5 Vacuum in the Yang–Mills theory

What does this tell us about the vacuum in our gauge theory? Let us
calculate the time derivative of the field in the form (16.41):

Ȧi = v−1Ḃiv + v−1Biv̇ + ( ˙v−1)Biv +
∂

∂t

(
v−1 ∂v

∂xi

)
.

Making use of unitarity, v · v−1 = 1 ⇒ v( ˙v−1) + v̇v−1 = 0,
we obtain

Ȧi = v−1
[
Ḃi + ∇i(B)f

]
v, (16.47)

where f ≡ v̇v−1 and

∇i(B)f ≡ ∂f

∂xi
+ [Bif ]. (16.48)

Roughly speaking, f is the time derivative of the ‘phase’ of the unitary
variable v. In electrodynamics where v is a number, v = exp iα(x), this
is literally true. The outstanding factors v, v−1 cancel under the trace in
(16.40a), and for the kinetic energy we derive

T = −1
2 Tr(Ei)2; Ei ≡ Ḃi + ∇i(B)f. (16.49)

Here Ea
i = δL/δḂa

i are analogous to ‘electric fields’. Since f enters the
kinetic energy (16.49) only, the momentum corresponding to the cyclic
coordinate reads

π ≡ δT

δf
= ∇i(B)

(
Ḃi + ∇i(B)f

)
= ∇i(B)Ei. (16.50)

Here we have used the definition of the ‘long’ (covariant) derivative (16.48)
and the transversality condition for the B field (16.42). As we have dis-
cussed above, the momentum π is conserved and should be set to zero in
the vacuum state.
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We want to extract the transversal part of the ‘electric fields’ and treat
them as canonical momenta πi conjugated to dynamical coordinates Bi:

Ei = πi +
∂φ

∂xi
,

∂

∂xi
πi = 0. (16.51)

To exclude the longitudinal part, we combine (16.51) and (16.49):(
∂

∂xi

)2

φ =
∂

∂xi
Ei = �(B)f, (16.52a)

where the operator � is defined as

�(B) ≡ ∂

∂xi
∇i(B) = ∇i(B)

∂

∂xi
. (16.52b)

Now we are ready to set the cyclic momentum (16.50) to zero:

0 = ∇i(B)Ei = ∇i(B)
(
πi +

∂φ

∂xi

)
= [Bi πi] + �(B)ϕ ,

which gives

φ =
1
∂2
i

�(B)f = − 1
�(B)

ρ, ρ = [Bi πi]. (16.53)

This is an analogue of the usual Coulomb equation φ = −(∂2
i )

−1ρ, with
ρ the charge density. When the momentum π is different from zero, after
excluding the cyclic variable, an additional centrifugal energy appears.
This is nothing but the Coulomb interaction energy. While in electrody-
namics this is the energy of external charges, ρ = ρext, in our case the
fields A are charged themselves, and we have the Coulomb energy of the
self-interacting Yang–Mills fields, produced by the ‘charge density’

ρ = [Biπi]. (16.54)

We want to find the Hamiltonian of the system,

H =
∫

d3xH(x), H(x) = − 1
2g2

Tr
(
E2

i (x) + 1
2G

2
ik(x)
)
.

For that we square the electric field (16.51):∫
d3x E2

i (x) =
∫

d4x
(
π2
i (x) − φ(x)∂2φ(x)

)
.

Finally, substituting (16.53) renders the Hamiltonian density:

H = − 1
2g2

Tr
(
π2
i + ρ

1
Δ(B)

ρ + 1
2G

2
ik

)
; (16.55)

Δ(B) ≡ −�(B) ∂−2 �(B). (16.56)
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This calculation completes the usual verification of the fact that the
initial Lagrangian describes interacting massless particles. This is not the
end of the story, however.

Usually, the vacuum state is characterized by small oscillations of trans-
verse fields. In our case it also contains randomly oscillating (S-state!)
longitudinal Coulomb fields. We see that the effective interaction turns
out to be rather unusual, non-local, because we tried to get rid of these
random longitudinal fields.

If we neglect B fields in (16.56), we get the usual Coulomb interaction
between charges:

Δ(0) = −∂2,
1

Δ(0)
⇒ 1

|x − x′| .

The dependence on B shows that the instantaneous Coulomb interaction
is modified by the presence of vacuum fluctuations of transverse (physi-
cal) fields. Instead of being purely dynamical, our problem of the structure
of the vacuum state becomes an almost statistical one. It is this speci-
ficity that reverses the behaviour of the effective coupling of the theory
(asymptotic freedom), see (16.22).

16.8 Asymptotic freedom

Now we are going to find out how the effective charge behaves in the Yang–
Mills theory. We will follow the path suggested by Khriplovich (1969),
who has calculated the invariant charge in Coulomb gauge even before
the discovery of asymptotic freedom in non-Abelian theories (Gross and
Wilczek, 1973; Politzer, 1973). He looked at the first O

(
g2
)

correction to
the vacuum energy in the presence of two infinitely heavy charges.

We add an external source ρh = gδ3(x − x0) to the charge density
(16.54), substitute ρ + ρh into the second term of the Hamiltonian density
(16.55) and evaluate the correlator between two static sources placed at
x0 = x1 and x2.

The vacuum energy of the system contains two contributions quadratic
in ρh. The first is just ‘classical’ Coulomb energy of the sources given
by the correlator of the external charge densities, ρh · ρh averaged over
transverse fields B⊥ in the vacuum:

V c
Coul = ρh

〈
0
∣∣∣ 1
Δ(B)

∣∣∣0〉ρh. (16.57)

The second is quantum correction due to the mixing term ρh · ρ in the
Hamiltonian. It leads to transition of the Coulomb field of the external
charge into a pair of transverse fields (gluons with physical polarizations),
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and back again:

V q
Coul =

∑
n

|V0n|2
E0 − En

, V0n = ρh

〈
0
∣∣∣ 1
Δ(B)

ρ
∣∣∣n〉,

where the sum runs over the energies of the intermediate two-gluon state.
Here we can replace Δ(B) 
 Δ(0), and this contribution reduces to the
Feynman diagram with two gluons in the intermediate state:

0 0 

A standard calculation yields in the momentum space

V q
Coul =

g2

k2

(
−C2

3
· g2

16π2
ln

Λ2
UV

k2

)
, (16.58a)

with C2 the number appearing from the square of the matrix commutator
(the Casimir operator C2 = N for the SU(N) group). If we add fermion
fields (nf families of quarks) into the game, additional quark loops appear,
and the coefficient in (16.58a) gets modified as follows

−N

3
=⇒ −

(
N

3
+

2
3
nf

)
. (16.58b)

This quantum correction is due to a virtual decay into physical states and
corresponds to screening all right, having the same sign as in QED and
elsewhere.

Now we return to the ‘classical’ piece (16.57). To find the O
(
g2
)

cor-
rection due to vacuum fields we need to expand the operator Δ−1 to the
second order in B. First we calculate approximately the inverse of the
operator �,

�−1(B) = ∂−2 − ∂−2
[
Bi ∂i

]
∂−2 + ∂−2

[
Bi ∂i

]
∂−2
[
Bj ∂j

]
∂−2 + · · · ,

and substitute into (16.57):

Δ−1(B) = −�−1(B)∂2 �−1(B)


 −∂−2 + 2 ∂−2
[
Bi ∂i

]
∂−2 − 3 ∂−2

[
Bi ∂i

]
∂−2
[
Bj ∂j

]
∂−2.

The term linear in B disappears upon averaging, and we are left with the
equal-time vacuum average of two transverse fields:

0 0 0 〈
0
∣∣BiBj

∣∣0〉 =
1

2|k′|

(
δij −

k′ik
′
j

k′2

)
.
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In the momentum space, the Coulomb energy takes the form

V c
Coul =

g2

k2

{
1 + 3 ·

∫
d3k′

(2π)3
N g2

2 |k′| (k′ − k)2

(
1 − (k · k′)2

k2 k′2

)}
.

The angular integration produces∫
dϕ d cos θ

(2π)3
(
1 − cos2 θ

)
=

1
(2π)2

(
2 − 2

3

)
,

and from the large momentum region we get a logarithmically divergent
correction

V c
Coul =

g2

k2

(
1 + 4C2 ·

g2

4π2
ln

Λ2
UV

k2

)
. (16.59)

Combining with the quantum contribution (16.58), we finally obtain the
first correction to the vacuum energy,

g2

k2
=⇒ g2

k2

{
1 +
([

4 − 1
3

]
C2 −

2
3
nf

)
· g2

4π2
ln

Λ2
UV

k2

}
,

which corresponds to the invariant coupling of Yang–Mills fields,

g2(k2) =
g2

1 − β0
g2

4π2 ln
Λ2

UV
k2

=
4π2

β0 ln k2

Λ2

, β0 =
11
3
N − 2

3
nf , (16.60)

which decreases with the increase of k2.
We see that the anti-screening (asymptotic freedom) is entirely due to

vacuum fluctuations of the gluon fields affecting the Coulomb interaction.
This effect is also likely to have other serious consequences related to the
infrared instability of the quantum theory of Yang–Mills fields (Gribov,
1978).
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