
ON BARE POINTS

S. J. BERNAU
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This note shows that the set of bare points of a compact convex subset
of a normed linear space is, in general, a proper subset of its set of exposed
points.

We begin with some notation and standard definitions. All linear
spaces are assumed real. Let M be a subset of a real normed linear space
E; cl M and conv M denote the closure and convex hull of M respectively.
If M is convex an extreme point of M is a point of M which is not interior
to any line segment contained in M; and an exposed point of M is a point p
of M such that for some closed supporting hyperplane H, H n M = {/>}.

We write ext M and exp M for the sets of extreme and exposed points
of M. If U is the unit ball of E and 5 the unit sphere

(U = {xeE: \\x\\ ^l},S = {xeE: \\x\\ = 1})

then U is rotund if S = ext U and smooth if at each point of S there is only
one supporting hyperplane of U [3, VII § 2]. We will say that the norm in
E is rotund or smooth if the unit ball has the corresponding property.

In [5] G. H. Orland defined a bare point of a compact convex plane
set A to be a point p of A such that there exists a closed disc containing A
and having p on its circumference. Orland proves that A = cl conv B
where B is the set of bare points of A. In [1] S. K. Berberian points out
that Orland's definition and proof extend at once to inner product spaces
and give there a proof of the Krein-Mil'man Theorem which does not
require the use of Zorn's Lemma. (It is clear that bare points are extreme
points in this context.)

The idea of a bare point of a bounded convex set is readily defined in
any normed space. It is a point of the set on the boundary sphere of some
closed ball containing the set. The notion is essentially a metric one.
Changing to an equivalent norm will almost certainly change sets of bare
points. In particular, if the unit ball is not rotund there will be bare points
of the unit ball which are not extreme points.

In [4, Theorem 2.1] Klee showed that, if A is a compact convex set
in a normed linear space, then A = cl conv exp A. Klee's proof of this
result consists first, of replacing the original norm by an equivalent one
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which is rotund and smooth and second, of proving that, under the new
norm, A = cl conv B with B a certain subset of exp A. Klee does not define
bare points as such but his set B is precisely the set of bare points of A,
under the new norm. An immediate corollary of Klee's proof is the following
generalisation of Orland's and Berberian's results.

In a nortned linear space in which the norm is rotund and smooth, if A
is a compact convex set and B the set of bare points of A, then

A = cl conv B.

Klee's theorem also contains the assertion that ext A C cl exp A.
This is a consequence of A = cl conv exp A and of [3, V § 1 Theorem 3].
The corresponding result for bare points ext A C cl B follows in the same
way, if the norm is rotund and smooth.

In the finite dimensional case this result can be obtained very simply.
If the space has dimension n say and M is any subset then conv M is
the set of all sums JJ-i^*** ^ ^ zt 6 M, A, ^ 0 (i = 1, 2, • • •, n) and
S L A = 1 [2, Chapter II, § 1 Exercise 8].

Hence if M is compact and

K = {fa, • • •, AJ e Rn : Xt ^ 0 (* = 1, 2, • • •, n), £ A, = 1},

conv M is the image of the compact set KxMn under the continuous
mapping

n

fa, ' • • , X n , x 1 > - ' - , x n ) - > 2 A 4 a ; 4 ;

so that conv M is compact. Now if B is the set of bare points of A, c\B
is compact and hence conv cl B is compact and closed. It follows that
cl conv B = conv cl B. Thus, if p is an extreme point of A, p e conv cl B
and hence, p e cl B.

These results raise the question of the relationship between bare points
and exposed points. It is clear that an unbounded convex set has no bare
points and that if the norm is not rotund there can be bare points which
are not extreme points. If the norm is rotund but not smooth it is easy
to produce a compact convex set having an exposed point which is not
bare. Take a two dimensional subspace whose unit ball has a 'corner' and
construct a closed bounded convex set which has a 'smooth' boundary
through this point. The question which remains is the following. Is there a
normed linear space of dimension greater than one in which, for every
compact convex subset, the notions of bare point and exposed point coin-
cide? The answer to this question is negative, as we have seen, if the norm
is not both rotund and smooth. That the answer is always negative is shown
by the following result.
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THEOREM. In a. wormed, linear sjmce oj aimervsiorv greater tfum one (fiere
always exists a compart, towcex set mtk an exposed j>omt lEfoicfo is wA a W e
point.

PROOF. We assume, without loss of generality that the space is two-
dimensional and the norm is rotund and smooth. Take rectangular axes
Ox, Oy through the zero of the space and suppose a sphere of unit radius
drawn to touch the a;-axis at 0 and to lie in the half plane y ̂  0. The lower
arc of this sphere will have equation y = f{x) for some range of values of
x which we may assume to include the closed interval [—1, 1]. The function
/ is strictly convex, differentiate for —1 t=L x ^ 1, strictly decreasing for
— 1 <S x 5̂  0, and strictly increasing for 0 jg x 5S 1.

The construction which now follows was shown me by W. J. Firey. It
represents a considerable simplification of the one I first used.

Define g on [—1, 1] by

g(x)=f(x*sgnx) (-l^x^l);

where sgn a: is —1, 0 or 1 according as x is negative, zero or positive. (The
effect of this construction is to give a function which, compared to / is
'infinitely flat' near the origin). We show that g is convex on [—1, 1].
If 0 ^ xx ^ x2 ^ 1 and 0 ^ X ^ 1,

= Xg(x1) + (l-X)g(x2).

Here we used convexity of x2 and the fact that / is increasing on [0, 1],
then the convexity of /. It follows similarly that g is convex on [—1, 0]
and, because g has a minimum at x = 0, that g is convex on [—1, 1].

Now let A be the set bounded by the axcy = g{x) (—1 £= a; 5S 1)
and the straight line joining the ends of this arc. Because 0 ^ g(x) ^ f{x)
(— 1 ̂  x ̂  1) and g(0) = 0 it is immediate that 0 is an exposed point
of A.

Suppose that there is a ball D such that A CD and 0 is on the
boundary sphere, S, of D. It follows that the x-axis is a tangent to S at 0
and from this and smoothness, that the centre of D lies on the line joining
0 to the centre of our original unit sphere. From this we deduce that, for
—1 ̂  x ̂  1, the equation of the lower half of S is

y = rf(xlr)

where r is the radius of S. If r < 1,
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r/(l/2r) = ( l -

which contradicts A CD. Thus r S: 1, and hence

which also contradicts A CD. It follows that 0 is not a bare point of A,
and our theorem is proved.

We close with the remark that if we can assume that / has a positive
second derivative at the origin a much easier counterexample can be con-
structed using the function e~x&'.
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