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Abstract

The class CR of completely regular semigroups (unions of groups or algebras with the associative
binary operation of multiplication and the unary operation of inversion subject to the laws
x = xx~lx , (x~l)~l = x and xx~l = x~lx) is a variety. Among the important subclasses
of CR are the classes M of monoids and I of idempotent generated members. For each
C 6 {I, M} , there are the associated mappings V -* V n C and V -» ("V n C), the variety
generated by "V n C . The lattice theoretic properties of these mappings and the interactions
between these mappings are studied.

1980 Mathematics subject classification [Amer. Math. Soc.) (1985 Revision): 20 M 07, 20 M 10.

1. Introduction and summary

We consider here completely regular semigroups (unions of groups) as alge-
bras with the binary operation of multiplication and the unary operation of
inversion. As such they form a variety to be denoted by CR . The operators
alluded to in the title of the paper refer to certain operators on the lattice
£.{CR) of all subvarieties of CR induced by mappings of the following form.
Let I and At stand for the classes of completely regular semigroups which
are idempotent generated or have an identity element, respectively. We con-
sider next mappings on £(CR) denned by "V -+ "V n I and V —• V n At. The
images {fnJ |V e £(CR)} and {VnAl|"V e £(CR)}, whose members we dub
I- and At-varieties, respectively, are lattices under inclusion. The partitions
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2 Mario Petrich and Norman R. Reilly [2]

of £(CR) induced by these mappings are complete congruences on £(CR.).
Considering the ends of the intervals of C{CR) which constitute the classes
of these congruences, we arrive at four operators on the lattice £(CZ).

This paper consists of an investigation in the same general spirit as the au-
thors' article [10] where the classes of is-disjunctive and fundamental com-
pletely regular semigroups were used in the same setting as are here I and
M . These additional mappings give rise to further operators on C(CZ). The
semigroups generated by certain sets of these operators induced by the upper
ends of the intervals were characterized in authors' paper [9] in terms of gen-
erators and relations. The present paper is thus a natural continuation of the
two preceding articles on the study of these types of mappings and operators
on Z{CR). This work and that of [10] provide a natural setting for them
within a general investigation of the structure of £,{Ck).

Section 2 contains all the preliminary material needed in the paper. In
Section 3 we prove that the mapping 6X: V —> V D I is a complete homo-
morphism of Z{CR) onto the lattice of I -varieties of completely regular
semigroups. Its restriction to the lattice of varieties of completely simple
semigroups plays an important role in [8]. In the same and the next section,
we consider lattice properties of operators associated with the homomor-
phism dj . In Section 5 we perform a similar analysis with the class M of
completely regular monoids by considering the mapping 6M: V —» "V n M .
The restriction of GM to the lattice of varieties of bands was considered in
[13] and [14]. In Section 6 we consider commutativity of the various oper-
ators associated with lower ends of intervals. In the final section, Section 7,
we calculate the multiplication table for the semigroup generated by two of
these operators.

2. Preliminaries

If 6 is a mapping of a set A, then 9 denotes the equivalence on A
induced by 6 . If also B C A, then 0\ B denotes the restriction of 6 to B.
The equality relation on any set is denoted by e.

Let 5 be a completely regular semigroup. For any a e S, a denotes
the element a~la, E(S) the set of idempotents of S, C(S), the core of
S, the subsemigroup of S generated by E(S) and C(S) the lattice of fully
invariant congruences on S.

We shall use the following notation:

T—trivial semigroups,
CZ—left zero semigroups,
R.Z—right zero semigroups,
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[3] Operators on regular semigroups 3

RB—rectangular bands,
Re 5—rectangular groups,
S—semilattices,
S—bands,
Q—groups,
SS—semilattices of groups,
CS—completely simple semigroups,
05—orthogroups (idempotents form a subsemigroup),
CQ—cryptogroups (X is a congruence),
OCQ - 0$n C§—orthocryptogroups,
CR—completely regular semigroups,
c{u)—the set of variables appearing in u,
[u = v]—the variety of completely regular semigroups determined
by the identity u — v.

The lattice of subvarieties of a variety V shall be denoted by £.(V). For
any V e C(CR), we shall denote by FV the (relatively) free object in "V on
No generators. For a non-empty subclass A of CZ, HA, SA, PA and {A)
shall denote, respectively, the homomorphic closure, the (completely regular)
subsemigroup closure, the direct product closure and the variety generated
by A.

In the first result of this section we give two retractions of sublattices of
C(CZ) that will be used later.

LEMMA 2.1. The following mappings are complete endomorphisms:

(i) V-+VHQ (VeC(CR));
(ii) V^VnCS (V<=C(CZ)).

PROOF. Parts (i) and (ii) can be found in [5, Theorems 3.1 and 3.3, re-
spectively].

Let A be a class of completely regular semigroups. Call its members A-
semigroups. We will say that A is a pre-image class if it is closed under direct
products and homomorphic images and has the following property:

for any epimorphism 6: S —• T, where S e CR and T e
(P) A , there is a completely regular subsemigroup R of S with

Re A and Rd = T.
A subclass K of A is an A-variety if it is closed under the formation

of direct products, homomorphic images and ^-subsemigroups. Denote the
class of all ^-varieties by CA(CR). If A = CZ, then all ^-varieties are
varieties.

https://doi.org/10.1017/S1446788700030202 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030202


4 Mario Petrich and Norman R. Reilly [4]

PROPOSITION 2.2. Let A be a pre-image class of completely regular semi-
groups.

(i) ZA(Ck) is a complete lattice.
(ii) The mapping

dA:V-+VnA (VeC(CJZ))

is a complete homomorphism of Z(CR) onto ZA{CR).

PROOF, (i) We first show that the mapping 6A defined in (ii) is a sur-
jection of Z{CR) onto LA{CR). Since both V and A are closed under
direct products, homomorphic images and ^-subsemigroups, it follows that
V n y l e tA{CH) and that dA maps £{CK) into ZA{CR). Now let K e
ZA(CR). Since K is closed under the formation of direct products, {K) —
HS(K). Let T e (K) n A . Then there exist U e K, a completely regular
subsemigroup S of U and an epimorphism q>: S —• T. By property (P),
there exists R € A, which is a completely regular subsemigroup of S, such
that R(p = T. But then R is a subsemigroup of U and, since K is closed
under yl-subsemigroups, RG K . Now K is also closed under homomorphic
images. Hence T € K . Thus (K) n A C K . The reverse inclusion is obvious
and therefore K — (K) n A . It follows that 0^ is a surjection and from this
we can conclude that £.A(CZ) is a set.

In addition, it is evident that ZA(CR) is closed under arbitrary intersec-
tions and has a greatest element (namely, A ) so that ZA{CR) is, therefore,
a complete lattice.

(ii) Clearly 6A respects arbitrary intersections. In order to show that it
is a complete V-homomorphism, we let \ e L(CR), for a € A , and must
show that

(1) )

Indeed, let T e (\/aeA Va) n A. Then there exist Va e Va, a subdirect
product 5 of the F^, a G A, and an epimorphism 0 : 5 —> T. Since
T G A and .# has property (P), it follows that there exists a completely
regular subsemigroup R of S with R e A and R6 = T. Then /? is a
subdirect product of the projections /?a , a e A, o{ R into each F^. Since
each Ra is a homomorphic image of R, it follows that RaeMaC\A for all
a e A. This proves that the left hand side in (1) is contained in the right
hand side; the opposite inclusion is trivial. Therefore 6A is also a complete
V-homomorphism.

One immediate consequence of Proposition 2.2 is that the class of A-
varieties is a set.
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[5] Operators on regular semigroups 5

The following result of a lattice theoretical nature will be useful.

LEMMA 2.3 [6, Lemma 4.10]. Let p be a complete congruence on a com-
plete lattice L. For each x e L, let x* be the least element of xp. Then for
any A QL, we have \Ja€Ax* = (\Ja€Ax)*.

3. Idempotent generated completely regular semigroups

Denote by I the class of all idempotent generated completely regular
semigroups. For V e £(CR), let

= {SeCZ\C(S)eV}.

Equivalently, VC consists of those S e CR all of whose idempotent gen-
erated subsemigroups belong to V. Since HSP(VC) = VC, as is easily
verified, it follows that VC e C(CR). Further let

I = {C(S)\S € CR} = {S e CZ\S = C(S)}.

THEOREM 3.1.

(i) I is a pre-image class.
(ii) The mapping

is a complete homomorphism of £,{CR) into C2(CR). Moreover, for any
V G C(CR), we have Vl^ = [(V n I), VC].

PROOF, (i) Let S e CR , Tel and 6 be an epimorphism of 5 onto T.
For any e e E(T) and any a e S such that ad = e, we have a°6 — e, where
a0 e E(S). Since T is idempotent generated, it follows that C(S)d = T
and that I has property (P). Clearly I is closed under direct products and
homomorphic images so that (i) holds.

(ii) It follows immediately from (i) and Proposition 2.2 that 6X is a com-
plete homomorphism of C(CR) onto Cj(CR).

Let V e C(CR). It follows easily that

(Vnl)nl = vni = vcnl,

so that (Vnl), VCeVW^. Next let Ue£{CR) be such that Unl = Vnl.
Then (VnJ) = (Unl) c U. Also, for S e U, we have C(S)_ e Unl = VnI so
that 5 e VC. It follows that UQVC. Consequently Vdj = [(VnI), VC],
asserted.
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COROLLARY 3.2. For any U , V € L(CR), we have

U n I = V n I <* (U n I) = (V n I) «• UC = VC.

In order to study the mapping V -• (V n I), we need some preparation.

LEMMA 3.3. The following conditions on V € C(CR.) are equivalent.

(i) vcog.
(ii) (Vf)I)cB.
( i i i ) Vnl = MC\8.
PROOF, (i) implies (ii). Clearly Vnl = VnB and thus (Vnl) = VnS C S .
(ii) implies (iii). Evidently ' V n J C ( " V n J ) c T ; n S and the inclusion

V n B c V n I always holds.
(iii) my?//es (i). If S e V , then C(S) GV(~iJ = VnS and hence SeOg.

Therefore V C OQ.

LEMMA 3.4. The mapping

is a complete endomorphism of Z{OQ).

PROOF. Let {Va}aeA be a family of varieties of orthogroups and let S e
(Va€,i \ ) n ^ • F o r e a c h Q e A > t h e r e exists F ^ V ^ a subdirect product P
of the ^ , a € A , and a homomorphism q> of P onto £ . Then £'(i)) is a
subsemigroup of E(Yla&A Va) = FLe/i ^ ( ^ ) an<^ n e n c e ^ (^ ) i s a subdirect
product of its projections Pa in the product FLe^ Va • Note that Pa e "VQnS
for each a 6 / I . Furthermore, since S e S, the restriction ^|£(/>) is a
homomorphism of E(P) onto 5 . Consequently ^ e V ^ ^ n J ) . This
proves the inclusion (Va€^ T J n B C \Ja&A{VanS); the opposite inclusion is
obvious. Since the above mapping is trivially a complete f|-h°momorphism,
the assertion of the lemma follows.

We are now ready to give some properties of the mapping related to the
lower bounds of the intervals Mdj .

THEOREM 3.5. The mapping

is a complete V-endomorphism of L{CR) but is not an {^-homomorphism.
Its restriction to Z{OQ) is a complete endomorphism of Z(OQ).

PROOF. The first assertion follows directly from Theorem 3.1 and Lemma
2.3.
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In [4, Example 4.10] an instance of a variety U of completely simple
semigroups is given with the following properties:

(i) every #-class of the core of every member of U is generated by elements
of order 3;

(ii) there exists a member of U with an element of order 2 in its core.
Let V be the variety of completely simple semigroups over abelian sub-

groups of exponent 2. Then Z2 e (U n I) f~l (V n I). On the other hand, let
G € (UnV n I) n $ . Since U n V n I is closed under direct products, there
must exist QeU (~)V n I, a. completely regular subsemigroup P of Q and
an epimorphism 6: P —> G. If e = ld~x, where 1 is the identity of G, then
H = ePe is a subgroup of Q and 9\ H is an epimorphism of H onto G.
Now every #-class of Q is abelian (since Q € V) and generated by elements
of order 3 (since (? € Zi n J) and so must be of exponent 3. Consequently
Z2<£ (UnV n I)n g so that the mapping T - » ( T n J ) does not respect
intersections. This establishes the second claim of the theorem.

The final assertion of the theorem follows from Lemmas 3.3 and 3.4.

Some of the mappings discussed in this section were considered in [8]
for varieties of completely simple semigroups. In particular [8, Proposition
5.7] describes (V n I) for any variety V such that RB c V c CS and [8,
Theorem 7.5(iii)] asserts that Cdj = [A, D]. Here, for completely simple
semigroups, we use the following notation:

A—maximal subgroups are abelian,
C—products of idempotents are in the centre of the containing sub-
group,
D—maximal subgroups of the core are abelian.

4. Operator C

We are aiming here at an analogue of Theorem 3.5 for the operator C
and some supplementary results. Let

KeB = [a = a, axya — axaya],
n /* /•> r 0,0 , 0 , 0 , 0 0 0 0 0 0 ,

R.0$ = [a b = (a b ) , ax y a = ax a y a]
denote the varieties of regular bands and regular orthogroups, respectively.
The main result of this section is the following, the second assertion of which
answers a question posed in [11, page 29].

THEOREM 4.1. The operator C is a complete f\-endomorphism of C(CZ)
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but is not a \j-homomorphism. Its restriction to Z{ZOQ) is a complete en-
domorphism of £(ZO§).

PROOF. The first assertion follows directly from Theorem 3.1 and the dual
of Lemma 2.3; see also [11, Result 7.2(2)]. The proof of the second assertion
needs some preparation.

For the ensuing discussion, let X = {X/\i € /} be a countably infinite set,
fix l e / and let / ' = / \ { l } - Let

Z = {gl\iel}u{pjk\j,kel1},

Fz be the free group on Z and let P = (pjk) with plk = pkx = 1, the
identity of Fz . Then the Rees matrix semigroup

= M(I,FZ,I;P)

is a free completely simple semigroup over X with embedding xt -> (/, qt, i),
see [1, Theorem 7.4] and [12, Theorem 1]. In addition, let Fq and Fp denote
the subgroups of Fz (freely) generated by {qt\i e /} and {pjk\j, k € / ' } ,
respectively. For any normal subgroup N of Fz , the relation pN defined

0\ g,J)PN(k, h,l)<*i = k, gh'1 eN, j = / ,

is a congruence on FCS with pN C X .

LEMMA 4.2 [12, Theorem 3]. (i) There exists a family ofendomorphisms £
of Fz such that, for any normal subgroup N of Fz , pN is a fully invariant
congruence on FCS if and only if N e M, the lattice of £-invariant normal
subgroups of Fz.

(ii) If, in the usual anti-isomorphism between the lattice of subvarieties of
CS and fully invariant congruences on FCS, V «-> pv , then for all V e
[ZB , CS] there exists Nv e M such that py = pN . Moreover, the mapping
"V —• Nv is an anti-isomorphism of [R.B , CS] onto M.

For any M € M , let

and for any subgroup N of Fz , let NA denote the normal subgroup of Fz

generated by iV.

LEMMA 4.3 [8, Proposition 5.1]. For any M e [R.B, CS], with N = Nv ,
we have Nvc = Np .
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Let U,V e[RB,CS], NU=M and Ny = N. Then

uc w e = (U v V)C «. J^C n tfvc = N{Uvy)C

o AT; n Af = (JW n #)£ = (Mp n Np)\

Therefore, in order to show that C does not respect joins it suffices to
find M,NeM such that

(2) M*nN*jL(MpnNpf.

Let M and N be the fully invariant subgroups of Fz corresponding to the
varieties of abelian groups of exponent 2 and exponent 3, respectively. Then
M , N and MnJV are the fully invariant subgroups of F corresponding
to the varieties of abelian groups of exponents 2, 3 and 6 respectively. We
will show that (2) holds.

Let a e S9, the symmetric group on {1, . . . , 9} , be the 6-cycle

a = (1 2 3 4 5 6).

Let A and B be the normal subgroups of Sg generated by a and a , re-
spectively. Now a3 = (1 4)(2 5)(S6) which is an odd permutation. Since the
only non-trivial normal subgroups of S9 are A9, the alternating subgroup,
and S9 itself, we must have B = S9. Moreover a2 = (1 3 5)(2 4 6) and so,
with fi = (1 7)(3 8)(5 9) we obtain

= (1 5 3)(2 6 4)(1 7)(3 8)(5 9)(1 3 5)(2 4 6)(1 7)(3 8)(5 9)

= (1 5 3)(7 8 9).

Let y = [a2, 0]. Then

- ( 1 4 5 236)(7 89)

while

ya3 = (15 3)(7 8 9)(14)(2

= (1 2 5 6 34)(7 8 9)

so that a3y ^ ya3 and therefore [y, a3] ^ e, the identity of S9 .
Now let 6: Z —• S9 be any surjection such that pjk6 = a for all j , k e / ' .

Then 6 extends to a unique epimorphism of Fz onto S9 which we will
also denote by 6. Then F 6 = (a) , a cyclic group of order 6. Hence
M n N C ker 0 and therefore (M n JVJA C kerd.
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Let p = pjk for some j , k e / ' , and let x = qt be such that x8 = /?.

Then p2 e Mp so that

On the other hand b = p3 e Np c jVp
A . Hence

[a, 6] - (a~lb'la)b = a~\b'xab) e Mp n Np.

However,
a0 = [p2, x]6 = [(pd)2, xd] = [a2,0] = y

and bd = p3d = a3 so that

Consequently [a,b]& ker6 and therefore [a, b] e Mp n Â A but [a, b] &
MpnNp. Thus (2) holds and C Is not a V-h°m o m o rPhism on C(CS).

This proves the second assertion of Theorem 4.1; we now turn to the proof
of the last assertion. The first lemma below shows that the action of C on
L{OQ) is really determined by its action on C(B).

LEMMA 4.4. Let V e C{OQ). Then

MC = (y n B)C = {Se og\E{S) e v n s>.

PROOF. We have

= {SeCR\C(S)eVnB} since V c og
= (VnB)C

while clearly

{S € CR\C(S) e V n fl} = {S e Og\E(S) eVnB}.

LEMMA 4.5. Let V € £(0g) and

V n B = [x° = x, u(xl, ... ,xn) = v{xr,..., xn)].

, , _ . 0 0 / 0 0^0 , 0 Q-. , 0 (h ,
V C = [ x y = ( x y ) , u(x{ , . . . , x n ) = v [ x l ,..., x n ) ) .

PROOF. By Lemma 4.4, we have

VC = {Se og\E(S) eVnB}

and clearly, for S e OQ, E{S) satisfies the identity u = v if and only if S
satisfies the identity u(x®,..., x°) = v(x®, . . . , JC°) .
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[11] Operators on regular semigroups 11

LEMMA 4.6. The restriction of C to C(ReB) is a complete monomorphism
of £(ZeB) into L{ROQ).

PROOF. The lattice of subvarieties of He3S is displayed in Figure 1. From
Lemma 4.5 we can determine a basis of identities for each of the varieties
VC(V e Z(ReB)) and can then, with the help of [2, Section 10], identify
these varieties in [2, Figure 8.5]. We indicate what this image is for each of
the subvarieties of ReB in parentheses in Figure 1 with the obvious inter-
pretation of the abbreviations used. By inspection of [2, Figure 8.5] it can be
seen that {VC|V e L{JleB)} is a sublattice of C(ZOg) and therefore that
V —> V C is a complete monomorphism.

LEMMA 4.7. The restriction of C to Z{R05) is a complete \j-endomor-
phism.

Re.BJ\[R0G)

(LQNOG) {RQNOG)

ILROG)
RRBpiRROG)

iLG) RG)

Figure .1. Varieties of regular bands

https://doi.org/10.1017/S1446788700030202 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030202


12 Mario Petrich and Norman R. Reilly [12]

PROOF. For \ e £.{ROQ), a e A, we get

c by Lemma 4.4
\a€A

=(( V Mn5)

= I \J {Va n B)) C by Lemma 3.4
\aeA /

(Va n B)C by Lemma 4.6
a€A

= V ^aC by Lemma 4.4.

This concludes the proof of Theorem 4.1.

We supplement the preceding discussion by showing that the operator C is
also an endomorphism when it is restricted to the context of OCQ =
In other words, we are going to consider the mapping

c*-.v

First we recall

LEMMA 4.8 [7, Theorem]. The mapping

V^(Mn8,Vn9) (VeC(OCQ))

is an isomorphism of L(OCg) onto £(B)x Z(Q) with inverse (U, V) ->

LEMMA 4.9. For any U e C(B) and V e Z{Q), we have (UvV)C* =

PROOF. Let TV = (U V V)C* and SGWDB. Then 5 e {U V V)C n B so
that S = C(S) G (U V V) D B . By Lemma 3.4,

(i/ v V) n S = (Zi n S) v (V n S) = U v T = U.

Thus Ti1 n S C U and so li* n S = Zi since the reverse inclusion is obvious.
Also

TC* =
so that g C W and W ng = g . Applying Lemma 4.8 we have IV = U V
and the result follows.

We bring these observations together in the next result.
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PROPOSITION 4.10. The mapping C* is a complete endomorphism of
C(0C9).

PROOF. For Ua e £{OCQ) with a e A, we have

(
a€A I \a€A

= l\/(UanB)\vg by Lemma 4.9
\a€A /

= \J((uanB)vg)
a€A

= V Uac* by Lemma 4.9.
a€A

The result now follows by Theorem 4.1.

5. Completely regular monoids

Denote by M the class of all completely regular monoids. For V e Z{CR),
let

ML = {S e CZ\eSe e V for all e e E(S)}.

Equivalently, "VL consists of those S e Ck all of whose submonoids are
in V . It is easily verified that VL € C(CR). For more information on the
operator L see [11, Section 6], where the notation P is used.

The main result of this section is the following.

THEOREM 5.1. (i) M is a pre-image class.
(ii) The mapping

is a complete homomorphism of C(CZ) onto £M(CZ). Moreover, for any
V e C(CR), we have VW^ = [(V n M), VL].

PROOF, (i) Clearly M is closed under direct products and homomorphic
images. Now let S GCR. , T e M and 6 be an epimorphism of S onto T.
Let a € S be such that ad = 1, the identity of T, and R = a°Sa°. Then
R € M and Rd = T. Thus M has the property (P) and (i) holds.
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(ii) That 6M is a complete homomorphism of C(CJZ) onto CM(CZ) fol-
lows immediately from part (i) and Proposition 2.2.

Let V e L{CR). It is easily shown that

so that (VnM), ML e V~d^. Next let U e C(CR) be such that UnM = VnM .
Then

Also, for S e U , we have eSe e U n M = V n At for_all e e £(5) so that
5 e V I . It follows that Zi C VL. Consequently Vd^ = [(V n M), VL], as
asserted.

COROLLARY 5.2. For any U , V e £(CJ2), we

Z/ n M = V n Ai «• (W n Ai> - (V n M) <* ZiL - V L .

THEOREM 5.3. T/?e mapping

is a complete endomorphism of £,{CR).

PROOF. That the mapping is a complete join endomorphism follows di-
rectly from Theorem 5.1 and Lemma 2.3. Let Ua e £(CZ), a e A, and
S € C\aeA{Uia n M). Then 5 € f]a€A Ua so that if S has an identity, then

Thus suppose that S does not have an identity and let S1 denote S
with an identity adjoined. Then, for each a e A, there exist UaeUaC\M,a
(completely regular) subsemigroup Ra of Ua and an epimorphism 6a: Ra —•
S1. Since S does not have an identity neither does Ra . But R^ = Ra U {1} ,
where 1 is the identity of Ua , is a subsemigroup of Ua and we can extend 6a

to an epimorphism d'a: R
l
a -+ Sl by denning I6'a = 1. Thus S1 eUaC\M,

for all a e ^ , that is, Sl e (f]a€A Ua)
 n •W a n d therefore

Consequently riQe^<^a n M> C ((f|a€^ ^a) n M) and, since the reverse con-
tainment obviously holds, we have equality.
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Our next goal is to indicate how to obtain a basis of identities for (V n M)
from one for V . If V e C{CS), then VnM = (VnM) = VnQ . The problem
being trivial in this case, we restrict our attention to non-completely simple
varieties.

PROPOSITION 5.4. Let V = [ua = va]a€A e C(CR), where c{ua) = c{ya)
for all a € A. For each a e A, let Ma be the set of identities obtained
from ua = va by deleting all occurrences of some subset {including the empty
subset) of variables. Then S e (VnM) if and only if S satisfies all identities
of Ma for all a&A.

PROOF. Direct part. Let 5 e {V n M). Since V n X is closed under direct
products, there exists M e V n M , a (completely regular) subsemigroup T
of M and an epimorphism of T onto S. Let u = v be a member of Ma .
Then M satisfies u = v since M satisfies u — v and we may substitute
the variables in ua — va which are missing in u = v by the identity of M.
Hence T and thus also S satisfies u = v .

Converse. The given condition implies that S satisfies ua = va for every

a € A. Hence Sl e V n M whence S e ("V n M), as required.

PROPOSITION 5.5. The following conditions on V = [ua = va]aeA E

C(CZ), where c{ua) = c(va) for all a e A, are equivalent.
(i) (VnX) = V.
(ii) IfSeV, then Sl e V .
(iii) Every S e V satisfies all identities which can be obtained from some

"a = v
a by the deletion of all occurrences of a subset {possibly empty) of

variables.

PROOF, (i) implies (ii). Let S € V . Then 5 e ("V n M) and hence there
exist M € V n M, a (completely regular) subsemigroup T of M and a
homomorphism q> of T onto 5 , since "VnM is closed under direct products.
Assume that S does not have an identity. Then T also has no identity.
Letting 1 be the identity of M, we let T1 = T U {1} so that T1 is a monoid.
Adjoin an identity e to 5 thereby obtaining a monoid S 1 . Now extend q>
to a homomorphism <p' of r 7 onto S1. It follows that S1 € (V n M) = V ,
as required.

(ii) implies (iii). Let M = v be such an identity and let S e V . Then by
hypothesis, S ' e V and S1 satisfies u = v since Sl satisfies ua - va and
u = v is derived from some such identity by setting some (possibly empty)
set of variables equal to 1. But then S also satisfies u = v .

(iii) implies (i). Let S GV . The hypothesis implies that for every aeA,
Sl satisfies ua = va and hence 5 1 e V . It follows that Sl e V n M and thus
S G {V n M). Therefore V c (V n M) and the opposite inclusion is trivial.
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6. Commutativity between operators

In [10] and the previous sections we have introduced various classes of
completely regular semigroups and have shown how each determines a de-
composition of Z(CR) into certain intervals. Associated with the lower and
upper ends of these intervals are various operators on C(CZ) and we devote
this section to the study of the interaction of the operators associated with
the lower ends. Information about the operators associated with the upper
ends can be found in [9].

Let p be a congruence on S eCZ . Then

ker/? = {a e S\ape for some e e E(S)}

is the kernel of p and Up = p\ £ ( S ) is the trace of p. The greatest congruence
on S for which kerp = E{S) is denoted by T and the greatest congruence
such that XTp = e is denoted by ft. If T = e, S is E-disjunctive, and if
fi = e, S is fundamental. For any equivalence relation A on S, A0 denotes
the largest congruence p on S contained in X. If A c S, let

^° - ((,4 x A) U (SV4) x (SV))0.

In terms of this notation, T = £(5)° and n = #° . If C° = e, then S is left
fundamental.

The classes considered in [10] were

V = {S G CR\S is ^-disjunctive},

J = {S e CR\S is fundamental},

SL J = {5 e C£|S is left fundamental}.

Taken together with the classes discussed in the preceding sections, this
leads us to consider the following operators (all denned on C(CR.)):

In the first result we identify which pairs of the above operators commute
with each other. This section consists of the proof of this statement.

THEOREM 6.1.

(i) dl = ld. (ii) tt, = t,t = t,. (Hi) tc = ct.
(iv) tl = It. (v) t,c = ct,. (vi) t,l = ltl.

PROOF. Part (i). We require the following lemma.
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LEMMA 6.2 [9, LEMMA 6.1]. Let S be a completely regular semigroup. If
eeE{S),then rs\eSe = xeSe.

The proof of part (i) follows easily from the next lemma which, in fact,
provides additional information of independent interest.

LEMMA 6.3. For any V e £(C£) , we have

((V n P) n M) = ((V n M) n D) = (V n M n D).

PROOF. It suffices to prove that

(3) (VnD)nMc(vnDnM),

(4) (VnM)nDc(-vnDnM).

Let S e (V n P) n M . Since "V n P is closed under direct products, there
exists Q e "V n P , a (completely regular) subsemigroup P of Q and an
epimorphism q>: P ̂  S. Denote by 1 the identity of S, let e e E(\<p~')
and £/ = e g e . By Lemma 6.2, T^ = TQ\eQe = e\eQe = ev. Therefore
U e D . We thus have U e V n M n D and 5 is a homomorphic image of the
subsemigroup ePe of U. Consequently S e (V n M D P) which establishes
relation (3).

Now let 5 e ( V n M ) n P . Then there exist Q e V n M, a (completely
regular) subsemigroup i* of Q and an epimorphism <p: P —»• 5 . If 5 has an
identity, then S e V f l M n P . So suppose that S does not have an identity.
Since Q has an identity, it follows that Pl is a subsemigroup of Q so that
Pl e V n M and we can extend (p to an epimorphism of Pl onto 5 1 by
denning l<p = I. Suppose that S1 & D. Then there must be a non-trivial
congruence p on S1 with kerp = E(Sl). Hence ker/>|5 = £ (S ) . But
S e D. Consequently p\s = e and therefore p can have only one non-
trivial class, namely \p, and that class can contain only two elements, say
lp = {l,e}. Since kerp = E(Sl), we must have e e E(S). But then Sl/p
contains (an isomorphic copy of) S as a subsemigroup and has ep — 1 p as
an identity. Hence e must be an identity for S, which is a contradiction.
Therefore S1 e P so that S1 e V n P D M Q (V n P n M) and (4) holds.

(ii). For the claim that ttt = t,t = tx, we wish to establish, for any
V € £(C£), the following equalities:

(5) <(̂  n 7) n £7) = ((V n £7) n 7) = {V n £7).

Clearly £7 C 7 and (V n 7) n 7 = V n 7. Hence

(V n 7) n £7 = (V n 7) n 7 n £7 = V n 7 n £7 = V n £7
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and the first and third classes in (5) are equal. Further,

V n L7 = (V n L7> n i7 c (V n L7) n 7

so that (f n C7) c ({VnC7)n7). Since the reverse containment is obvious,
the second and third classes in (5) are also equal.

Part (iii). We will proceed to the proof of part (iii) via two lemmas, the
first of which gathers together the necessary information on fi, the largest
congruence contained in M .

LEMMA 6.4. Let S eCZ.

(i) afib o a0 = b° and a~xea = b~xeb for all e < a0.
(ii) If S is fundamental and e€E(S), then eSe is also fundamental.
(iii) If (p: S —> T is an epimorphism and a, b e S are such that afib,

then a<p n bq>.
(iv) S/fi is fundamental.

PROOF. See [3, Theorem 5].

In the next lemma we shall require the following concept. For any p e
C(S), S € CR and any completely regular subsemigroup P of 5 , the sat-
uration P' of P by p is P1 = (Jpeppp. Clearly P' is also a completely
regular subsemigroup of S.

LEMMA 6.5. For any V e Z{CR), we have

((V n J) n 7) = ((V n 7) n I) = (V n 7 n I).

PROOF. Letting

A = (Vni)n7, B = {vn7)nl

and
c = (vn7n;),

it suffices to prove that AQC and B c C .
First, let S € A . Since V D I is closed under direct produts, there exists

Q € Vn I, a (completely regular) subsemigroup P of Q and an epimorphism
<p: P —> S. Let fi be the greatest idempotent separating congruence on Q.
Since Q is idempotent generated, so is Q/fi, and by Lemma 6.4(iv), Q/fi
is fundamental. Consequently Q/fi G "V n 7 n I. Let P' be the saturation
of P by the congruence fi and let 6 = ji\ p,. Then P'/d is a subsemigroup
of Q/n so that P'Id e C. Let a, b e P be such that a06. Since 0 is
an idempotent separating congruence on P', we have api'b where n' is the
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greatest idempotent separating congruence on P1. It follows from Lemma
6.4(iii) that aq> and b<p are related by the greatest idempotent separating
congruence on S. By hypothesis, S e 7 and therefore a<p = b<p. This
makes it possible to define a function y/ by

y/:a9—>a<p ( a e P ) .

It follows easily that y/ is an epimorphism of P'/6 onto S. Therefore
SeC.

Next let 5 € B. In the above notation, we now assume that Q e V D
/ . The expression for the greatest idempotent separating congruence, see
Lemma 6.4(i), shows that it depends only on idempotents. It then follows
that j«|C(0) is the greatest idempotent separating congruence on C(Q). Since
Q is fundamental, we get that C(Q) is fundamental as well. Thus C(Q) e
V n 7 n / , C(P) is a subsemigroup of C(Q), and ^|C(/>) is a homomorphism
of C(P) onto S since Sel. Consequently S e C.

Part (iii) is an immediate consequence of the above lemma.

Part (iv). We wish to show that for any V e C(CZ), we have

{(V n M) n 7) = ((V n 7) n M) = (V n J n M).

Letting >J = (VnAl)n7, S = {Vn7)nM and C = (VnJnM) , it suffices
to prove that A c C and fl c C. Let S e A . Then, since M is closed under
direct products, there exist M e M n M , a (completely regular) subsemigroup
T of M and an epimorphism 0>: T —> 5". Now 5 e V since A/" € "V and
also S € 7 whence S e V n J . If S e M , then 5 e V n 7 n M . Assume
that 5 0 M . Then r <£ M ; letting 1 be the identity of M, we get Tl c M.
Adjoin an identity e to S and extend <p to T1 by letting \q> = e. Then
Sl eV and also S1' e J . Hence 5 ' e C and thus S e C .

Let 5 e fl . Then there exist F € V n 7, a (completely regular) subsemi-
group T of F and an epimorphism p: T -* S. Now 5 e V since F € "V
and also S € M whence S e V n M .

Let 1 be the identity of S and let e € E(T) be such that ep = 1. Then
{eTe)<p = S, eTe is a subsemigroup of eFe, and eFe e 7 by Lemma
6.4(ii). Hence eFe e l ^ l J U n / and S e C .

(v). We first gather together various observations about £° which
parallel the observations in Lemma 6.4 for fi — M0.

LEMMA 6.6. Let S eCR.

(i)IfeeE(S),then C°s\eSe = C°eSe.
(ii) If S is left fundamental and e £ E(S), then eSe is also left funda-

mental.
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(iii) If <p: S —> T is an epimorphism and a, b e S are such that a£°b,
then a<p£?b<p.

(iv) S/£° is left fundamental.

M r.°\ - a0
( ()

(vi) / / 5 is left fundamental, so is C(S).

PROOF, (i) See [9, Lemma 6.4].
(ii) This follows directly from part (i).
(iii) This is an immediate consequence of the observation that, for any

a, beeSe,
aC°sb «*• xaCxb for all xeS1,

(iv) See [6, Corollary 5.7].
(v) See [9, Lemma 5.4].
(vi) This follows directly from part (v).

The remainder of the proof of the equality in part (v) of Theorem 6.1 is
then entirely analogous to that of part (iii) but using Lemma 6.6 in place of
Lemma 6.4.

Part (vi). The proof of this part is entirely similar to that of part (iv).

7. The semigroup generated by c and /

The operators c and / do not commute; for example CScl = Q while
CSlc = T . However, it is possible without too much difficulty to determine
the semigroup generated by c and / . We gather the basic observations that
we require in the next lemma.

LEMMA 7

(i) t
(ii)
(iii)
(iv)

:2 = c
lcl =
Vic
clc =

.1.
'., I2 = l.
Ic.

cVcl for all Ve£,{CR).
--Ic.

PROOF, (i) This is obvious from Theorems 3.1 and 5.1.
(ii) Let V e C(CR). From the definition of / , it is clear that Vlcl c Vic.

In order to establish the reverse inclusion, it suffices to show that ("VnM)nI c
Vlcl. Let S € (V n M) n I. Since V n M is closed under direct products,
there exists M e V n M , a (completely regular) subsemigroup R of M and
an epimorphism 8: /? —» S. Since 5 e I and every idempotent in S is the
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image under 6 of an idempotent in R, 6 maps C{R) onto S. So, without
loss of generality, we may take R = C(R) e I.

If S contains an identity 1 and e € E(R) is such that eO = 1, then
(eRe)6 = S. Also

eRe e V n M n I c (V n At) n J

so that 5 e ((V n M) D J) and therefore 5 = Sl e V/c/.
If S does not contain an identity and 1 is the identity of M, then 1 ̂  R .

But
lRl =Ru{i}eVnMnI c((VnM)nl)

and 0 extends to an epimorphism of Rl onto 5"1. Hence

Sl e{(Vr\M)nl)nM

and so S eVlcl. Thus V/cC V/c/ and equality prevails.
(iii) By (ii), Vic = Vlcl C Vc/ for all V € £(C«).
(iv) For all V e £(C«), we have

Vic 2 Vclc
D Vlcl by (iii)

= Vlc by(i)

so that V/c = Vclc.

That the four operators / , c, Ic and cl are all distinct can be seen from
the following:

csc = cs, csi = csci = gi = g, csic = gd = r.

These observations combined with Lemma 7.1 clearly give the following re-
sult.

THEOREM 7.2. The semigroup generated by the operators c and I has the
following multiplication table.

c
I
cl
Ic

c
c
Ic
Ic
Ic

I
cl
I
cl
Ic

cl
cl
Ic
Ic
Ic

Ic
Ic
Ic
Ic
Ic
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We conclude this section by demonstrating the non-commutativity of the
remaining pairs of operators from the list introduced at the beginning of this
section.

1. dt^td.
For consider CS . If S € CS , then S is a subdirect product of S/U and

S/T . Hence if S G CS\ReQ, then 5 / T g $ for otherwise 5 would be a
subdirect product of a rectangular band and a group. Hence there exists a
non-group T € CS O D . Thus JT/# is a non-trivial rectangular band and
T/X e(CSnD)n? so ((CS n D) n / ) # T . On the other hand

((CS n?)nD) = (RB n D) = (T) = T.

2. dt,^t,d.
This is a variant of the above, where CS fl £ J = ZZ .
3. dc^cd.
For consider S£ . Let S = Z ° , where Z2 = {e, g} is a 2-element group

with identity e. Let Y2 be a 2-element semilattice. Then eg = g £ E(S)
and Og = 0 e E(S) so that (e, 0) £ T and Y2 = S/tf . Thus Y2 e
and ((S£ n P) n 7) # T . On the other hand,
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