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On the Fourier Transformability of Strongly
Almost Periodic Measures

Nicolae Strungaru

Abstract. In this paper we characterize the Fourier transformability of strongly almost periodic mea-
sures in terms of an integrability condition for their Fourier–Bohr series. We also provide a necessary
and suõcient condition for a strongly almost periodic measure to be the Fourier transform of a mea-
sure. We discuss the Fourier transformability of a measure on Rd in terms of its Fourier transform as
a tempered distribution. We conclude by looking at a large class of such measures coming from the
cut and project formalism.

1 Introduction

he Fourier transform of a function plays a fundamental role in many areas of math-
ematics. In the ûrst half of the 20th century, Laurent Schwartz extended the Fourier
transform to a larger class of objects, namely tempered distributions. his theory ex-
tends the classical Fourier transform of functions, and includes all ûnite measures, all
continuous and bounded functions, as well as a large class of unbounded measures.
Some of the notions have been extended to arbitrary locally compact Abelian groups
(LCAG’s) G [12], but so far these extensions have not been as useful for the study of
measures as in the case G = Rd .

Motivated by Bochner’s heorem, Argabright and deLamadrid introduced the
notion of Fourier transform for unbounded measures over arbitrary locally com-
pact Abelian groups (LCAG’s), and proved that positive deûnite measures are Fourier
transformable [1] (see also [10, 29]). heir theory of Fourier transforms of measures
generalizes the classical theory of Fourier transforms of functions, as well as the
Fourier–Stieltjes transform. he Fourier transforms of measures play a fundamen-
tal role for mathematical diòraction and aperiodic order (see, for example, [3, 7, 18,
20, 29, 34, 35, 43]).

here is a hidden strong connection between the Fourier transforms of measures
and the class of (weakly) almost periodic functions and measures. Eberlein proved
that there exists a canonical decomposition of aweakly almost periodic function into a
strongly almost periodic function and a null weakly almost periodic function [15]. We
will refer to this decomposition as the Eberlein decomposition. Positive deûnite con-
tinuous functions, and hence the Fourier transforms of ûnite measures, are weakly
almost periodic [13]. Given a ûnite measure, µ, the Eberlein decomposition of the
weakly almost periodic function µ̂ is exactly the Fourier transform [13, 29] of the
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Lebesgue decomposition µ = µpp + µc . deLamadrid and Argabright extended the
concept of almost periodicity to translation-bounded measures, via convolution with
compactly supported continuous functions [19] (see also [29] for a self contained ex-
position of these topics). hey showed that weakly almost periodic measures also
have a canonical Eberlein decomposition. Moreover, the Fourier transform µ̂ of each
transformable measure µ is weakly almost periodic, and the Eberlein decomposition
of the Fourier transform is exactly the dual of the Lebesgue decomposition of µ [19].
Recently, the Fourier dual of this result was proved by Moody and me [29]: if any
translation-bounded Fourier transformable measure µ is weakly almost periodic, the
strong almost periodic component µs and the null weakly almost periodic compo-
nent µ0 are Fourier transformable, and their Fourier transforms are exactly the pure
point component µ̂pp and the continuous component µ̂c of µ̂. his last version of
the result is important for mathematical diòraction, since we would like to study the
pure point spectrum γ̂pp and the continuous spectrum γ̂c of a structure ω, without
going to the Fourier dual space. hese results allow us to study the pure point and
continuous spectra, respectively, by studying the components γs and γ0, respectively,
of the autocorrelation γ of ω, an idea that has been used eòectively in many places
(such as [2, 3, 21, 38, 39, 41, 42]). he particular connection between strong almost
periodicity and pure point Fourier transform was also exploited in articles such as
[3, 5–9, 16, 17, 21–23, 28, 33–35, 40, 43].

It follows from the results in [19] that if a measure µ is Fourier transformable, its
Fourier transform µ̂ is strongly almost periodic exactly when µ is a pure point mea-
sure. In this case, the strongly almost periodic measure µ̂ has a Fourier–Bohr series
(see Deûnition 6.12) Fd(µ̂), which is exactly the re�ection µ† of µ. In the same way,
if µ is Fourier transformable, its Fourier transform µ̂ is pure point exactly when µ is
strongly almost periodic, and µ̂ is exactly the Fourier–Bohr series Fd(µ).
Every strongly almost periodicmeasure µ comeswith a Fourier–Bohr seriesFd(µ),

which is exactly µ̂ (resp., µ
̂
†) whenever µ is Fourier transformable (or a Fourier trans-

form). It is natural to ask what extra condition Fd(µ) should satisfy in order for µ to
be Fourier transformable (resp., a Fourier transform). he main goal of this paper is
to answer these two questions.

We show in heorem 7.1 that a necessary and suõcient condition for a strongly
almost periodicity measure µ to be Fourier transformable is a certain integrability
condition, which we call weak admissibility (see Deûnitions 3.1 and 6.7), being satis-
ûed by the Fourier–Bohr series. he second question is answered in heorem 8.1. We
show that a strongly almost periodic measure µ is a Fourier transform if and only if
µ is weakly admissible and its Fourier–Bohr series is a measure.

In the particular case G = Rd , which is the case in most practical applications, we
use a result of Lin [24] to show that the weak admissibility condition can be replaced
by the muchmore concrete notion of translation boundedness. As a consequence, we
get that a strongly almost periodic measure µ ∈ SAP(Rd) is Fourier transformable
if and only if its Fourier–Bohr series is a translation-bounded measure. In the same
way, a strongly almost periodic measure µ ∈ SAP(Rd) is a Fourier transform if and
only if its Fourier–Bohr series is a measure.
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We also study the connection between the Fourier transformability of a measure
in Rd and its Fourier transformability as a tempered distribution. In [1], the authors
introduced a measure µ on R, which is positive deûnite, tempered as a distribution,
but for which the variation measure ∣µ∣ is not tempered. In particular, µ is not trans-
lation bounded as a measure. Since µ is positive deûnite, it is Fourier transformable
and its Fourier transform µ̂ =∶ ν is translation bounded [1]. It follows that ν is a
tempered distribution whose Fourier transform is the measure µ†, but is not Fourier
transformable as ameasure (see [44] formore details). his raises an interesting ques-
tion: what is the connection between the Fourier transform of measures on Rd and
their Fourier transform as distributions (compare [44]). We answer this question in
heorem 5.2: we show that a translation-bounded measure µ on Rd is Fourier trans-
formable as ameasure if and only if its Fourier transform in the tempered distribution
sense is a translation-boundedmeasure. Moreover, in this case, the two Fourier trans-
forms coincide.

2 Definitions and Notations

hroughout this paper, G will denote a Locally Compact Abelian Group (LCAG). We
will denote byCu(G) the space of uniformly continuous and bounded functions onG.
hen C0(G) and Cc(G) will denote the subspaces of Cu(G) consisting of functions
vanishing at inûnity and functions with compact support, respectively.

Recall that each LCAG G comes with a dual group Ĝ, deûned as the set of contin-
uous characters

χ ∶ G → U(1) ∶= {z ∈ C ∶ ∣z∣ = 1},
where χ is a continuous group homomorphism. he set Ĝ becomes a LCAG with the
group operation being pointwise multiplication of characters and the topology being
that of that of uniform convergence on compact sets (see [29, Sect. 4.2.1] for more
details).

In the spirit of Bourbacki [11], by a Radon measure we mean a linear function
µ ∶ Cc(G) → C such that for each compact set K ⊂ G, there exists a constant CK

such that for all f ∈ Cc(G) with supp( f ) ⊂ K, we have

∣µ( f )∣ ≤ CK∥ f ∥∞ .

he equivalence between this deûnition and the measure theory deûnition of regular
Radon measures is provided by the Riesz-Representation heorem [31, 32] (see also
[35, Appendix] for a discussion of this). We will refer to a Radon measure simply as a
measure. We will o�en write ⟨µ, f ⟩ or ∫G f (t)dµ(t) instead of µ( f ).
A measure µ is called positive if, for all f ∈ Cc(G) with f ≥ 0 we have

µ( f ) ≥ 0.

Any regular Radon measure µ can be written as a linear combination

µ ∶= µ1 − µ2 + i(µ3 − µ4),

of four positive regular Borel measures (see [35, hm. C4] for example). If all except
maybe one of the measures µ1 , µ2 , µ3 , µ4 can be chosen ûnite, then µ is a regular Borel
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measure. In particular, positive regular Borel and Radon measures coincide (see [35,
37] for more detail details).
Finally, let us emphasize that a regular Borel measure µ assigns a value µ(B) in

the extended complex plane C ∪ {∞} to each Borel set B ⊆ G, but the set of regular
Borel measures is not closed under addition. In contrast, the set of regular Radon
measures is a vector space, but regular Radon measures assign a (ûnite) value only to
pre-compact Borel sets B ⊆ G.

Let us also recall that, given a measure µ, there exists a positive measure ∣µ∣ such
that, for all f ∈ Cc(G) with f ≥ 0, we have [30, 35]

∣µ∣( f ) = sup{∣µ(g)∣ ∶ g ∈ Cc(G) with ∣g∣ ≤ f }.
he measure ∣µ∣ is called the total variation of µ.

Next, let us recall the deûnition of Fourier transformability for measures.

Deûnition 2.1 Ameasure µ is called Fourier transformable if there exists somemea-
sure µ̂ on Ĝ such that, for all f ∈ Cc(G), we have

∣ f
̂
∣
2
∈ L

1(∣ µ̂ ∣ ) and ⟨µ, f ∗ f̃ ⟩ = ⟨µ̂, ∣ f
̂
∣2⟩.

Here, for a function f ∶ G → C we denote by f̃ ∶ G → C the function

f̃ (x) ∶= f (−x).

In the spirit of [19], we deûne

K2(G) ∶= Span{ f ∗ g ∣ f , g ∈ Cc(G)}.
Given a subspace V ⊂ L1(G) we will denote by

V
⋀

∶= { f̂ ∣ f ∈ V} ⊂ C0(Ĝ).

Remark 2.2
(i) By the depolarisation identity, a measure is Fourier transformable if and only

if there exists some measure µ̂ on Ĝ such that K̂2(G) ⊂ L1(∣µ̂ ∣), and for all
f ∈ K2(G), we have ⟨µ, f ⟩ = ⟨µ̂, f

̂
⟩.

(ii) Any positive deûnite measure is Fourier transformable and its transform is pos-
itive [1, 10].

Let us now recall the deûnition of translation boundedness.

Deûnition 2.3 A measure µ is called translation bounded if for all compact sets
K ⊂ G, we have

∥µ∥K ∶= sup
x∈G

∣µ∣(x + K) < ∞.

We denote the space of translation-bounded measures byM∞(G).

Remark 2.4
(i) A measure µ is translation bounded if and only if

∥µ∥K < ∞,

for one compact set K with non-empty interior [9].
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(ii) If K is a ûxed compact set with non-empty interior, then ∥ ⋅ ∥K is a norm on
M∞(G).

An alternate characterisation of translation boundedness is given by the following
result.

heorem 2.5 ([1, hm. 1.1]) A measure µ is translation bounded if and only if for all

f ∈ Cc(G), we have µ ∗ f ∈ Cu(G).

2.1 Almost Periodic Measures

In this subsection, we brie�y review the basic properties of almost periodic functions
and measures. For a more detailed review of this, we refer the reader to [29].

Deûnition 2.6 A function f ∈ Cu(G) is called strong almost periodic or Bohr
almost periodic if the closure of {Tt f ∣ t ∈ G} with respect to ∥ ⋅ ∥∞ is compact in
(Cu(G), ∥ ⋅ ∥∞).
A function f ∈ Cu(G) is calledweakly almost periodic if the closure of {Tt f ∣ t ∈ G}

with respect to the weak topology of the Banach space (Cu(G), ∥ ⋅ ∥∞) is weakly-
compact.

Wedenote the space of strong (resp., weakly) almost periodic functions by SAP(G)
(resp.,WAP(G)).

Remark 2.7
(i) WAP(G) and SAP(G) are closed subspaces of (Cu(G), ∥ ⋅ ∥∞) [13] (see also

[29]).
(ii) WAP(G) and SAP(G) are closed under multiplication, complex conjugation,

re�ection, and taking the absolute value [13].

Next, we review the notion of null weak almost periodicity for functions. We ûrst
need to recall the deûnition of the mean of a weakly almost periodic function, and for
this we need to talk ûrst about averaging sequences.

Deûnition 2.8 A sequence {An} of compact subsets ofG is called a Fölner sequence
if, for all x ∈ G, we have

lim
x

vol ((x + An)∆An)
vol(An)

= 0.

A sequence {An} of compact subsets of G is called a van Hove sequence if, for all
compact sets K ⊆ G, we have

lim
x

vol ∂K(An)
vol(An)

= 0,

where, the K-boundary of An is deûned as

∂
K(An) = ((An + K)/An) ∪ ((G/An − K) ∩ An).

It is easy to see that each van Hove sequence is a Fölner sequence.
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Lemma 2.9 ([13, 29]) Let f ∈ WAP(G) and let {An} be a Fölner sequence in G.

hen the limit

lim
n

1
vol(An) ∫x+An

f (t)dt

exists uniformly in x ∈ G and is independent of x and of the choice of the Fölner sequence

{An}.

Deûnition 2.10 Let f ∈ WAP(G) and let {An} be a Fölner sequence in G. he
number

M( f ) ∶= lim
n

1
vol(An) ∫An

f (t)dt,

is called themean of f .
A function f ∈ WAP(G) is called null weakly almost periodic if M(∣ f ∣) = 0. We

denote the space of null weakly almost periodic functions byWAP0(G).

In the spirit of [19], we extend the notions of almost periodicity to measures (see
also [29]).

Deûnition 2.11 A measure µ ∈ M∞(G) is called strong almost periodic, weakly al-
most periodic, and null weakly almost periodic if for all f ∈ Cc(G) the function f ∗ µ is
strong almost periodic, weakly almost periodic, null weakly almost periodic, respec-
tively.

We will denote the spaces of almost periodic measures by SAP(G),WAP(G),
respectivelyWAP0(G).

Similar to functions, weakly almost periodic measures have a well deûned mean.

Lemma 2.12 ([19, 29]) Let µ ∈ WAP(G). hen, there exists a number M(µ) such

that, for all f ∈ Cc(G), we have

M(µ ∗ f ) = M(µ)∫
G

f (t)dt.

Moreover, if {An} is any van Hove sequence in G, we have

M(µ) = lim
n

µ(x + An)
vol(An)

,

uniformly in x.

As proved by Eberlein for functions [15], andArgabright and deLamadrid formea-
sures [19], the space SAP(G) is a direct summand inWAP(G), andWAP0(G) is its
complement.

heorem 2.13 ([19])

WAP(G) = SAP(G)⊕WAP0(G).
In particular, every measure µ ∈WAP(G) can be written uniquely

µ = µs + µ0 ,
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with µs ∈ SAP(G), µ0 ∈ WAP0(G). We will refer to this as the Eberlein decomposi-
tion of µ.

For Fourier transformable measures the Eberlein decomposition is the Fourier
dual of the Lebesgue decomposition into pure point and continuous components
[19, 29].

We complete the section by reviewing the Eberlein convolution.

heorem 2.14 ([13, 14]) If f , g ∈WAP(G), then

f f g(t) = Mx( f (t − x)g(x)) ,

is well deûned and belongs to SAP(G).

We will call f f g the Eberlein convolution of f and g.

heorem 2.15 ([19]) If f ∈ SAP(G) and µ ∈WAP(G), then

f f µ(t) = M( f (t − ⋅)µ) ,

is well deûned and belongs to SAP(G).

We will call f f µ the Eberlein convolution of f and µ.
Recently, the notion of Eberlein convolution was extended to two weakly almost

periodic measures in [23].
Finally, we review the notion of approximate identity for the Eberlein convolution.

Deûnition 2.16 A net { fα} with fα ∈ SAP(G) is an approximate identity for

(SAP(G),f) if for all f ∈ SAP(G) we have

f = lim
α
f f fα

in (SAP(G), ∥ ⋅ ∥∞).

Remark 2.17
(i) Consider the natural embedding G ↪ Gb of G into its Bohr compactiûcation

Gb (see [29, Sect. 4.2.2] for deûnition and properties).
hen fα is an approximate identity for (SAP(G),f) if and only if there exists

an approximate identity gα for (C(Gb), ∗) such that fα is the restriction to G of gα
[13, 19, 29]. Moreover,

M( fα) = ∫
Gb

gb(s)dθGb
(s).

In particular, approximate identities for (SAP(G),f) exist and can be chosen such
that fα ≥ 0, fα(−x) = fα(x) and M( fα) = 1.

(ii) If fα is an approximate identity for (SAP(G),f), then

lim
α

M( fα) = 1.
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3 Weakly Admissible Measures

In this section we introduce a new concept for a measure, which we will call weakly
admissible (compare the deûnition of admissible measures [24]), and study the basic
properties of weakly admissible measures.

he deûnition of weak admissibility is simply the integrability condition from the
deûnition of Fourier transformability, and its importance to the Fourier theory for
measures is emphasized by [35, hm. 3.10] (heorem 5.1).

Deûnition 3.1 A measure µ ∈M(G) is called weakly admissible if we have

K2(Ĝ)
⋀

⊂ L
1(∣µ∣).

Note that µ ∈M(G) is weakly admissible if and only if

Cc(Ĝ)
⋀

⊂ L
2(∣µ∣).

We start by stating a simple lemma that contains a few straightforward properties
of weakly admissible measures.

Lemma 3.2
(i) he measure µ is weakly admissible if and only if ∣µ∣ is weakly admissible.

(ii) If µ is weakly admissible and ∣ν∣ ≤ ∣µ∣, then ν is weakly admissible.

(iii) he measure µ is weakly admissible if and only if µpp , µac , and µsc are weakly

admissible.

(iv) If µ is Fourier transformable, then µ̂ is weakly admissible.

(v) If µ is weakly admissible then µ, µ̃, µ† and Ttµ are weakly admissible.

(vi) If µ is weakly admissible and f ∈ Cu(G), then f µ is weakly admissible.

Proof (i) his is obvious by the deûnition of weak admissibility.
(ii) If f ∈ Cc(Ĝ), then ∣ f̂ ∣2 is continuous, hence measurable. Moreover,

∫
G

∣ f̂ ∣2d∣ν∣ ≤ ∫
G

∣ f̂ ∣2d∣µ∣ < ∞.

his shows that Cc(Ĝ)
⋀

⊂ L2(∣ν∣).
(iii) his follows immediately from

∣µ∣ = ∣µpp∣ + ∣µac ∣ + ∣µsc ∣

and (ii).
(iv) his is a consequence of the deûnition of the Fourier transformability.
(v), (vi) hese are obvious. ∎

Next, we show that if µ is a weakly admissiblemeasure and f ∈ Cc(Ĝ), then ∣ f̂ ∣2∗µ

deûnes an uniformly continuous and bounded function. his result is essential for the
proof of heorem 8.1. he proof of the heorem 3.3 follows the idea of [1, hm. 2.5]
(see also [29, hm. 9.18], [36, Lemma]).
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heorem 3.3 Let µ be a weakly admissible measure.

(i) For each K ⊂ Ĝ, there exists a constant CK so that for all f ∈ Cc(Ĝ) we have
√
∫

G

∣ f̂ ∣2d∣µ∣ ≤ CK∥ f ∥∞ .

(ii) For each f ∈ Cc(Ĝ), the function

t Ð→ ∫
G

∣ f̂ (x + t)∣2d∣µ∣(x) =∶ g(t)

belongs to Cu(G).
(iii) For each f ∈ Cc(Ĝ) the function

t Ð→ ∫
G

∣ f̂ (x + t)∣2dµ(x) =∶ h(t)

belongs to Cu(G).
(iv) he measure µ is translation bounded.

Proof (i) Let us start by recalling that L2(∣µ∣) is a Hilbert space with respect to the
inner product

⟨ f , g⟩ = ∫
G

f (x)g(x)d∣µ∣(x).

he norm induced by this inner product is

∥h∥2 ∶=
√
∫

G

∣h∣2d∣µ∣,

and it depends on the measure µ.
he deûnition of weak admissibility tells us that we can deûne a mapping

T ∶ Cc(Ĝ) Ð→ L
2(∣µ∣);T( f ) = f̂ .

It is obvious that T is linear.
Now ûx some compact set K ⊂ Ĝ and deûne, as usual,

C(Ĝ ∶ K) ∶= { f ∈ Cc(Ĝ) ∣ supp( f ) ⊂ K} .

We claim that the restriction T ∶ C(Ĝ ∶ K) → L2(∣µ∣) has a closed graph and is hence
continuous.

Indeed, let fα → f in (C(Ĝ ∶ K), ∥ ⋅ ∥∞) be such that f̂α → g in L2(∣µ∣). We need
to show that f̂ = g in L2(∣µ∣).

Let є > 0 and let J ⊂ G be any compact set.
Since f̂α → g in L2(∣µ∣), there exists some β so that for all α > β, we have

(∫
G

∣ f̂α − g∣2d∣µ∣)
1
2 < є

2
.

Moreover, since fα → f in (C(Ĝ ∶ K), ∥ ⋅ ∥∞), there exists some γ > β such that, for
all α > γ we have

∥ fα − f ∥∞ ≤ є

2θ
Ĝ
(K)

√
∣µ∣(J) + 1

.
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hen, for some α > γ, we have by the triangle inequality for ∥ ⋅ ∥2

(∫
J

∣ f̂ − g∣2d∣µ∣)
1
2 ≤ (∫

J

∣ f̂ − f̂α ∣2d∣µ∣)
1
2 + (∫

J

∣g − f̂α ∣2d∣µ∣)
1
2

≤ ∥ f̂ − f̂α∥∞
√

∣µ∣(J) + є

2
= ∥ f − fα∥∞θ

Ĝ
(K)

√
∣µ∣(J) + є

2
< є.

his shows that (∫J ∣ f̂ − g∣2d∣µ∣) 1
2 < є for all compact sets J ⊂ G. herefore, by the

regularity of the measure ∣ f̂ − g∣2∣µ∣, we get

(∫
G

∣ f̂ − g∣2d∣µ∣)
1
2

< є.

Since є > 0 was arbitrary, we get

(∫
G

∣ f̂ − g∣2d∣µ∣)
1
2 = 0,

which proves that f̂ = g in L2(∣µ∣). herefore, the graph of T is closed, and hence T

is continuous.
he continuity of T implies the existence of CK .
(ii) Fix some K ⊂ Ĝ compact set so that supp( f ) ⊂ K. For the remainder of (ii), f

and K are ûxed.
For each s ∈ G, we will denote by ϕs the character on Ĝ deûned by s, that is

ϕs(χ) ∶= χ(s).

hen for all t ∈ G, we have

∫
G

∣ f̂ (x + t)∣2d∣µ∣(x) = ∫
G

∣T−t f̂ (x)∣2d∣µ∣(x) = ∫
G

∣ϕ̂−t f (x)∣2d∣µ∣(x)

≤ CK∥ϕ−t f ∥∞ = CK∥ f ∥∞ .

his shows that g is bounded.
Next, let є > 0. By Pontryagin duality, the set

N(K ,
є

CK∥ f ∥∞ + 1
) ∶= { s ∈ G∣∣ψs(χ) − 1∣ < є

CK∥ f ∥∞ + 1
for all χ ∈ K}

is an open neighbourhood of 0 in G.
If s − t ∈ N(K , є2 ), by the triangle inequality for ∥h∥2, we have

∣
√

g(s) −
√

g(t)∣ = ∣∥T−t f̂ ∥2 − ∥T−s f̂ ∥2∣
≤ ∥T−t f̂ − T−s f̂ ∥2 = ∥ϕ̂−t f − ϕ̂−s f ∥2

= ∥ϕ−t f − ϕ−s f
⋀

∥2 ≤ CK∥ϕ−t f − ϕ−s f ∥∞
= CK∥ϕ−t(1 − ϕt−s) f ∥∞ = CK∥(1 − ϕt−s) f ∥∞
≤ CK

є

CK∥ f ∥∞ + 1
∥ f ∥∞ < є.
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his proves that
√

g(t) is uniformly continuous. herefore, as 0 ≤ g(t) ≤ CK∥ f ∥∞,
and as x2 is uniformly continuous on the compact set [0,

√
CK∥ f ∥∞], it follows that

g is uniformly continuous.
(iii) Consider the decomposition

µ = Re(µ) + iIm(µ).
of µ.

Since

Re(µ) = 1
2
(µ + µ̄),

we have

∣Re(µ)∣ ≤ 1
2
(∣µ∣ + ∣µ̄∣) = ∣µ∣.

In the same way, we get

∣Im(µ)∣ ≤ 1
2
(∣µ∣ + ∣µ̄∣) = ∣µ∣.

herefore, by Lemma 3.2 (ii), the measures Re(µ) and Im(µ) are weakly admissible.
Next, consider the Jordan decomposition

Re(µ) = Re(µ)+ − Re(µ)− .

It follows from the properties of Jordan decomposition that

∣Re(µ)±∣ ≤ ∣Re(µ)∣.
his shows that Re(µ)± are weakly admissible measures, and hence by (ii) the func-
tions

t Ð→ ∫
G

∣ f̂ (x + t)∣2d∣Re(µ)±∣(x)

belong to Cu(G). As Re(µ)± ≥ 0, we get that

t Ð→ ∫
G

∣ f̂ (x + t)∣2dRe(µ)±(x)

belong to Cu(G), and hence, so does their diòerence

t → ∫
G

∣ f̂ (x + t)∣2dRe(µ)(x).

In exactly the same way, the function

t → ∫
G

∣ f̂ (x + t)∣2dIm(µ)(x)

belongs to Cu(G).
Now, the equality

∫
G

∣ f̂ (x + t)∣2dµ(x) = ∫
G

∣ f̂ (x + t)∣2dRe(µ)(x) + i ∫
G

∣ f̂ (x + t)∣2dIm(µ)(x)

proves the claim.
(iv) Let K ⊂ G be compact. hen there exists some h ∈ Cc(Ĝ) so that ([10, 29])

ĥ ≥ 1K .
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hen, for all x ∈ G, we have

∣µ∣(−x + K) = ∫
G

1K(x + t)d∣µ∣(t) ≤ ∫
G

∣ĥ(x + t)∣2d∣µ∣(x).

herefore, by (ii),

∥µ∥K = sup
x∈G

{∣µ∣(−x + K)} < ∞. ∎

A natural question to ask now is whether translation boundedness implies weakly
admissible. We will show in the next section that for G = Rd the answer is yes, but in
general, to our knowledge, the question is still open.

Next, we show that for weakly almost periodic measures, weak admissibility is
compatible with Eberlein decomposition.

heorem 3.4 Let µ ∈WAP. hen µ is weakly admissible if and only if µs and µ0 are

weakly admissible.

Proof (⇐) his is obvious.
(⇒) Let f ∈ Cc(Ĝ). Fix some compact K and pick some g ∈ Cc(G) such that

g ≥ 1K .
Let h ∶= g∣ f̂ ∣2. hen h ∈ Cc(G), h ≥ 0 and h = ∣ f̂ ∣2 on K.
Finally, let fα ∈ SAP(G) be an approximate identity for the Eberlein convolution,

such that fα ≥ 0 and fα(−x) = fα(x). hen

µs = lim
α

µ f fα

in the product topology on M∞(G) [19, Cor. 7.2]. In particular, µ f fα converges in
the vague topology to µs.

Next, we have

(3.1) ∫
G

h(t)d∣µs∣(t) = sup{ ∣∫
G

ϕ(t)dµs(t)∣ ∣ ϕ ∈ Cc(G), ∣ϕ∣ ≤ h} .

Let ϕ ∈ Cc(G) be so that ∣ϕ∣ ≤ h. hen

∣∫
G

ϕ(t)dµs(t)∣ = lim
α

∣∫
G

ϕ(t)dµ f fα(t)∣

= lim
α

∣ϕ† ∗ (µ f fα)(0)∣

= lim
α

∣(ϕ† ∗ µ) f fα(0)∣,

(3.2)

with the last equality following from [19, hm. 6.4].
Now, since µ is weakly admissible, by heorem 3.3 (ii), there exists a constant C f

that depends only on f such that for all t ∈ G, we have

∫
G

∣ f̂ ∣2(t + s)d∣µ∣(s) ≤ C f .

his implies that for all t ∈ G, we also have

∫
G

h(t + s)d∣µ∣(s) ≤ C f ,
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and hence,

∫
G

∣ϕ∣(t + s)d∣µ∣(s) ≤ C f .

herefore, if An is any Fölner sequence, by the deûnition of Eberlein convolution, we
have, for all α,

∣(ϕ† ∗ µ) f fα(0)∣ = ∣ lim
n

1
vol(An) ∫An

(ϕ† ∗ µ)(t) fα(−t)dt∣

≤ lim sup
n

1
vol(An) ∫An

∣ϕ† ∗ µ∣(t) fα(t)dt

≤ lim sup
n

1
vol(An) ∫An

∣∫
G

ϕ(−t + s)dµ(s)∣ (t) fα(t)dt

≤ lim sup
n

1
vol(An) ∫An

(∫
G

∣ϕ∣(−t + s)d∣µ∣(s)) fα(t)dt

≤ lim sup
n

1
vol(An)

C f fα(t)dt = C fM( fα).

Hence, by (3.2), we have

∣∫
G

ϕ(t)dµs(t)∣ ≤ lim sup
α

C fM( fα) = C f .

By (3.1), we get

∫
G

h(t)d∣µs∣(t) ≤ C f .

his shows that

∫
K

∣ f̂ ∣
2
(t)d∣µs∣(t) ≤ C f .

As the constant is independent of the compact set K, and K ⊂ G was an arbitrary

compact set, by the regularity of the measure ∣ f̂ ∣
2
(t)∣µs∣, we get

∫
G

∣ f̂ ∣
2
(t)d∣µs∣(t) ≤ C f .

his proves that µs is weakly admissible.
Finally, µ0 = µ − µs is weakly admissible as a diòerence of two weakly admissible

measures. ∎

4 Weakly Admissible Measures on Rd

In this section we connect our concept of weak admissibility with the concepts of ad-
missibility and uniform boundedness that appeared in the work of Lin [24], hornett
[45], and Robertson andhornett [36].

Let us ûrst recall some of their deûnitions:

Deûnition 4.1 A positive Borel measure µ on Rd is called r-admissible if for all
f ∈ L2(Rd) with supp( f ) ⊂ [−r, r]d , we have

∫
Rd

∣ f̂ (y)∣2dµ(y) < ∞.
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Note that since f ∈ L2(Rd) and supp( f ) ⊂ [−r, r]d , we have f ∈ L1(Rd), and hence
f̂ (y) is deûned pointwise for all y ∈ Rd .

he following theorem is of importance to us; see [24, hm. 1], [45, hm. 4.2,
hm. 4.3].

heorem 4.2 A positive Borel measure µ onRd is r-admissible for some r if and only

if it is translation bounded. In particular, a measure is r-admissible for some r > 0 if

and only if it is r-admissible for all r > 0.

Because of this, we will simply call a measure admissible instead of r-admissible.
As a consequence, we get the following simple characterisation of weak admissi-

bility on Rd .

heorem 4.3 Let µ be a Radon measure on Rd . hen the following are equivalent:

(i) he measure µ is translation bounded.

(ii) he measure ∣µ∣ is translation bounded.
(iii) he measure ∣µ∣ is admissible.

(iv) he measure µ is weakly admissible.

(v) For all bounded Borel sets A ⊂ Rd , we have 1̂A ∈ L2(µ).

Proof he implication (i)⇒ (ii) is obvious.
(ii)⇒ (iii) his follows from heorem 4.2.
(iii)⇒ (iv) his is immediate, as ∣µ∣ is admissible implies that ∣µ∣ is weakly admis-

sible, which in turn implies that µ is weakly admissible.
(iv)⇒ (i) his follows from heorem 3.3.
he equivalence (ii)⇔ (v) is [36, heorem] applied to ∣µ∣. ∎

5 Weak Admissibility and the Fourier Transform

In this section, we take a closer look at weak admissibility and Fourier transforma-
bility. We start by reviewing a criterion for twice Fourier transformability of a trans-
formable measure. Next, we give a criterion for Fourier transformability of a measure
µ on Rd in terms of its Fourier transform as a tempered distribution.

heorem 5.1 ([35, hm. 3.10]) Let µ be a Fourier transformable measure. hen µ is

twice Fourier transformable if and only if µ is a weakly admissible measure.

In this case, we have ̂̂µ = µ† .

Next, consider a measure µ on Rd . If µ is tempered as a distribution, then µ has
a Fourier transform ψ that is a tempered distribution. If ψ is not a measure, it is easy
to see that µ cannot be Fourier transformable in the measure sense. An interesting
question is: what happens when ψ is a measure?
As shown in [1], it does not necessary follow that µ is Fourier transformable as a

measure.
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In the following theorem we prove that in this situation, the Fourier transforma-
bility of µ in the measure sense is equivalent to the weak admissibility, and hence
translation boundedness, of ψ.

heorem 5.2 Let µ ∈ M(Rd). hen µ is Fourier transformable as a measure if and

only if the following hold:

(i) he measure µ is tempered as a distribution.

(ii) he Fourier transform ν of µ as a tempered distribution is a translation-bounded

measure.

Moreover, in this case, we have µ̂ = ν.

Proof (⇒) Since µ is Fourier transformable, the measure µ̂ is translation bounded
and

⟨µ, g⟩ = ⟨µ̂, g
̂
⟩

for all g ∈ Cc(Rd). Moreover, since ν is translation bounded, it is tempered as a
distribution.
As µ̂ is a translation-bounded measure, it is a tempered distribution. herefore, it

is the Fourier transform of a tempered distribution v.
hen, for all f ∈ S∞(Rd), we have ⟨v , g⟩ = ⟨µ̂, g

̂
⟩. his shows that for all g ∈

C∞c (Rd), we have ⟨v , g⟩ = ⟨µ̂, g
̂
⟩ = ⟨µ, g⟩. herefore, v = µ.

As v is a tempered distribution, it follows that µ is tempered as a measure, and that
µ̂ is the Fourier transform of µ as a tempered distribution.
As µ̂ is a translation-bounded measure, the claim follows.
(⇐) We have ⟨µ, g⟩ = ⟨ν, g

̂
⟩ for all g ∈ S(Rd). herefore, ⟨µ, g⟩ = ⟨ν, g

̂
⟩ for all

g ∈ C∞c (Rd).
Next, ûx some hn ∈ S(Rd) such that ∥hn∥∞ = 1, hn = 1 on Bn(0) and supp(hn) ⊂

Bn+1(0). Let gn ∶= hn

̂
.

Now, pick some f ∈ Cc(G). hen, as f ∈ L2(Rd), we have f̂ ∈ L2(Rd). herefore,
by the Lebesgue Dominated Convergence heorem,

∥( f̂ )hn − f̂ ∥2 → 0.

his shows that f ∗ gn → f in L2(Rd). hen

( f ∗ gn) ∗ ̃( f ∗ gn) → f ∗ f̃ in (Cc(Rd), ∥ ⋅ ∥∞).

his gives

⟨µ, f ∗ f̃ ⟩ = lim
n

⟨ µ, ( f ∗ gn) ∗ ̃( f ∗ gn)⟩ = lim
n

⟨ν, ∣ f
̂
∣
2
h

2
n⟩.

Finally, since ∣ f
̂
∣
2
∈ L1(∣ν∣) and ∣ f

̂
∣
2
h2
n is increasing and converges pointwise to

∣ f
̂
∣
2
, we get by the monotone convergence theorem,

lim
n

⟨ν, ∣ f
̂
∣
2
hn⟩ = ⟨ν, ∣ f

̂
∣
2
⟩.
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herefore, for all f ∈ Cc(Rd), we have ∣ f
̂
∣
2
∈ L1(∣ν∣) and

⟨µ, f ∗ f̃ ⟩ = ⟨ν, ∣ f
̂
∣2⟩.

his shows that µ is Fourier transformable and µ̂ = ν. ∎

6 Fourier–Bohr Series and Formal Sums

Given a weakly almost periodic measure µ, we can introduce its Fourier–Bohr series
(seeDef. 6.12). If µ is Fourier transformable, then its Fourier–Bohr series is ameasure,
but there is no guarantee that this happens in general. For this reason, when we deal
with the Fourier–Bohr series of a weakly almost periodic measure, we need to treat it
as a formal sum (see also [19]).

In this section, we review the basic properties of formal sums and the Fourier–Bohr
series of weakly almost periodic measures.

6.1 Formal Sums

We start by deûning the notion of formal sums.

Deûnition 6.1 By a formal sum we mean an expression of the form

ω = ∑
x∈G

ωxδx ,

where ωx ∈ C.
For such an expression we deûne the support of ω as

supp(ω) ∶= {x ∈ G∣ωx ≠ 0}.

Remark 6.2 Any formal sum is a measure on Gd. Our interest will be in formal
sums that are measures on G, so we will simply treat them as formal sums.

We will o�en speak of integrals of functions against formal sums. Note that we can
multiply a formal sum by a function in an obvious way, and we obtain a new formal
sum. We will say that the function f is integrable against the formal sum ω if the
product f ω is an absolutely summable series.

Deûnition 6.3 Let ω be a formal sum and let f ∶ G → C be a function. We say that
f is integrable with respect to ω if

∑
x∈G

∣ f (x)ω(x)∣ < ∞.

In this case, we deûne the integral

∫
G

f dω = ⟨ f ,ω⟩ ∶= ∑
x∈G

f (x)ω(x).

We also let

L1(ω) ∶= { f ∶ G → C ∣ f is integrable with respect to ω}.
and

L2(ω) ∶= { f ∶ G → C ∣ f 2 is integrable with respect to ω}.
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Note that for pure point measures ω, we have

L1(ω) = L
1(∣ω∣) L2(ω) = L

2(∣ω∣).

Remark 6.4
(i) If f is integrablewith respect toω then f (x)ωx = 0 for all but atmost countably

many x ∈ G.
(ii) A function f is integrable with respect to ω exactly when ∑x∈G f (x)ω(x) is

absolutely convergent.
(iii) If we treat ω as a measure on Gd, then a function is integrable with respect

to ω exactly when it is integrable with respect to ω as a measure and L1(ω) is just the
standard L1(∣ω∣) space.

We start by characterizing formal sums which are measures on G. It is clear that
every such measure is pure point.

heorem 6.5 Let ω = ∑x∈G ωxδx be a formal sum. hen ω is a measure if and only

if for all compact sets K we have

∑
x∈K

∣ωx ∣ < ∞.

Proof (⇒) Let K be a compact set. Since ω is a measure, so is its variation measure
∣ω∣.

herefore we have
∑
x∈K

∣ωx ∣ = ∣ω∣(K) < ∞.

(⇐)We ûrst prove that Cc(G) ⊂ L1(ω).
Let f ∈ Cc(G), and let K be any compact set such that supp( f ) ⊂ K. hen

∑
x∈G

∣ f (x)ω(x)∣ = ∑
x∈K

∣ f (x)ω(x)∣ ≤ ∥ f ∥∞ ∑
x∈K

∣ω(x)∣ < ∞.

Next it is trivial to show that ω is linear on Cc(G).
Finally, if K ⊂ G is a ûxed compact set and f ∈ Cc(G) is so that supp( f ) ⊂ K, by

the above computation we have

∣⟨ω, f ⟩∣ ≤ CK∥ f ∥∞ ,
where

CK = ∑
x∈K

∣ωx ∣ < ∞.

herefore, by the Riesz representation theorem, ω is a measure. ∎

We next introduce a simpler criterion which involves a single compact set with
non-empty interior.

Corollary 6.6 Let ω = ∑x∈G ωxδx be a formal sum and let K be a ûxed compact set

with a non-empty interior. hen ω is a measure if and only if for all t ∈ G we have

∑
x∈(t+K)

∣ωx ∣ < ∞.
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Proof Let K′ ⊂ G be any compact set. hen, since K has non-empty interior, there
exists t1 , . . . , tk ∈ G such that

K
′ ⊂

k

⋃
j=1

t j + K .

hen

∑
x∈K

∣ωx ∣ ≤
k

∑
j=1

( ∑
y∈(t j+K)

∣ωy ∣) < ∞.

herefore, by heorem 6.5, ω is a measure. ∎

6.2 Weakly Admissible Formal Sums

We can now extend the deûnition of weak admissibility to formal sums. We will see
in this subsection that all weakly admissible formal sums are in fact measures.

he reason we are interested in extending the deûnition to formal sums is because
we will be interested in weak admissibility of a Fourier–Bohr series, which may or
may not be a measure.

Deûnition 6.7 A formal sum ω is called aweakly admissible formal sum if K2(Ĝ)
⋀

⊂
L1(ω).

Remark 6.8
(i) A formal sum ω is weakly admissible if and only if for all f ∈ Cc(Ĝ), we have

∑
x∈G

∣ωx ∣∣ f
̂
∣
2
(x) < ∞.

(ii) A formal sum ω is weakly admissible if and only if Cc(Ĝ)
⋀

⊂ L2(ω).
(iii) Any formal sum that is weakly admissible is a linear function on K2(Ĝ)

⋀

.

We start by proving that weakly admissible formal sums are measures.

Lemma 6.9 Let ω be a weakly admissible formal sum. hen ω is a translation-

bounded measure.

Proof Let K ⊂ G be compact. hen there exists a function f ∈ Cc(Ĝ) such that
f

̂
≥ 1K [10, 29].
hen

∑
x∈K

∣ωx ∣ ≤ ∑
x∈G

∣ωx ∣∣ f
̂
∣
2
< ∞.

hen by heorem 6.5, ω is a measure, which is trivially a weakly admissible measure.
Hence, by heorem 3.3, ω is a translation-bounded measure. ∎

Corollary 6.10 Let ω be a formal sum onRd . hen ω is weakly admissible if and only

if ω is a translation-bounded measure.
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We complete the section by providing a slight generalisation to [35, hm. 5.5]: we
prove that translation-boundedmeasures withMeyer set support are weakly admissi-
ble. For deûnitions and properties of Meyer sets and cut and project schemes we refer
the reader to [25–27, 43]. We would like to emphasize that this stronger version was
actually proved but not stated in [35]. Our proof is identical to the one in [35].

heorem 6.11 Let µ = ∑x∈Λ ωxδx . If Λ is a subset of a Meyer set and {ωx} is

bounded, then

ω ∶= ∑
x∈Λ

ωxδx

is a weakly admissible formal sum.

Proof Let (G ,H,L) be a cut and project scheme and let W ⊂ H be a compact set
such that Λ ⊂ ⋏(W).

Let (Ĝ , Ĥ,L0) be the dual cut and project scheme. hen, there exists some h ∈
Cc(Ĥ) such that h

̂
≥ 1W [10, 29].

hen ω
h∗h̃

is Fourier transformable and ([35])

ω
h∗h̃

⋀= ω∣h
̂
∣2 .

herefore, as the Fourier transform of a measure, ω∣h
̂
∣2 is weakly admissible. As ∣ω∣ ≤

ω∣h
̂
∣2 , it follows from Lemma 3.2 that ∣ω∣ is weakly admissible, and hence by Lemma

3.2, ω is weakly admissible. ∎

6.3 Fourier Bohr Series

In the spirit of [19] we have the following deûnition.

Deûnition 6.12 Let µ ∈WAP(G). he Fourier–Bohr series of µ is deûned as

Fd(µ) ∶= ∑
χ∈Ĝ
cχ(µ)δχ .

As shown in [19], the Fourier–Bohr series uniquely identiûes the strongly almost
periodic component of a weakly almost periodic measure.

heorem 6.13 ([19])
(i) For each µ ∈WAP(G), we have Fd(µ) = Fd(µs).
(ii) For µ, ν ∈ SAP(G), we have Fd(µ) = Fd(ν) if and only if µ = ν.

Let us recall that Fourier–Bohr series have the following summability property.

Remark 6.14 ([19, Sect. 8]) If µ ∈WAP(G), then, for all g ∈ Cc(G) we have

∑
χ∈Ĝ

∣cχ(µ)∣2∣ĝ(χ)∣2 < ∞.

he importance of the Fourier–Bohr series for the Fourier transform of measures
is given by the following result.
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heorem 6.15 If µ ∈WAP(G) is Fourier transformable, then

µ̂pp = Fd(µ),

and Fd(µ) is a weakly admissible formal sum.

Proof Since µ is Fourier transformable, for all χ ∈ Ĝ, we have ([29])

µ̂({χ}) = cχ(µ).

herefore,
µ̂pp = ∑

χ∈Ĝ
µ̂({χ})δχ = ∑

χ∈Ĝ
cχ(µ)δχ = Fd(µ).

Moreover, µ̂ is weakly admissible, and hence so is µ̂pp. ∎

As an immediate consequence of heorem 6.15, we get the following corollary.

Corollary 6.16 If µ ∈ SAP(G) is Fourier transformable, then µ̂ = Fd(µ), andFd(µ)
is a weakly admissible formal sum.

he main result in this paper (heorem 7.1) shows that the converse of this also
holds.

7 Fourier Transformability of Strongly Almost Periodic Measures

In this section we proceed to prove the main result of this paper. We then look at few
consequences.

heorem 7.1 Let µ ∈ SAP(G). hen, µ is Fourier transformable if and only if Fd(µ)
is a weakly admissible formal sum.

Moreover, in this case, we have µ̂ = Fd(µ).

Proof (⇒) his follows from Corollary 6.16.
(⇐)First, sinceFd is aweakly admissible formal sum, it is ameasure by Lemma6.9.

For simplicity, let us denote this measure by

ν ∶= Fd(µ) = ∑
χ∈Ĝ
cχ(µ)δχ .

To complete the proof we show that ν satisûes the deûnition of the Fourier transform
of µ. In order to achieve this conclusion, for each f ∈ Cc(G) we show that µ ∗ f ∗ f̃
and ∣ f̂ ∣2

⋀

ν are Bohr almost periodic functions with the same Fourier–Bohr series, and
hence equal. Equating them at zero gives the desired conclusion. We proceed along
this line.

Let f ∈ Cc(G) be arbitrary. hen, as ν is a weakly admissible measure, we have
f

̂
∈ L2(ν). herefore,

∣ f
̂
∣2ν = ∑

χ∈Ĝ
∣ f
̂
(χ)∣2cχ(µ)δχ
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is a ûnite measure. Let g(x) denote the inverse Fourier transform of this measure.
hen g ∈ Cu(G) is a Bohr almost periodic function [13], whose Fourier–Bohr series
is∑χ∈Ĝ ∣ f

̂
(χ)∣2cχ(µ)δχ .

Now since µ is translation bounded, µ ∗ ( f ∗ f
̂
)† ∈ Cu(G) and ([19, 29])

cχ(µ ∗ ( f ∗ f̃ )†) = f ∗ f̃
̂

(χ)cχ(µ) = ∣ f
̂
(χ)∣2cχ(µ).

herefore, µ ∗ ( f ∗ f̃ )† has Fourier–Bohr series∑χ∈Ĝ ∣ f
̂
(χ)∣2cχ(µ)δχ .

It follows that the functions µ ∗( f ∗ f̃ )† and g are two Bohr almost periodic func-
tions with the same Fourier–Bohr series, and hence they are equal [13, 19, 29].

Making the expressions equal at x = 0, we get

⟨µ, f ∗ f̃ ⟩ = µ ∗ ( f ∗ f̃ )†(0) = g(0) = ∣ f̌ ∣2ν

⋀

(0) = ⟨ν, ∣ f
̂
∣2⟩.

his shows that for all f ∈ Cc(G), we have f
̂
∈ L2(ν) and

⟨µ, f ∗ f̃ ⟩ = ⟨ν, ∣ f
̂
∣2⟩.

herefore, µ is Fourier transformable and µ̂ = ν = Fd(µ). he last claim now follows
from Corollary 6.16. ∎

In the particular case G = Rd , we get the following theorem.

heorem 7.2 Let µ ∈ SAP(Rd). hen, µ is Fourier transformable if and only if

Fd(µ) is a translation-bounded measure.

Moreover, in this case we have

µ̂ = Fd(µ).

By combining heorem 7.1 with heorem 5.1 we get the following theorem.

heorem 7.3 Let µ ∈ SAP(G). hen µ is twice Fourier transformable if and only if

µ is a weakly admissible measure and Fd(µ) is a weakly admissible formal sum.

Since strongly almost periodic measures are by deûnition translation bounded, in
the particular case G = Rd , we get the following corollary.

Corollary 7.4 Let µ ∈ SAP(Rd). hen µ is twice Fourier transformable if and only

if Fd(µ) is translation-bounded measure.

Remark 7.5 Consider the class

S ∶= {µ ∈ SAP(Rd) ∣ Fd(µ) is a translation-bounded measure} .

Let
T ∶= {Fd(µ) ∣ µ ∈ S}.

hen, byCorollary 7.4, allmeasures in S andT , respectively, are Fourier transformable,
and the Fourier transform gives two bijectionˆ∶ S → T ;ˆ∶ T → S, whose composition
is a re�ection.
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Another immediate consequence ofheorem 7.1 is the following simple character-
isation of Fourier transformable measures with pure point transform.

Corollary 7.6 Let µ ∈M∞(G). hen the following are equivalent:

(i) he measure µ is Fourier transformable, and µ̂ is pure point.

(ii) he measure µ is strongly almost periodic, and its Fourier–Bohr series Fd(µ) is a

weakly admissible formal sum.

Moreover, in this case, we have µ̂ = Fd(µ).

Proof We know that for a Fourier transformable measure µ, we have µ̂ is pure point
if and only if µ ∈ SAP(G) [29].

he claim now follows from heorem 7.1. ∎

Corollary 7.7 Let µ ∈M∞(Rd). hen the following are equivalent:

(i) he measure µ is Fourier transformable, and µ̂ is pure point.

(ii) he measure µ is strongly almost periodic, and its Fourier–Bohr series Fd(µ) is a

translation-bounded measure.

Moreover, in this case, we have µ̂ = Fd(µ).

Proof We know that for a Fourier transformable measure µ, we have µ̂ is pure point
if and only if µ ∈ SAP(G) [29].

he claim follows now from heorem 7.1. ∎

heorem 7.1 also produces the following criterion for a pure point measure to be
the Fourier transform of a measure.

Corollary 7.8 Let ν be a pure point measure on Ĝ. hen ν is the Fourier transform

of a measure if and only if ν is weakly admissible, and ν is the Fourier–Bohr series of a

strongly almost periodic measure.

Corollary 7.9 Let ν be a pure point measure on Rd . hen ν is the Fourier transform

of a measure if and only if ν is translation bounded, and ν is the Fourier–Bohr series of

a strongly almost periodic measure.

heorem 7.1 gives an independent proof of the following result, which was proved
recently in [29].

heorem 7.10 Let µ ∈M∞(G) be a Fourier transformable measure. hen µs and µ0
are Fourier transformable and

µ̂pp = (̂µs); µ̂c = (̂µ0).

Proof Since µ ∈ M∞(G) is Fourier transformable, we get that µ ∈ WAP(G) [29].
Also, µ̂ is a weakly admissible measure.

herefore, µ̂pp is a weakly admissible formal sum.
Moreover, we have µ̂pp = Fd(µ) = Fd(µs).
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herefore, µs is a strongly almost periodicmeasurewith aweakly admissible Fourier–
Bohr series, and hence Fourier transformable. Moreover, its Fourier transform is

µ̂s = Fd(µs) = µ̂pp .

Finally, as a diòerence of two Fourier transformable measures, µ0 = µ − µs is Fourier
transformable and

µ̂0 = µ̂ − µs = µ̂− µ̂s = µ̂−(µ̂)pp = (µ̂)c . ∎

We complete the section by providing a characterisation for the class of positive
deûnite strong almost periodic measures in terms of positivity and weak admissibility
of the Fourier–Bohr series.

heorem 7.11 Let µ ∈ SAP(G). hen µ is positive deûnite if and only if Fd(µ) is a

positive weakly admissible formal sum.

Proof ⇒: Since µ is positive deûnite, it is Fourier transformable and µ̂ is positive
[1, 10, 29]. he claim now follows from heorem 7.1.
⇐: By heorem 7.1, µ is Fourier transformable and µ̂ = Fd(µ) ≥ 0. herefore, µ is

a Fourier transformable measure with positive Fourier transform, and hence positive
deûnite [1, 29]. ∎

Corollary 7.12 Let µ ∈ SAP(Rd). hen µ is positive deûnite if and only if Fd(µ) is

a positive translation-bounded measure.

8 Strongly Almost Periodic Measures as Fourier Transforms

In this sectionwe provide a simple necessary and suõcient condition for a strongly al-
most periodic measure µ to be a Fourier transform, and list some of its consequences.

he result in heorem 8.1 complements heorem 7.1. We would like to point out
that if the strongly almost periodic measure µ is twice Fourier transformable, then
heorem 7.1 andheorem 8.1 become equivalent viaheorem 5.1, but, in general, they
are independent of each other.

heorem 8.1 Let µ ∈ SAP(Ĝ). hen the following are equivalent:

(i) here exists some measure ν on G with ν̂ = µ.

(ii) he Fourier–Bohr series Fd(µ) is a measure, and µ is weakly admissible.

Moreover, in this case, we have ν = (Fd(µ))
†
.

Proof (i)⇒ (ii): Since ν is Fourier transformable, and µ̂ ∈ SAP(Ĝ), the measure ν

is pure point [19].
Moreover, for all x ∈ G, we have ([19])

ν({x}) = M(xν̂) = c−x(µ).

his shows that ν = (Fd(µ))
†
.

herefore, as ν is a measure, Fd(µ) is a measure. Finally, as the Fourier transform
of ν, µ is weakly admissible.
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(ii) ⇒ (i): Deûne ν = (Fd(µ))†. We claim that ν is Fourier transformable, and
ν̂ = µ. Let f ∈ Cc(G). hen ( f ∗ f̃ )ν is a ûnite pure point measure, and hence

g = ( f ∗ f̃ )ν
⋀

is a strongly almost periodic function.
Moreover, by heorem 3.3(iii), ∣ f̂ ∣2 is convolvable as a function with µ, and the

convolution ∣ f̂ ∣2 ∗ µ is continuous.

Finally, by [19, Prop. 7.3], we have ∣ f̂ ∣
2
∗ µ ∈ SAP(Ĝ), and the Fourier–Bohr co-

eõcients satisfy ([19, Prop. 8.2])

cx(∣ f̂ ∣2 ∗ µ) = ∣ f̂ ∣2
⋀

(x)cx(µ) = f ∗ f̃ (−x)cx(µ) = f ∗ f̃ (−x)ν({−x}).

As g is the Fourier transform of the ûnite pure point measure ( f ∗ f̃ )ν
⋀

, it is also
strongly almost periodic as measure and ([19, 29])

cx(g) = f ∗ f̃ (−x)ν({−x}).

his shows that g and ∣ f̂ ∣2 ∗ µ are two strongly almost periodic measures that have the
same Fourier–Bohr series; therefore, they are equal. We also know that g ∈ Cu(G)
and, by heorem 3.3(iii) we have ∣ f̂ ∣2 ∗ µ ∈ Cu(G). It follows that g = ∣ f̂ ∣2 ∗ µ as
functions. In particular,

⟨ν, f ∗ f̃ ⟩ = g(0) = ∣ f̂ ∣2 ∗ µ(0) = ⟨µ, ∣ f
̂
∣2⟩.

Hence, by the weak admissibility of µ for all f ∈ Cc(G), we have
∣ f
̂
∣2 ∈ L

1(∣µ∣) and ⟨ν, f ∗ f̃ ⟩ = ⟨µ, ∣ f
̂
∣2⟩.

herefore, by the deûnition of Fourier transformability, ν is Fourier transformable
and ν̂ = µ. ∎

As above, when G = Rd we get the following theorem.

heorem 8.2 Let µ ∈ SAP(R̂d). hen µ is the Fourier transform of a measure if and

only if Fd(µ) is a measure. Moreover, in this case, we have

(Fd(µ))
†
⋀

= µ.

As a consequence of heorem 8.1 we also get a new proof of the following result.

heorem 8.3 ([19, hm. 11.2]) Let µ be a Fourier transformable measure. hen

µpp , µc are Fourier transformable and

(̂µ)pp = (µ̂)s and (̂µ)c = (µ̂)0 .

Proof Since µ is Fourier transformable, µ̂ ∈ WAP(G) [19] is weakly admissible.
hen, by heorem 3.4 (µ̂)s is weakly admissible.

Moreover, we have ([19, hm. 11.3] or [29])

cχ(µ̂) = µ({−χ}),

which shows that Fd(µ̂) = (µpp)†, and hence Fd(µ̂) is a measure.
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herefore, byheorem 8.1, themeasureFd(µ̂)† = µpp is Fourier transformable and
(̂µ)pp = (µ̂)s . By taking diòerences, it follows that µc is also Fourier transformable
and

(̂µ)c = (µ̂)0 . ∎

9 On a Special Class of Cut and Project Formal Sums

In this sectionwe review a large class of strongly almost periodicmeasures and discuss
their Fourier transformability.
Consider a cut and project scheme (G ,H,L); for h ∈ C0(H) we deûne the formal

sum

ωh ∶= ∑
(x ,x⋆)∈L

h(x⋆)δx .

he following Lemma is trivial; see [9, 43].

Lemma 9.1 If h ∈ Cc(H), then ωh is strongly almost periodic measure.

We next calculate the Fourier–Bohr series of this measure. Computations like this
have been made in many places [21, 33, 35, 43].

Lemma 9.2 If h ∈ Cc(H), then Fd(ωh) = dens(L)ω
ȟ
.

Proof he computation is standard, as follows. Let χ ∈ Ĝ; then by [21, hm. 9.1], we
have

cχ(ωh) = dens(L)∫
H

χ
⋆(t)h(t)dt = dens(L) f

̂
(χ⋆). ∎

Also, let us recall the following result.

heorem 9.3 ([34]) If ωh is a translation-bounded measure, then h ∈ L1(H).

We are now ready to prove the following result, (compare [34]).

heorem 9.4 Let (G ,H,L) be a cut and project scheme and let h ∈ Cc(H). hen

the following are equivalent:

(i) he measure ωh is Fourier transformable.

(ii) he formal sum ω
ȟ
is weakly admissible.

(iii) he formal sum ω
ȟ
is a translation-bounded measure.

(iv) We have ȟ ∈ L1(Ĥ).

Proof he equivalence (i)⇔ (ii) follows from heorem 7.1.
(ii)⇒ (iii) follows from heorem 3.3, while (iii)⇒ (iv) follows from heorem 9.3.
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(iv)⇒ (ii) Let g ∈ K2(G). hen g ⊗ h ∈ Cc(G × H) and ĝ ⊗ h ∈ L1(G × H), and
hence [1, 32], g ⊗ h

̂
∈ L1(δL0). his is equivalent to ∣ω

ȟ
∣(∣g

̂
∣) < ∞, which gives the

K̂2(G)-boundedness. ∎

Remark 9.5 If h ∈ Cc(H) and ȟ ∉ L1(Ĥ), then it follows that ωh ∈ SAP(G) but
ωh is not Fourier transformable as a measure.

his provides many examples of non Fourier transformable strongly almost peri-
odic measures. In particular, for all these measures, the Fourier–Bohr series is not
weakly admissible.

We complete the section by recalling a result of [43]. his result, together with
heorem 9.4, provides a characterisation for Fourier transformability for strongly al-
most periodic measures supported inside Meyer sets.

heorem 9.6 Let ω be a translation-bounded measure with Meyer set support. hen

ω is strongly almost periodic if and only if there exists a cut and project scheme (G ,H,L)
and a function h ∈ Cc(H) such that ω = ωh .

As a consequence, we get the following theorem.

heorem 9.7 Let ω be a strongly almost periodic measure with Meyer set support.

hen the following are equivalent:

(i) he measure ω is Fourier transformable.

(ii) here exists a cut and project scheme (G ,H,L) and a function h ∈ Cc(H) with

ĥ ∈ L1(Ĥ) such that ω = ωh .
(iii) For each cut and project scheme (G ,H,L) and function h ∈ Cc(H) such that

ω = ωh , we have ĥ ∈ L1(Ĥ).

Proof (i)⇒ (ii)heorem 9.6 gives the existence of the cut and project scheme. Now,
since ω is Fourier transformable, by heorem 9.4 we get ĥ ∈ L1(Ĥ).

(ii)⇒ (i) Follows from heorem 9.4.
(i)⇒ (iii) Follows from heorem 9.4.
(iii)⇒ (i) heorem 9.6 gives that there exists a cut and project scheme and some

h ∈ Cc(H) such that ω = ωh . Now, by (iii), we have ĥ ∈ L1(Ĥ). (i) follows now from
heorem 9.4. ∎
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