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On the Fourier Transformability of Strongly
Almost Periodic Measures

Nicolae Strungaru

Abstract. In this paper we characterize the Fourier transformability of strongly almost periodic mea-
sures in terms of an integrability condition for their Fourier-Bohr series. We also provide a necessary
and sufficient condition for a strongly almost periodic measure to be the Fourier transform of a mea-
sure. We discuss the Fourier transformability of a measure on R in terms of its Fourier transform as
a tempered distribution. We conclude by looking at a large class of such measures coming from the
cut and project formalism.

1 Introduction

The Fourier transform of a function plays a fundamental role in many areas of math-
ematics. In the first half of the 20" century, Laurent Schwartz extended the Fourier
transform to a larger class of objects, namely tempered distributions. This theory ex-
tends the classical Fourier transform of functions, and includes all finite measures, all
continuous and bounded functions, as well as a large class of unbounded measures.
Some of the notions have been extended to arbitrary locally compact Abelian groups
(LCAG?s) G [12], but so far these extensions have not been as useful for the study of
measures as in the case G = R,

Motivated by Bochner’s Theorem, Argabright and deLamadrid introduced the
notion of Fourier transform for unbounded measures over arbitrary locally com-
pact Abelian groups (LCAG’s), and proved that positive definite measures are Fourier
transformable [1] (see also [10,29]). Their theory of Fourier transforms of measures
generalizes the classical theory of Fourier transforms of functions, as well as the
Fourijer-Stieltjes transform. The Fourier transforms of measures play a fundamen-
tal role for mathematical diffraction and aperiodic order (see, for example, [3,7,18,
20,29, 34, 35,43]).

There is a hidden strong connection between the Fourier transforms of measures
and the class of (weakly) almost periodic functions and measures. Eberlein proved
that there exists a canonical decomposition of a weakly almost periodic function into a
strongly almost periodic function and a null weakly almost periodic function [15]. We
will refer to this decomposition as the Eberlein decomposition. Positive definite con-
tinuous functions, and hence the Fourier transforms of finite measures, are weakly
almost periodic [13]. Given a finite measure, y, the Eberlein decomposition of the
weakly almost periodic function §f is exactly the Fourier transform [13, 29] of the
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Fourier Transformability in SAP(G) 901

Lebesgue decomposition y = yp, + pic. deLamadrid and Argabright extended the
concept of almost periodicity to translation-bounded measures, via convolution with
compactly supported continuous functions [19] (see also [29] for a self contained ex-
position of these topics). They showed that weakly almost periodic measures also
have a canonical Eberlein decomposition. Moreover, the Fourier transform 77 of each
transformable measure y is weakly almost periodic, and the Eberlein decomposition
of the Fourier transform is exactly the dual of the Lebesgue decomposition of y [19].
Recently, the Fourier dual of this result was proved by Moody and me [29]: if any
translation-bounded Fourier transformable measure y is weakly almost periodic, the
strong almost periodic component ys and the null weakly almost periodic compo-
nent g are Fourier transformable, and their Fourier transforms are exactly the pure
point component i, and the continuous component zi. of @. This last version of
the result is important for mathematical diffraction, since we would like to study the
pure point spectrum y,, and the continuous spectrum J. of a structure w, without
going to the Fourier dual space. These results allow us to study the pure point and
continuous spectra, respectively, by studying the components ys and y,, respectively,
of the autocorrelation y of w, an idea that has been used effectively in many places
(such as [2, 3,21, 38, 39, 41, 42]). The particular connection between strong almost
periodicity and pure point Fourier transform was also exploited in articles such as
[3,5-9,16,17,21-23,28,33-35, 40, 43].

It follows from the results in [19] that if a measure y is Fourier transformable, its
Fourier transform i is strongly almost periodic exactly when y is a pure point mea-
sure. In this case, the strongly almost periodic measure i has a Fourier-Bohr series
(see Definition 6.12) F4(#), which is exactly the reflection u" of y. In the same way,
if y is Fourier transformable, its Fourier transform i is pure point exactly when y is
strongly almost periodic, and 77 is exactly the Fourier-Bohr series F4(u).

Every strongly almost periodic measure y comes with a Fourier-Bohr series F4 (),
which is exactly 7 (resp., i ') whenever y is Fourier transformable (or a Fourier trans-
form). It is natural to ask what extra condition F4(u) should satisfy in order for y to
be Fourier transformable (resp., a Fourier transform). The main goal of this paper is
to answer these two questions.

We show in Theorem 7.1 that a necessary and sufficient condition for a strongly
almost periodicity measure y to be Fourier transformable is a certain integrability
condition, which we call weak admissibility (see Definitions 3.1 and 6.7), being satis-
fied by the Fourier-Bohr series. The second question is answered in Theorem 8.1. We
show that a strongly almost periodic measure y is a Fourier transform if and only if
y is weakly admissible and its Fourier-Bohr series is a measure.

In the particular case G = R?, which is the case in most practical applications, we
use a result of Lin [24] to show that the weak admissibility condition can be replaced
by the much more concrete notion of translation boundedness. As a consequence, we
get that a strongly almost periodic measure u € SAP(R?) is Fourier transformable
if and only if its Fourier-Bohr series is a translation-bounded measure. In the same
way, a strongly almost periodic measure u € SAP(RY) is a Fourier transform if and
only if its Fourier-Bohr series is a measure.
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We also study the connection between the Fourier transformability of a measure
in R and its Fourier transformability as a tempered distribution. In [1], the authors
introduced a measure y on R, which is positive definite, tempered as a distribution,
but for which the variation measure |y| is not tempered. In particular, y is not trans-
lation bounded as a measure. Since y is positive definite, it is Fourier transformable
and its Fourier transform i =: v is translation bounded [1]. It follows that v is a
tempered distribution whose Fourier transform is the measure [ﬂ, but is not Fourier
transformable as a measure (see [44] for more details). This raises an interesting ques-
tion: what is the connection between the Fourier transform of measures on R¢ and
their Fourier transform as distributions (compare [44]). We answer this question in
Theorem 5.2: we show that a translation-bounded measure i on R? is Fourier trans-
formable as a measure if and only if its Fourier transform in the tempered distribution
sense is a translation-bounded measure. Moreover, in this case, the two Fourier trans-
forms coincide.

2 Definitions and Notations

Throughout this paper, G will denote a Locally Compact Abelian Group (LCAG). We
will denote by C,,(G) the space of uniformly continuous and bounded functions on G.
Then C,(G) and C.(G) will denote the subspaces of C,(G) consisting of functions
vanishing at infinity and functions with compact support, respectively.

Recall that each LCAG G comes with a dual group G, defined as the set of contin-
uous characters

x: G->UQ):={zeC:|z| =1},

where y is a continuous group homomorphism. The set G becomes a LCAG with the
group operation being pointwise multiplication of characters and the topology being
that of that of uniform convergence on compact sets (see [29, Sect. 4.2.1] for more
details).

In the spirit of Bourbacki [11], by a Radon measure we mean a linear function
p: Cc(G) — C such that for each compact set K c G, there exists a constant Cg
such that for all f € C.(G) with supp(f) c K, we have

lu(H)] < Ckl floo-

The equivalence between this definition and the measure theory definition of regular
Radon measures is provided by the Riesz-Representation Theorem [31, 32] (see also
[35, Appendix] for a discussion of this). We will refer to a Radon measure simply as a
measure. We will often write (u, f) or [ f(t)du(t) instead of u(f).

A measure y is called positive if, for all f € C.(G) with f > 0 we have

u(f)20.

Any regular Radon measure y can be written as a linear combination

o= — o + i3 — pa),

of four positive regular Borel measures (see [35, Thm. C4] for example). If all except
maybe one of the measures g1, (2, U3, 44 can be chosen finite, then y is a regular Borel
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measure. In particular, positive regular Borel and Radon measures coincide (see [35,
37] for more detail details).

Finally, let us emphasize that a regular Borel measure p assigns a value y(B) in
the extended complex plane C U {oo} to each Borel set B € G, but the set of regular
Borel measures is not closed under addition. In contrast, the set of regular Radon
measures is a vector space, but regular Radon measures assign a (finite) value only to
pre-compact Borel sets B ¢ G.

Let us also recall that, given a measure y, there exists a positive measure || such
that, for all f € C.(G) with f > 0, we have [30,35]

lul(f) = sup{|u(g)|: g € Cc(G) with [g] < f}.

The measure |y| is called the total variation of u.
Next, let us recall the definition of Fourier transformability for measures.

Definition 2.1 A measure y is called Fourier transformable if there exists some mea-
sure @ on G such that, for all f € C.(G), we have

7] era) and (urs = @[FP):

Here, for a function f: G — C we denote by f: G — C the function

f(x) = f(=x).

{#,

In the spirit of [19], we define

K>(G) == Span{f * ¢ | f, g € Cc(G) -
Given a subspace V c L'(G) we will denote by

V={F| feV}cCy(G).

Remark 2.2
(i) By the depolarisation identity, a measure is Fourier transformable if and only
if there exists some measure 7 on G such that K;(G) ¢ L'(|f]), and for all

~

[ e K5(G), wehave (u, f) = (i f)-
(ii) Any positive definite measure is Fourier transformable and its transform is pos-
itive [1,10].

Let us now recall the definition of translation boundedness.

Definition 2.3 A measure y is called translation bounded if for all compact sets
K c G, we have

Il = sup ulCx + K) < co.

We denote the space of translation-bounded measures by M*(G).

Remark 2.4
(i) A measure y is translation bounded if and only if

lulk < oo,

for one compact set K with non-empty interior [9].
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(ii) If K is a fixed compact set with non-empty interior, then | - |k is a norm on
M=(G).

An alternate characterisation of translation boundedness is given by the following
result.

Theorem 2.5 ([1, Thm. 1.1]) A measure y is translation bounded if and only if for all
f€C(G), we have y + f € Cy(G).

2.1 Almost Periodic Measures

In this subsection, we briefly review the basic properties of almost periodic functions
and measures. For a more detailed review of this, we refer the reader to [29].

Definition 2.6 A function f € C,(G) is called strong almost periodic or Bohr
almost periodic if the closure of {T;f | t € G} with respect to | - || is compact in
(Cu(G), [+ llo0)-

A function f € C,(G) is called weakly almost periodic if the closure of { T; f | t € G}
with respect to the weak topology of the Banach space (Cy(G), | - | ) is weakly-
compact.

We denote the space of strong (resp., weakly) almost periodic functions by SAP(G)
(resp., WAP(G)).

Remark 2.7
(i) WAP(G) and SAP(G) are closed subspaces of (C,(G), | - |e) [13] (see also
(29D).

(i) WAP(G) and SAP(G) are closed under multiplication, complex conjugation,
reflection, and taking the absolute value [13].

Next, we review the notion of null weak almost periodicity for functions. We first
need to recall the definition of the mean of a weakly almost periodic function, and for
this we need to talk first about averaging sequences.

Definition 2.8 A sequence {A, } of compact subsets of G is called a Félner sequence
if, for all x € G, we have
lim vol ((x + Ap)AAL) _
x vol(A,)

A sequence {A,} of compact subsets of G is called a van Hove sequence if, for all
compact sets K € G, we have

vol 9% (A,)
im————— =0,
x  vol(A,)
where, the K-boundary of A, is defined as

X (4,) = (A, + K)\A,) U ((G\A, —K)n A,).

It is easy to see that each van Hove sequence is a Folner sequence.
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Lemma 2.9 ([13,29]) Let f € WAP(G) and let {A,} be a Folner sequence in G.

Then the limit
1

lizn vol(A,) fx+A,, fndt

exists uniformly in x € G and is independent of x and of the choice of the Folner sequence

{An}.

Definition 2.10 Let f € WAP(G) and let {A,} be a Folner sequence in G. The
number

. 1
M(f) = hﬁnm[«n F(t)dt,

is called the mean of f.
A function f € WAP(G) is called null weakly almost periodic if M(|f|) = 0. We
denote the space of null weakly almost periodic functions by WAP,(G).

In the spirit of [19], we extend the notions of almost periodicity to measures (see
also [29]).

Definition 2.11 A measure y € M>(G) is called strong almost periodic, weakly al-
most periodic, and null weakly almost periodic if for all f € C.(G) the function f * u is
strong almost periodic, weakly almost periodic, null weakly almost periodic, respec-
tively.

We will denote the spaces of almost periodic measures by SAP(G), WAP(G),
respectively WADP(G).

Similar to functions, weakly almost periodic measures have a well defined mean.

Lemma 2.12 ([19,29]) Let u € WAP(G). Then, there exists a number M(y) such
that, for all f € C.(G), we have

M f) = M) [ f(0)a.

Moreover, if {A, } is any van Hove sequence in G, we have

L u(x+Ay)
M(u) —hgnm,

uniformly in x.

As proved by Eberlein for functions [15], and Argabright and deLamadrid for mea-
sures [19], the space SAP(G) is a direct summand in WAP(G), and WAP,(G) is its
complement.

Theorem 2.13 ([19])
WAP(G) = SAP(G) P WAPy(G).
In particular, every measure y € WAP(G) can be written uniquely

§= s+ Hos
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with ps € SAP(G), po € WADP((G). We will refer to this as the Eberlein decomposi-
tion of .

For Fourier transformable measures the Eberlein decomposition is the Fourier
dual of the Lebesgue decomposition into pure point and continuous components
[19,29].

We complete the section by reviewing the Eberlein convolution.

Theorem 2.14 ([13,14]) If f, g€ WAP(G), then

f@g(t) =M (f(t-x)g(x)),
is well defined and belongs to SAP(G).

We will call f ® g the Eberlein convolution of f and g.
Theorem 2.15 ([19]) If f € SAP(G) and p e WAP(G), then

f@u(t)=M(f(t-u),
is well defined and belongs to SAP(G).

We will call f ® y the Eberlein convolution of f and .

Recently, the notion of Eberlein convolution was extended to two weakly almost
periodic measures in [23].

Finally, we review the notion of approximate identity for the Eberlein convolution.

Definition 2.16 A net {f,} with f, € SAP(G) is an approximate identity for
(SAP(G),®) if for all f € SAP(G) we have

f=lmf@f,
in (SAP(G),| - |-o)-

Remark 2.17

(i) Consider the natural embedding G — Gy, of G into its Bohr compactification
Gy, (see [29, Sect. 4.2.2] for definition and properties).

Then f, is an approximate identity for (SAP(G),®) if and only if there exists
an approximate identity g, for (C(Gp), *) such that f, is the restriction to G of g,
[13,19,29]. Moreover,

M(f) = [ g6(s)d0c, (5)

In particular, approximate identities for (SAP(G),®) exist and can be chosen such

that fo >0, fo(—x) = fa(x) and M(f,) = L
(ii) If f, is an approximate identity for (SAP(G),®), then

liinM(fa) =1
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3 Weakly Admissible Measures

In this section we introduce a new concept for a measure, which we will call weakly
admissible (compare the definition of admissible measures [24]), and study the basic
properties of weakly admissible measures.

The definition of weak admissibility is simply the integrability condition from the
definition of Fourier transformability, and its importance to the Fourier theory for
measures is emphasized by [35, Thm. 3.10] (Theorem 5.1).

Definition 3.1 A measure y € M(G) is called weakly admissible if we have

—

K2(G) < L'(Jul).-
Note that 4 € M(G) is weakly admissible if and only if

C(G) < L2(|ul).

We start by stating a simple lemma that contains a few straightforward properties
of weakly admissible measures.

Lemma 3.2

(i)  The measure y is weakly admissible if and only if || is weakly admissible.

(i) If p is weakly admissible and |v| < |u|, then v is weakly admissible.

(iii) The measure y is weakly admissible if and only if ppp, thac, and ps. are weakly
admissible.

(iv) If p is Fourier transformable, then i is weakly admissible.

(v)  If u is weakly admissible then 1, i, u" and T,y are weakly admissible.

(vi) If p is weakly admissible and f € C,(G), then fu is weakly admissible.

Proof (i) This is obvious by the definition of weak admissibility.
(i) If f € Cc(G), then |f]? is continuous, hence measurable. Moreover,

fapl < [ |fPa .
[ i7apl < [ 7Pdlul < oo

This shows that C.(G) c L2(|v]).
(iii) This follows immediately from

ltal = ltppl + [ptac + laasc]

and (ii).
(iv) This is a consequence of the definition of the Fourier transformability.
(v), (vi) These are obvious. ]

Next, we show that if 4 is a weakly admissible measure and f € Cc(G), then | f]?  u
defines an uniformly continuous and bounded function. This result is essential for the
proof of Theorem 8.1. The proof of the Theorem 3.3 follows the idea of [1, Thm. 2.5]
(see also [29, Thm. 9.18], [36, Lemmal]).
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Theorem 3.3  Let y be a weakly admissible measure.
(i)  For each K c G, there exists a constant Cx so that for all f € Cc(@) we have

\/ L Pdlul < Cil f o

(ii) For each f € Cc(G), the function

t— [ 7+ 0P dlul(x) = g(0)

belongs to C,(G).
(iii) For each f € C.(G) the function

t— [ IFtx+ O)Pdu(x) = h()

belongs to C,(G).
(iv) The measure y is translation bounded.

Proof (i) Let us start by recalling that L?(|u|) is a Hilbert space with respect to the
inner product

(f.8)= [ FG)g0dlul(x).

The norm induced by this inner product is

B, = fhzd ,
Ikl2=y/ [ Inel

and it depends on the measure y.
The definition of weak admissibility tells us that we can define a mapping

T: C(G) — L*(|ul): T(f) = J.

It is obvious that T is linear.
Now fix some compact set K c G and define, as usual,

C(G:K) = { f € C(T) | supp(f) € K.

We claim that the restriction T: C(G : K) - L?(|u|) has a closed graph and is hence
continuous.

Indeed, let f, — fin (C(G : K), | - |0 ) be such that f, — g in L2(|u|). We need
to show that f = g in L2(|u|).

Let e > 0 and let ] c G be any compact set.

Since f, — g in L*(|u|), there exists some  so that for all & > 8, we have

([L1Fe-elalul)” <&

Moreover, since f, — fin (C(G : K), | - || ), there exists some y > f8 such that, for
all « > y we have

eIl O 1
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Then, for some « > y, we have by the triangle inequality for | - |,

([~ sPall) < ([ 17~ FaPel)” + ( [lg~ o)’
<|F - Falew V16D + 5
= 1f = B (ROVIWI) + 5 <.

This shows that (/; |f - g[*d|u|)* < e for all compact sets ] c G. Therefore, by the
regularity of the measure | — g|?|ul, we get

([ F-eldl)’ <o

Since € > 0 was arbitrary, we get

([1F-sialul)’ -

which proves that f: g in L*(|u|). Therefore, the graph of T is closed, and hence T
is continuous.

The continuity of T implies the existence of Ck.

(ii) Fix some K ¢ G compact set so that supp( f) c K. For the remainder of (ii), f
and K are fixed.

For each s € G, we will denote by ¢, the character on G defined by s, that is

bs(x) = x(s).

Then for all ¢ € G, we have

[T+ 0Pl ) = [ 1T Pl = [ BoFGoPdlul(x)
< Cil$-1lew = Ciclfle

This shows that g is bounded.
Next, let € > 0. By Pontryagin duality, the set

N(K )::{seG||1//S(X)—1|< forallXeK}

_c _c
" Cill flleo +1 C[flloo +1

is an open neighbourhood of 0 in G.
If s — t € N(K, 5), by the triangle inequality for |1, we have

Ve(s) =gl = I T-fll2 = | T-Flal
<|Tof = Toefll2 = 9= = $—<F |2
= 1@-f ~ ¢ -<fl2 < Cill¢of = 9-sfllo
= CKH‘/H(I = ¢t-s)flloo = Cx [ (1= ps-s) f |0
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This proves that 1/g(#) is uniformly continuous. Therefore, as 0 < g(f) < Cx| f| o>
and as x? is uniformly continuous on the compact set [0, \/Cx | f| ] it follows that
g is uniformly continuous.

(iii) Consider the decomposition

u=Re(p) +ilm(u).
of y.

Since
Re(k) = 5 (1 + ),
we have
Re(p)| < 5 (Il + 1) = .

In the same way, we get

(o) < 5 (el + 14 =

Therefore, by Lemma 3.2 (ii), the measures Re(y) and Im(u) are weakly admissible.
Next, consider the Jordan decomposition

Re(u) = Re(p)+ — Re(p)-.

It follows from the properties of Jordan decomposition that

[Re() | < [Re(u)].

This shows that Re(y).. are weakly admissible measures, and hence by (ii) the func-
tions

t— [ 7Gx+ OPdRe(u)](x)
belong to C,(G). As Re(y). > 0, we get that

t— [ 7+ )P dRe(). ()
belong to C,(G), and hence, so does their difference
t— [ 17+ P dRe(u)(x).
In exactly the same way, the function
t— [ |G+ 0P dim(u) ()

belongs to C,(G).
Now, the equality

[T+ 0P dute) = [ (TG D dRe(u) () + 1 [ [+ 1) Patm(p)(x)

proves the claim.
(iv) Let K c G be compact. Then there exists some h € C.(G) so that ([10,29])

h> 1k
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Then, for all x € G, we have

|ul(-x + K) = fG L (x + t)d|u|(t) < fG [ (x + 1) || (x).-
Therefore, by (ii),

4l = sup{[p|(=x + K} } < co. =
xeG
A natural question to ask now is whether translation boundedness implies weakly
admissible. We will show in the next section that for G = R? the answer is yes, but in
general, to our knowledge, the question is still open.

Next, we show that for weakly almost periodic measures, weak admissibility is
compatible with Eberlein decomposition.

Theorem 3.4 Let y € WADP. Then y is weakly admissible if and only if us and pg are
weakly admissible.

Proof (<) This is obvious.

(=) Let f € C(G). Fix some compact K and pick some g € C.(G) such that
g > 1k.

Let h := g|f]*. Then h € Cc(G),h >0and h = [f]? on K.

Finally, let f, € SAP(G) be an approximate identity for the Eberlein convolution,
such that f, > 0 and f,(-x) = fy(x). Then

ps =limu ® fo

in the product topology on M*(G) [19, Cor. 7.2]. In particular, y ® f, converges in
the vague topology to ys.
Next, we have

G [ h@dlul(0) = sup{| [ o()dus(0)] | ¢ < C(G).lgl < h}.
Let ¢ € C.(G) be so that ¢ < h. Then
(62) | [ o(dus(t)] =tim| [ o()du® fa(0)]

=lim ¢+ (4 ® f) (0)|

=lim|(¢" * ) ® £u(0)),

with the last equality following from [19, Thm. 6.4].
Now, since y is weakly admissible, by Theorem 3.3 (ii), there exists a constant Cy
that depends only on f such that for all ¢ € G, we have

L7+ s)dlul(s) < 5.

This implies that for all t € G, we also have

th(t+s)d|y|(s) < ¢y,
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and hence,
[ 181(e+9)dlul(s) < .

Therefore, if A, is any Folner sequence, by the definition of Eberlein convolution, we
have, for all «,

(¢ 1) @ fu(0)] = [tim = [ (¢ (D ful-0)d]

l(A )
glimnsupm fA,. o7 ul(2) fu(£)dt

Slhn:upggﬂgg5 [;‘j£¢(—t+s)dy(ﬂ‘(ﬂj;(ﬂdt
timsup s [ (191t + )do)) sy

< hmsup l(lA )Cffa(t)dt = CiM(fa)-

Hence, by (3.2), we have
| [ $(dus()] <timsup CM(f) = €
By (3.1), we get
[ n@dlusl(r) <.
This shows that
2
L7 @iy < .

As the constant is independent of the compact set K, and K c G was an arbitrary

2
compact set, by the regularity of the measure ‘fl (t)|ps|, we get

lJfVOMWMQSCﬂ

This proves that ys is weakly admissible.
Finally, po = p — ps is weakly admissible as a difference of two weakly admissible
measures. u

4 Weakly Admissible Measures on R

In this section we connect our concept of weak admissibility with the concepts of ad-
missibility and uniform boundedness that appeared in the work of Lin [24], Thornett
[45], and Robertson and Thornett [36].

Let us first recall some of their definitions:

Definition 4.1 A positive Borel measure y on R? is called r-admissible if for all
f e L*(R?) with supp(f) c [-r,7]¢, we have

[ FPau() < co.
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Note that since f € L*(R%) and supp(f) c [~7,r]¢, we have f € L'(R?), and hence
f(») is defined pointwise for all y € R9.

The following theorem is of importance to us; see [24, Thm. 1], [45, Thm. 4.2,
Thm. 4.3].

Theorem 4.2 A positive Borel measure y on R? is r-admissible for some r if and only
if it is translation bounded. In particular, a measure is r-admissible for some r > 0 if
and only if it is r-admissible for all r > 0.

Because of this, we will simply call a measure admissible instead of r-admissible.
As a consequence, we get the following simple characterisation of weak admissi-
bility on R,

Theorem 4.3  Let u be a Radon measure on RY. Then the following are equivalent:

(i)  The measure y is translation bounded.

(ii) The measure || is translation bounded.

(iii) The measure |p| is admissible.

(iv) The measure y is weakly admissible.

(v)  For all bounded Borel sets A c R%, we have 1, € L*(u).

Proof The implication (i) = (ii) is obvious.

(ii) = (iii) This follows from Theorem 4.2.

(iii) = (iv) This is immediate, as |¢| is admissible implies that |y is weakly admis-
sible, which in turn implies that y is weakly admissible.

(iv) = (i) This follows from Theorem 3.3.

The equivalence (ii) <> (v) is [36, Theorem] applied to |u|. |

5 Weak Admissibility and the Fourier Transform

In this section, we take a closer look at weak admissibility and Fourier transforma-
bility. We start by reviewing a criterion for twice Fourier transformability of a trans-
formable measure. Next, we give a criterion for Fourier transformability of a measure
 on R¥ in terms of its Fourier transform as a tempered distribution.

Theorem 5.1 ([35, Thm. 3.10]) Let u be a Fourier transformable measure. Then y is
twice Fourier transformable if and only if u is a weakly admissible measure.
In this case, we have i = ',

Next, consider a measure 4 on R9. If y is tempered as a distribution, then y has
a Fourier transform v that is a tempered distribution. If y is not a measure, it is easy
to see that ¢ cannot be Fourier transformable in the measure sense. An interesting
question is: what happens when vy is a measure?

As shown in [1], it does not necessary follow that y is Fourier transformable as a
measure.
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In the following theorem we prove that in this situation, the Fourier transforma-
bility of y in the measure sense is equivalent to the weak admissibility, and hence
translation boundedness, of y.

Theorem 5.2 Let y € M(RY). Then u is Fourier transformable as a measure if and

only if the following hold:

(i)  The measure y is tempered as a distribution.

(ii) The Fourier transform v of y as a tempered distribution is a translation-bounded
measure.

Moreover, in this case, we have i = v.

Proof (=) Since p is Fourier transformable, the measure @ is translation bounded
and
(8) = (1.2)

for all g € C.(R¥). Moreover, since v is translation bounded, it is tempered as a
distribution.

As [i is a translation-bounded measure, it is a tempered distribution. Therefore, it
is the Fourier transform of a tempered distribution v.

Then, for all f € 8 (R?), we have (v,g) = (@, ). This shows that for all g €
C(RY), we have (v, g) = (i, §) = (u, g). Therefore, v = p.

As v is a tempered distribution, it follows that y is tempered as a measure, and that
U is the Fourier transform of y as a tempered distribution.

As @i is a translation-bounded measure, the claim follows.

(<) We have (u, g) = (v, g ) for all g € S(R?). Therefore, (4, g) = (v, ) for all
g€ C(RY).

Next, fix some h,, € S(R?) such that |4,||e = 1,k, = 10n B, (0) and supp(h,) c
Bu11(0). Let g, := hy.

Now, pick some f € Cc(G). Then, as f € L2(R?), we have f € L*(R?). Therefore,
by the Lebesgue Dominated Convergence Theorem,

|(F)hn = Fla > 0.
This shows that f * g, — f in L>(RY). Then
(f %gn) * (Fxgn) > f+ T in (Cc(RY), |- [o)-
This gives
7| ).

(o f * = lim (o, (f * ga) * (F # gn)) = lim(v,

~2 ~2
Finally, since ‘ f ‘ e L'(|v]) and ‘ f | h? is increasing and converges pointwise to

7

, we get by the monotone convergence theorem,

tim(v,| 7| ha) = (0 7.
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-2
Therefore, for all f € C.(R%), we have ‘f‘ e L'(|[v]) and
(. f = ) = (I FP).

This shows that y is Fourier transformable and i = v. ]

6 Fourier—Bohr Series and Formal Sums

Given a weakly almost periodic measure y, we can introduce its Fourier-Bohr series
(see Def. 6.12). If y is Fourier transformable, then its Fourier-Bohr series is a measure,
but there is no guarantee that this happens in general. For this reason, when we deal
with the Fourier-Bohr series of a weakly almost periodic measure, we need to treat it
as a formal sum (see also [19]).

In this section, we review the basic properties of formal sums and the Fourier-Bohr
series of weakly almost periodic measures.

6.1 Formal Sums
We start by defining the notion of formal sums.

Definition 6.1 By a formal sum we mean an expression of the form
=) wyly,
xeG
where w, € C.
For such an expression we define the support of w as

supp(w) := {x € Glw, # 0}.

Remark 6.2 Any formal sum is a measure on Gq4. Our interest will be in formal
sums that are measures on G, so we will simply treat them as formal sums.

We will often speak of integrals of functions against formal sums. Note that we can
multiply a formal sum by a function in an obvious way, and we obtain a new formal
sum. We will say that the function f is integrable against the formal sum w if the
product fw is an absolutely summable series.

Definition 6.3 Let w be a formal sum and let f: G — C be a function. We say that
f is integrable with respect to w if

21 f(x)o(x)] < oo

xeG

In this case, we define the integral

[ faw=(f.0) = ¥ f(x)a(x).

xeG
We also let

L'(w) := {f: G - C| f is integrable with respect to w}.

and
L*(w) := {f: G - C| f* is integrable with respect to w}.
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Note that for pure point measures w, we have

L'(w)=Li(le])  L*(w) = L*(|w]).

Remark 6.4

(i) If f is integrable with respect to w then f(x)w, = 0 for all but at most countably
many x € G.

(ii) A function f is integrable with respect to w exactly when Y, ¢ f(x)w(x) is
absolutely convergent.

(iii) If we treat w as a measure on Gy, then a function is integrable with respect
to w exactly when it is integrable with respect to w as a measure and L'(w) is just the
standard L' (|w|) space.

We start by characterizing formal sums which are measures on G. It is clear that
every such measure is pure point.

Theorem 6.5 Letw =Y . wxOx be aformal sum. Then w is a measure if and only
if for all compact sets K we have

D wy] < oo.

xeK

Proof (=) Let K be a compact set. Since w is a measure, so is its variation measure
|l
Therefore we have

> wx] = [w](K) < 0.

xeK
(<) We first prove that C.(G) c L' (w).
Let f € C.(G), and let K be any compact set such that supp(f) c K. Then
(e = 3 If()e) <[ fle Y, lo(x)] < co.
xeK

xeG xeK

Next it is trivial to show that w is linear on C.(G).
Finally, if K c G is a fixed compact set and f € C.(G) is so that supp(f) c K, by
the above computation we have

[{w, ) < Ck floo>
where
Ck = ) |wy| < 0.
xeK
Therefore, by the Riesz representation theorem, w is a measure. ]

We next introduce a simpler criterion which involves a single compact set with
non-empty interior.

Corollary 6.6 Letw =Y ..c wx0y be a formal sum and let K be a fixed compact set
with a non-empty interior. Then w is a measure if and only if for all t € G we have

> o] < 0.

xe(t+K)
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Proof Let K’ c G be any compact set. Then, since K has non-empty interior, there
exists t, ..., tx € G such that

k
K, C U tj + K.
j=1
Then
k
Yl <3 X lwyl) <oo.
xeK j=1 ye(tj+K)
Therefore, by Theorem 6.5, w is a measure. ]

6.2 Weakly Admissible Formal Sums

We can now extend the definition of weak admissibility to formal sums. We will see
in this subsection that all weakly admissible formal sums are in fact measures.

The reason we are interested in extending the definition to formal sums is because
we will be interested in weak admissibility of a Fourier-Bohr series, which may or
may not be a measure.

—

Definition 6.7 A formal sum w is called a weakly admissible formal sum if K,(G) c
L' (w).

Remark 6.8
(i) A formal sum w is weakly admissible if and only if for all f € C.(G), we have

3 loul|F] () < oo,

xeG

—

(ii) A formal sum w is weakly admissible if and only if C.(G) c L*(w).

(iii) Any formal sum that is weakly admissible is a linear function on K, (G).
We start by proving that weakly admissible formal sums are measures.

Lemma 6.9 Let w be a weakly admissible formal sum. Then w is a translation-
bounded measure.

Proof Let K ¢ G be compact. Then there exists a function f € C.(G) such that
f > 1k [10,29].
Then
-2
Y ol < 3 fox]| F| < oo

xeK xeG

Then by Theorem 6.5, w is a measure, which is trivially a weakly admissible measure.
Hence, by Theorem 3.3, w is a translation-bounded measure. ]

Corollary 6.10  Let w be a formal sum on R?. Then w is weakly admissible if and only
if w is a translation-bounded measure.
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We complete the section by providing a slight generalisation to [35, Thm. 5.5]: we
prove that translation-bounded measures with Meyer set support are weakly admissi-
ble. For definitions and properties of Meyer sets and cut and project schemes we refer
the reader to [25-27,43]. We would like to emphasize that this stronger version was
actually proved but not stated in [35]. Our proof is identical to the one in [35].

Theorem 6.11 Let y = Y5 wx0x. If A is a subset of a Meyer set and {w,} is
bounded, then
w = Z Wy 0Oy

xeA
is a weakly admissible formal sum.

Proof Let (G, H, L) be a cut and project scheme and let W c H be a compact set
such that A c A(W).

Let (6, H, L) be the dual cut and project scheme. Then, there exists some h €
Cc(ﬁ) such that i > 1y [10,29].

Then w7 is Fourier transformable and ([35])

—

Ohsh = @pje-

Therefore, as the Fourier transform of a measure, wyj;, is weakly admissible. As lw| <
@[ja> 1t follows from Lemma 3.2 that || is weakly admissible, and hence by Lemma
3.2, w is weakly admissible. ]

6.3 Fourier Bohr Series
In the spirit of [19] we have the following definition.

Definition 6.12 Let y ¢ WADP(G). The Fourier-Bohr series of p is defined as

fTrd(."‘) = Zcx(ﬂ)6x-
xeG

As shown in [19], the Fourier-Bohr series uniquely identifies the strongly almost
periodic component of a weakly almost periodic measure.

Theorem 6.13 ([19])

(i)  Foreach y e WAP(G), we have F4(u) = Fa(us).
(ii) For u,v e SAP(G), we have F4(u) = Fq(v) if and only if u = v.

Let us recall that Fourier-Bohr series have the following summability property.

Remark 6.14 ([19, Sect. 8]) If u € WAP(G), then, for all g € C.(G) we have
2 ey () PIRO)I < oo,

G

The importance of the Fourier-Bohr series for the Fourier transform of measures
is given by the following result.
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Theorem 6.15 If u € WADP(G) is Fourier transformable, then
bp = Fa(u)s

and F4(p) is a weakly admissible formal sum.

Proof Since u is Fourier transformable, for all y € G, we have ([29])

#xd) = cx(u)-

Therefore,
op = 2 B{x1)8y = 2. cx()dy = Falp).
xeG xeG
Moreover, i is weakly admissible, and hence so is fipp. u

As an immediate consequence of Theorem 6.15, we get the following corollary.

Corollary 6.16 If u € SAP(G) is Fourier transformable, then I = F4(u), and F4(p)
is a weakly admissible formal sum.

The main result in this paper (Theorem 7.1) shows that the converse of this also
holds.

7 Fourier Transformability of Strongly Almost Periodic Measures

In this section we proceed to prove the main result of this paper. We then look at few
consequences.

Theorem 71 Let y € SAP(G). Then, y is Fourier transformable if and only if F4(p)
is a weakly admissible formal sum.
Moreover, in this case, we have i = Fq ().

Proof (=) This follows from Corollary 6.16.
(<=) First, since Fy is a weakly admissible formal sum, it is a measure by Lemma 6.9.
For simplicity, let us denote this measure by

vi=TFq(p) = Z cy(u)dy.
G
To complete the proof we show that v satisfies the definition of the Fourier transform
of u. In order to achieve this conclusion, for each f € C.(G) we show that y = f % f
and |ﬂ2v are Bohr almost periodic functions with the same Fourier-Bohr series, and
hence equal. Equating them at zero gives the desired conclusion. We proceed along
this line.
Let f € C.(G) be arbitrary. Then, as v is a weakly admissible measure, we have

f € L*(v). Therefore,

Flv= 3 F0Per(w)s,

xeG
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is a finite measure. Let g(x) denote the inverse Fourier transform of this measure.
Then g € C,(G) is a Bohr almost periodic function [13], whose Fourier-Bohr series

is erﬁ |]T(X)|ZC)((!4)8)(-
Now since  is translation bounded, u * (f * )" € C,(G) and ([19,29])
cx(ux (f* NN = o FO0ex() = [FG0Pey(p)-
Therefore, yt * (f * f) has Fourier-Bohr series P |f(X)|2cX(y)6X.

It follows that the functions y * (f * f)" and g are two Bohr almost periodic func-
tions with the same Fourier-Bohr series, and hence they are equal [13,19,29].
Making the expressions equal at x = 0, we get

(o f ) = s (f # )1 (0) = 2(0) = [FFw(0) = ([ 7P
This shows that for all f € C¢(G), we have f € L?(v) and
(. f* ) = (| f1)-

Therefore, y is Fourier transformable and i = v = F4(¢). The last claim now follows
from Corollary 6.16. ]

In the particular case G = R?, we get the following theorem.

Theorem 7.2 Let y € SAP(RY). Then, u is Fourier transformable if and only if
Fa(u) is a translation-bounded measure.
Moreover, in this case we have

i=TFq(p).
By combining Theorem 7.1 with Theorem 5.1 we get the following theorem.

Theorem 7.3  Let y € SAP(G). Then u is twice Fourier transformable if and only if
u is a weakly admissible measure and F4(p) is a weakly admissible formal sum.

Since strongly almost periodic measures are by definition translation bounded, in
the particular case G = RY, we get the following corollary.

Corollary 7.4  Let yu € SAP(RY). Then u is twice Fourier transformable if and only
if Fa(p) is translation-bounded measure.
Remark 7.5 Consider the class

S:= {y € SAP(RY) | F4(u) is a translation-bounded measure} .

Let
Te={Ta(u) [ pueSh.
Then, by Corollary 7.4, all measures in S and T, respectively, are Fourier transformable,

and the Fourier transform gives two bijection*: S - T;*: T — S, whose composition
is a reflection.
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Another immediate consequence of Theorem 7.1 is the following simple character-
isation of Fourier transformable measures with pure point transform.

Corollary 7.6  Let y € M (G). Then the following are equivalent:

(i)  The measure y is Fourier transformable, and i is pure point.
(ii) The measure u is strongly almost periodic, and its Fourier—-Bohr series F4(u) is a
weakly admissible formal sum.

Moreover, in this case, we have i = F4(u).

Proof We know that for a Fourier transformable measure y, we have i/ is pure point
ifand only if u € SAP(G) [29].
The claim now follows from Theorem 7.1. ]

Corollary 7.7 Let u € M (R?). Then the following are equivalent:
(i)  The measure y is Fourier transformable, and i is pure point.

(ii) The measure u is strongly almost periodic, and its Fourier-Bohr series F4(y) is a
translation-bounded measure.

Moreover, in this case, we have I = F4(u).

Proof We know that for a Fourier transformable measure g, we have ii is pure point
if and only if 4 € SAP(G) [29].
The claim follows now from Theorem 7.1. ]

Theorem 7.1 also produces the following criterion for a pure point measure to be
the Fourier transform of a measure.

Corollary 7.8  Let v be a pure point measure on G. Then v is the Fourier transform
of a measure if and only if v is weakly admissible, and v is the Fourier-Bohr series of a
strongly almost periodic measure.

Corollary 7.9  Let v be a pure point measure on R?. Then v is the Fourier transform
of a measure if and only if v is translation bounded, and v is the Fourier-Bohr series of
a strongly almost periodic measure.

Theorem 7.1 gives an independent proof of the following result, which was proved
recently in [29].

Theorem 7.10  Let u € M>(G) be a Fourier transformable measure. Then us and pg
are Fourier transformable and
[/Ipp = (ﬂs); ‘TIC = (/"0)

Proof Since y € M*(G) is Fourier transformable, we get that u € WAP(G) [29].
Also, 7 is a weakly admissible measure.

Therefore, fipp is a weakly admissible formal sum.

Moreover, we have 7ipp = Fq () = Fa(ps).
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Therefore, ys is a strongly almost periodic measure with a weakly admissible Fourier-
Bohr series, and hence Fourier transformable. Moreover, its Fourier transform is

fis = Fa(ps) = Hpp-
Finally, as a difference of two Fourier transformable measures, yo = 4 — ys is Fourier
transformable and

fo=p—ps=pF—ps =1 (F)pp = (F)e: u
We complete the section by providing a characterisation for the class of positive

definite strong almost periodic measures in terms of positivity and weak admissibility
of the Fourier-Bohr series.

Theorem 711 Let y € SAP(G). Then u is positive definite if and only if F4(p) is a
positive weakly admissible formal sum.

Proof = Since y is positive definite, it is Fourier transformable and @ is positive
[1,10,29]. The claim now follows from Theorem 7.1.

<=: By Theorem 71, y is Fourier transformable and i = F4(y) > 0. Therefore, p is
a Fourier transformable measure with positive Fourier transform, and hence positive
definite [1,29]. [ |

Corollary 712 Let u € SAP(RY). Then u is positive definite if and only if Fq(u) is
a positive translation-bounded measure.

8 Strongly Almost Periodic Measures as Fourier Transforms

In this section we provide a simple necessary and sufficient condition for a strongly al-
most periodic measure y to be a Fourier transform, and list some of its consequences.

The result in Theorem 8.1 complements Theorem 71. We would like to point out
that if the strongly almost periodic measure y is twice Fourier transformable, then
Theorem 7.1 and Theorem 8.1 become equivalent via Theorem 5.1, but, in general, they
are independent of each other.

Theorem 8.1 Let y € SAP(G). Then the following are equivalent:

(i)  There exists some measure v on G with V' = .
(ii) The Fourier-Bohr series F4(y) is a measure, and y is weakly admissible.
Moreover, in this case, we have v = (?d (y))f.
Proof (i) = (ii): Since v is Fourier transformable, and 7 € S.ATP(@), the measure v
is pure point [19].

Moreover, for all x € G, we have ([19])

v({x}) = M(xV) = ¢ (p).

This shows that v = (?d(y)) "
Therefore, as v is a measure, F4(y) is a measure. Finally, as the Fourier transform
of v, p is weakly admissible.
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(ii) = (i): Define v = (F4(p))". We claim that v is Fourier transformable, and

V = p. Let f € Cc(G). Then (f * f)v is a finite pure point measure, and hence

g = (f * f)vis a strongly almost periodic function.
Moreover, by Theorem 3.3(iii), |f]? is convolvable as a function with g, and the
convolution |f|* * u is continuous.

2 —~
Finally, by [19, Prop. 7.3], we have ‘]?l + u € SAP(G), and the Fourier-Bohr co-
efficients satisty ([19, Prop. 8.2])

e[+ ) = [FP()ex(p) = % Fl-x)ea(e) = f  F-x)w({-x)).

As g is the Fourier transform of the finite pure point measure (f  f)v, it is also
strongly almost periodic as measure and ([19,29])

cx(g) = f * F(=x)v({=x}).

This shows that g and |ﬂ2 * u are two strongly almost periodic measures that have the
same Fourier-Bohr series; therefore, they are equal. We also know that ¢ € C,(G)
and, by Theorem 3.3(iii) we have |f]> * u € C,(G). It follows that g = [f]* * u as
functions. In particular,

(v.f + ) = g(0) = [f* * (0) = (.| 7).
Hence, by the weak admissibility of y for all f € C.(G), we have

P eL!(lul) and (v, fxf) = (wlfP).
Therefore, by the definition of Fourier transformability, v is Fourier transformable
and V= pu. |

As above, when G = R we get the following theorem.

Theorem 8.2 Let y € SA(P(@). Then u is the Fourier transform of a measure if and
only if F4(u) is a measure. Moreover, in this case, we have

(Fa(w))' = .

As a consequence of Theorem 8.1 we also get a new proof of the following result.

Theorem 8.3 ([19, Thm. 11.2]) Let p be a Fourier transformable measure. Then
Upp> He are Fourier transformable and

(Wpp = (@)s  and  (u)e = (Wo.

Proof Since y is Fourier transformable, i € WAP(G) [19] is weakly admissible.
Then, by Theorem 3.4 (i)s is weakly admissible.
Moreover, we have ([19, Thm. 11.3] or [29])

o (@) = u({-x})

which shows that F4(#) = (4pp)’, and hence F4(f) is a measure.
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Therefore, by Theorem 8.1, the measure F4 ()" = ypp, is Fourier transformable and

—

(¢)pp = (H)s. By taking differences, it follows that y. is also Fourier transformable
and

9 On a Special Class of Cut and Project Formal Sums

In this section we review a large class of strongly almost periodic measures and discuss
their Fourier transformability.

Consider a cut and project scheme (G, H, £); for h € Cy(H) we define the formal
sum

wpi= Y. h(x")dx.

(x,x*)el

The following Lemma is trivial; see [9,43].

Lemma 9.1 Ifhe C.(H), then wy, is strongly almost periodic measure.

We next calculate the Fourier-Bohr series of this measure. Computations like this
have been made in many places [21,33, 35,43].

Lemma 9.2 Ifh e C.(H), then F4(wy) = dens(L)wj,.

Proof The computation is standard, as follows. Let y € G; then by [21, Thm. 9.1], we
have

cy(wp) = dens(L) fHX*(t)h(t)dt = dens(L)f(X*).

Also, let us recall the following result.

Theorem 9.3 ([34]) If wy, is a translation-bounded measure, then h € L'(H).

We are now ready to prove the following result, (compare [34]).

Theorem 9.4 Let (G,H, L) be a cut and project scheme and let h € C.(H). Then
the following are equivalent:

(i)  The measure wy, is Fourier transformable.
(i) The formal sum w;, is weakly admissible.
(ili) The formal sum wj, is a translation-bounded measure.

(iv) Wehave h e L'(H).

Proof The equivalence (i) < (ii) follows from Theorem 7.1.
(ii) = (iii) follows from Theorem 3.3, while (iii) = (iv) follows from Theorem 9.3.
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(iv) = (ii) Let g € K,(G). Then g® h € C.(G x H) and g® h € L'(G x H), and
hence [1,32], g® h € L'(80). This is equivalent to |w;[(|g]) < oo, which gives the
K,(G)-boundedness. u

Remark 9.5 1fh e C.(H) and h ¢ L'(H), then it follows that w;, € SAP(G) but
wy, is not Fourier transformable as a measure.

This provides many examples of non Fourier transformable strongly almost peri-
odic measures. In particular, for all these measures, the Fourier-Bohr series is not
weakly admissible.

We complete the section by recalling a result of [43]. This result, together with
Theorem 9.4, provides a characterisation for Fourier transformability for strongly al-
most periodic measures supported inside Meyer sets.

Theorem 9.6  Let w be a translation-bounded measure with Meyer set support. Then
w is strongly almost periodic if and only if there exists a cut and project scheme (G, H, L)
and a function h € C.(H) such that w = w,.

As a consequence, we get the following theorem.

Theorem 9.7 Let w be a strongly almost periodic measure with Meyer set support.
Then the following are equivalent:

(i)  The measure w is Fourier transformable.

(ii) There exists a cut and project scheme (G, H, L) and a function h € C.(H) with
h e L'(H) such that w = wy,.

(iii) For each cut and project scheme (G, H, L) and function h € C.(H) such that
® = wy, we have h € L'(H).

Proof (i) = (ii) Theorem 9.6 gives the existence of the cut and project scheme. Now,
since w is Fourier transformable, by Theorem 9.4 we get i € L'(H).

(ii) = (i) Follows from Theorem 9.4.

(i) = (iii) Follows from Theorem 9.4.

(iii) = (i) Theorem 9.6 gives that there exists a cut and project scheme and some
h € C.(H) such that w = wj,. Now, by (iii), we have & € L'(H). (i) follows now from
Theorem 9.4. [
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