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The Hele-Shaw–Cahn–Hilliard model, coupled with phase separation, is numerically
simulated to demonstrate the formation of anomalous fingering patterns in a radial
displacement of a partially miscible binary-fluid system. The composition of injected
fluid is set to be less viscous than the displaced fluid and within the spinodal or
metastable phase-separated region, in which the second derivative of the free energy
is negative or positive, respectively. Because of phase separation, concentration evolves
non-monotonically between the injected and displaced fluids. The simulations reveal
four areas of the concentration distribution between the fluids: the inner core; the
low-concentration grooves/high-concentration ridges; the isolated fluid fragments or
droplets; the mixing zone. The grooves/ridges and the fragments/droplets, which are the
unique features of phase separation, form in the spinodal and metastable regions. Four
typical types of patterns are categorized: core separation (CS); fingering separation (FS);
separation fingering (SF); lollipop fingering, in the order of the dominance of phase
separation, respectively. For the patterns of CS and FS, isolated fluid fragments or droplets
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around the inner core are the main features. Fingering formation is better maintained
with droplets in the SF pattern if the phase separation is relatively weaker than viscous
fingering (VF). Even continuous fingers are well preserved in the case of dominant VF;
phase separation results in lollipop-shaped fingers. The evolving trend of the patterns is in
line with the experiments. These patterns are summarized in a pattern diagram, mainly by
the magnitude of the second derivative of the free energy profile.

Key words: fingering instability, Hele-Shaw flows, porous media

1. Introduction

The Saffman–Taylor instability (Saffman & Taylor 1958; Chuoke, van Meurs & van
der Poel 1959) occurs when a lower viscosity fluid displaces a more viscous fluid.
The interface between the two fluids becomes hydrodynamically unstable due to the
unfavourable viscosity contrast, forming a finger-like pattern, referred to as viscous
fingering (VF) – comprehensive reviews can be referred to (Homsy 1987; McCloud &
Maher 1995). This instability is highly relevant to the applications in enhanced oil recovery
(Homsy 1987; Faisal et al. 2015; Fu et al. 2015), chromatography (Broyles et al. 1998),
gastric acid transport processes (Bhaskar et al. 1992) and carbon capture and storage (CCS)
(Orr & Taber 1984; Orr 2009; Huppert & Neufeld 2014; Li et al. 2023). Because of the
mathematical similarity of the Darcy equation in a porous medium and the Hele-Shaw
equation in two parallel plates, VF in a Hele-Shaw cell is often studied in lieu of the
opaque porous media flows. Viscous fingering has been a subject of thorough study both
experimentally and numerically for many decades. The configurations investigated mainly
consist of three geometries: the rectilinear displacement (De Wit & Homsy 1999a,b; Jha,
Cueto-Felgueroso & Juanes 2011); the radial injection (Li et al. 2009; Chen et al. 2010;
Dias et al. 2012; Yuan & Azaiez 2014; Huang & Chen 2015; Tsuzuki et al. 2019b; Verma,
Sharma & Mishra 2022); the so-called quarter-five-spot configuration (Chen & Meiburg
1998a,b; Petitjeans et al. 1999). Generally, VF is determined by two factors: viscosity
contrast and miscibility. The miscibility is conventionally classified into miscible and
immiscible (Homsy 1987). Diffusion occurs in a miscible condition and is treated as a
stabilizing factor for VF. On the other hand, in an immiscible condition, interfacial tension
is considered a stabilizing factor. To manipulate the interface, variants of flow fields
by changing the physical conditions are commonly investigated and proposed, such as
time-dependent injection (Li et al. 2009; Chen et al. 2010; Dias et al. 2012; Yuan & Azaiez
2014), cell rotation (Carrillo et al. 1996; Chen, Huang & Miranda 2011), suction flow
(Thomé et al. 1989; Chen, Huang & Miranda 2014), cell lifting (Shelley, Tian & Wlodarski
1997; Chen, Chen & Miranda 2005) and injection alternation (Jha et al. 2011; Chen et al.
2015; Chou, Huang & Chen 2023). In addition, another effective means to control the
interface is modifying the physical properties at the fluid–fluid interface by inducing
chemical reactions. A popular method is to vary the local viscosity at the interface by
reaction (Nagatsu et al. 2007; Gerard & De Wit 2009; Hejazi & Azaiez 2010; Nagatsu et al.
2011; Alhumade & Azaiez 2013; Stewart et al. 2018; Sharma et al. 2019). Alternatively,
changes of interfacial tension by the production of surfactants are also applied to control
the fingering instability (Nasr-El-Din et al. 1990; Hornof & Bernard 1992; Hornof & Baig
1995; Hornof, Neale & Gholam-Hosseini 2000; Fernandez & Homsy 2003; Tsuzuki et al.
2019a,b). Recent advances in chemical-induced instability are reviewed by De Wit (2020).

In recent years, a new category called partially miscible systems has been studied
in VF (Amooie, Soltanian & Moortgat 2017; Fu, Cueto-Felgueroso & Juanes 2017;
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Effects of phase separation on viscous fingering

Suzuki et al. 2019, 2020, 2021a,b; Li et al. 2022; Seya et al. 2022; Iwasaki et al. 2023;
Kim et al. 2023). The miscibility is related to solubility. In fully miscible systems, two
fluids or two solutions are completely mixed with infinite solubility and finally become one
phase. In immiscible systems, two fluids or two solutions do not mix, i.e. zero solubility,
and remain in the two separated phases, where the final composition of the two phases
is the same as the initial one. In partially miscible systems, two fluids or two solutions
mix with finite solubility and become two phases, where the final composition of the two
phases is different from the initial one. Partially miscible systems can be further classified
into two types. In the first type, only one fluid or solution dissolves in another fluid or
solution with finite solubility. In the second type, two fluids or solutions dissolve in each
other with finite solubility. In other words, in the second type, the mixed species undergo
phase separation to form two new phases. The VF in the partially miscible system is
significant in high-temperature and high-pressure processes such as enhanced oil recovery
(Faisal et al. 2015; Fu et al. 2015) and CCS technology (Orr & Taber 1984; Orr 2009;
Huppert & Neufeld 2014; Li et al. 2023). The first type may occur in the process of
CCS, in which the injected CO2 is in a supercritical state. The solubility of supercritical
CO2 and the underground brine is only approximately 5 % (Li et al. 2022). Thus, the
conventional treatments of fully miscible or immiscible conditions cannot capture the
interfacial phenomena accurately (Fu et al. 2017; Li et al. 2022, 2023). In the second
type, based on the experimental observations in a radial Hele-Shaw flow, new interfacial
patterns triggered by the coupled effect of hydrodynamic VF and thermodynamic phase
separation are presented (Suzuki et al. 2019, 2020, 2021a,b). Relevant numerical studies
coupling VF and phase separation in a rectilinear geometry are also carried out (Seya
et al. 2022; Kim et al. 2023). Formation of the droplets is observed both in experiments
and simulations, in which the characteristics of interfacial instability are distinct from the
conventional VF. The droplet formation caused by the additional thermodynamic effect of
phase separation is discussed in two regions: the region of spinodal decomposition and the
metastable region. In the spinodal region, where the second derivative of the free energy is
negative, the mixture undergoes spontaneous phase separation, forming droplets (Suzuki
et al. 2020). On the other hand, in the metastable region, where the second derivative of the
free energy is positive, phase separation occurs only when subjected to sufficiently strong
disturbance. Therefore, while no droplets are formed in experiments, unique fingering
shapes characterized by a slim finger root are observed, which is referred to as tip-widening
(Suzuki et al. 2021b). Nevertheless, the mechanism for these tip-widening fingers observed
in the metastable region was not sufficiently provided.

The existing studies of phase separation coupling with VF are mainly experimental
works. Even though a couple of numerical works have been reported (Seya et al. 2022;
Kim et al. 2023), no simulations are performed to thoroughly reproduce patterns in a radial
Hele-Shaw flow, which can better represent the conditions in the experiments. Besides, all
the previous experimental (Suzuki et al. 2019, 2020, 2021a,b) and numerical (Seya et al.
2022; Kim et al. 2023) studies focused on the case where phase separation occurs in the
interfacial region. In the present study, we conduct the first direct numerical simulations
in partially miscible systems in a radial geometry. In addition, the present study focuses
on a distinct case in which the injected fluid can undergo spinodal decomposition to
understand the coupling between phase separation and VF more comprehensively. Such
simulations can provide detailed concentration distributions, which are hard to obtain in
experiments, and how the two separation regions, i.e. spinodal and metastable regions,
affect the pattern formation. This situation, in which injection fluid (or solution) can
undergo spinodal decomposition, is practically possible when the temperature and pressure
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conditions during the preparation of the injected fluid differ from those during the
injection. For instance, the injected fluid (solution) is one phase under the temperature
and pressure conditions during preparation, while its composition would undergo spinodal
decomposition under the temperature and pressure conditions during injection and mixing.

Notably, the unique patterns associated with phase separations observed in experiments
(Suzuki et al. 2020, 2021a,b; Iwasaki et al. 2023), such as droplets and tip-widening
fingers, involve significant thermodynamic effects and are not observed in conventional
hydrodynamic VF. In the present study, highly accurate numerical simulations are
conducted for the first time to elucidate the underlying physics of the unique interface
pattern in a radial displacement configuration, which is similar to the existing experiments.
Coupled with the thermodynamic phase separation induced by partial miscibility, the
numerical results verify the anomalous patterns, such as the lollipop fingers and droplets,
which are not observed in conventional hydrodynamic VF. Comprehensive parametric
studies are carried out to determine the influences of individual factors. The rest of this
paper is organized into three additional sections. Section 2 describes the physical problem,
governing equations and numerical methods. Section 3 presents our numerical results and
discussion. The conclusion is given in § 4.

2. Physical problems and governing equations

2.1. Governing equations
We consider a Hele-Shaw cell of a constant gap thickness b containing two partially
miscible fluids as shown in figure 1. The phase variable c, equivalent to mass fraction
in the present model, is designed to have c = 1 and c = 0 for the fluid viscosity η1
and η2, respectively, and set that η2 > η1. The miscibility of the binary components is
c = cs, so the complementary miscibility is c = 1 − cs. A less viscous mixture of these
two components, referred to as the injected fluid thereinafter, with composition c = ci
is injected at the origin (x = 0 and y = 0) to displace a more viscous outer mixture of
c = co, referred to as the displaced fluid. The VF is triggered because of the unfavourable
viscosity contrast of the injected and displaced fluid, in which Ro and Ri represent the
radius of the circumscribed and the inscribed circle of injected fluid, respectively. Phase
separation may occur depending on the local mixture concentration and the interfacial free
energy. To simulate the fluid interface, the well-tested Hele-Shaw–Cahn–Hilliard model
(Lowengrub & Truskinovsky 1998; Chen et al. 2011, 2014; Huang & Chen 2015; Tsuzuki
et al. 2019b; Li et al. 2022, 2023; Chou et al. 2023) is applied. The governing equations
for a diffuse-interface approach can be written as

∇ · u = 0, (2.1)

∇p = −12η
b2 u − ερ∇ · ((∇c)× (∇c)T), (2.2)

ρ

(
∂c
∂t

+ u · ∇c
)

= α∇2μ. (2.3)

Here, u, p, ρ and η denote the velocity vector, the pressure, the density and the viscosity,
respectively. Here ε and α, respectively, represent the coefficient of capillary and mobility.
Here μ stands for the chemical potential of the phases. It is noticed that the effect of
density difference on the VF can be ignored, which is concluded in Suzuki et al. (2020)
so that it is also assumed negligible on the phase separation. As a result, constant density
is taken in the model.
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Ri

Ro y

x
1 – cs

c = ci

c = co

c ≈ cs

Figure 1. Principal sketch of the simulation set-up. A less viscous binary-fluid mixture with concentration
c of c = ci is injected at the origin (x = 0 and y = 0) to displace a more viscous outer fluid of c = co. The
miscibility of the binary fluids is c = cs. Here Ro and Ri represent the radius of the circumscribed and the
inscribed circle of injected fluid, respectively. Because of partial miscibility, the areas inside and between the
fingers are mixing zones where the concentration can reach c ≈ 1 − cs and c ≈ cs, respectively.

In this diffuse-interface framework, the viscosity of fluid mixture (η) is assumed to
be related to c with an exponential contrast constant Rv as (Chen & Meiburg 1998a,b;
Petitjeans et al. 1999)

η(c) = η1 exp([Rv(1 − c)]), Rv = ln
(
η2

η1

)
. (2.4a,b)

In a stable injection, i.e. η1 � η2, we assume at a characteristic time tc, the area of the
injected fluid would expand circularly to a characteristic radius of Rc. By this, the injecting
strength Q can be written as Q = π(Rc

2 − R0
2)/tc, where R0 is the radius of injecting

hole. Driven by the injection, the interface becomes unstable in the present unfavourable
viscosity contrast, resulting in complex interfacial shapes as time progresses.

The expression of the phase potential μ and the profile of Helmholtz free energy f0 for
a partially miscible interface is proposed as

μ = ∂f0
∂c

− ε∇2c, (2.5)

f0 = (c − cs1)
2(c − cs2)

2f ∗, (2.6)

where f ∗ is a characteristic energy. The case which satisfies cs1 = 0, cs2 = 1, ci = 1
and co = 0 corresponds to the fully immiscible condition successfully applied in Chen
et al. (2011, 2014) and Tsuzuki et al. (2019b). In the recent simulations of gravity-driven
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Θ < 0 : spinodal

cs = 0.2

Θ = 0
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Figure 2. (a) Profiles of free energy f of various miscibility cs, and (b) their correspondent magnitude
of second derivative Θ ≡ ∂2f /∂c2. Uphill diffusion (UD) and downhill diffusion (DD) proceed towards
complementary miscibility 1 − cs and miscibility cs, respectively. Spinodal decomposition occurs when
Θ < 0.

CO2 flows of low solubility, an asymmetric profile of cs1 = 0.05 and cs2 = 1 is adapted
(Li et al. 2022, 2023). A relatively simple symmetric profile of cs1 = cs (miscibility)
and cs2 = 1 − cs (complementary miscibility) is used to prescribe the partial miscible
conditions in the present study. It has been ensured that the qualitative patterns and the
responsible mechanisms are consistent even if an asymmetric profile is applied. The
dimensionless profiles of f = f0/f ∗ for various cs are shown in figure 2. According to
the value of Θ , defined as Θ ≡ ∂2f /∂c2 = 12(c2 − c + 1

6)+ 4(cs − c2
s ), the binary fluid

mixture possesses distinct physical features (Shinozaki & Oono 1992; Suzuki et al. 2020;
Kim et al. 2023). A thermodynamically unstable region, denoted as the spinodal region,
exists if Θ < 0, e.g. 0.269 < c < 0.731 for cs = 0.1, as shown in figure 2. The mixture
undergoes phase separation (or spinodal decomposition) within the spinodal region.
Outside of the spinodal region and bounded by the miscibility cs and complementary
miscibility 1 − cs where f is minimum, the fluid mixture is metastable, e.g. 0.731 < c <
0.9 and 0.1 < c < 0.269 for cs = 0.1. Under the metastable condition, the fluid remains
stable unless the external disturbance is sufficiently strong.

In order to make the governing equations and relevant variables dimensionless, 2Rc, tc
and ε are taken as the characteristic scales. Furthermore, the pressure and the free energy
are scaled by (48η1R2

c)/(b
2tc) and the characteristic specific energy f ∗, respectively.
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Thus, the dimensionless versions of the governing equations become

∇ · u = 0, (2.7)

∇p = −ηu − C
I
∇ · [

(∇c)× (∇c)T
]
, (2.8)

∂c
∂t

+ u · ∇c = 1
Pe

∇2μ, (2.9)

associated with the following dimensionless correlations:

η = exp([Rv(1 − c)]), (2.10)

μ = ∂f
∂c

− C∇2c. (2.11)

The dimensionless parameters, such as the Péclet number Pe, the logarithm viscosity
contrast Rv , the Cahn number C and the injection parameter I, are defined as

Pe = 4ρR2
c

αf ∗tc
, Rv = ln

(
η2

η1

)
, C = ε

4R2
cf ∗ , I = 48η1R2

c

ρb2f ∗tc
. (2.12a–d)

The Péclet number (Pe) and the Cahn number (C) are the dimensionless measures of
dissipation and dispersion in the model (Lowengrub & Truskinovsky 1998).

2.2. Numerical methods
The numerical methods we employ in this work are similar to the ones developed in Chen
et al. (2011, 2014), Huang & Chen (2015) and Li et al. (2022), in which the continuity
and momentum equations are reformulated into the well-known stream function–vorticity
(ψ–ω) system as

u = ∂ψ

∂y
, v = −∂ψ

∂x
, (2.13a,b)

ω = ∇ × u, (2.14)

∇2ψ = −ω, (2.15)

ω = −Rv

(
u
∂c
∂y

− v
∂c
∂x

)
+ C
ηI

[
∂c
∂x

(
∂3c
∂x2∂y

+ ∂3c
∂y3

)
− ∂c
∂y

(
∂3c
∂x∂y2 + ∂3c

∂x3

)]
. (2.16)

The total velocity u is decomposed into two parts, i.e. the rotational and potential
parts. The rotational part of the velocity is obtained numerically by solving the stream
function equation. On the other hand, the potential part of radial velocity (upot) induced
by injection, which involves singularity at the origin, is smoothed out by distributing its
strength in a Gaussian way over the circular core region, i.e. r � R0. The magnitude of the
dimensionless potential radial velocity that satisfies the requirements can be expressed as
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(Chen et al. 2014; Huang & Chen 2015; Chou et al. 2023)

upot = Q
2πr

[1 − exp (−4r2/R0
2)]r, (2.17)

where r represents the unit vector along the radial direction. The dimensionless injection
strength Q, which is fixed, takes the form as

Q = π(1 − 4R0
2)

4
. (2.18)

The simulations are performed in a square computational domain with a length of 2,
i.e. (x, y) ∈ [−1, 1] × [−1, 1]. An initially circular injecting core, whose radius is set at
R0 = 0.08, is placed at the centre of the domain with c = ci, while the area outside the
core is c = co. The initial interfacial region between ci and co is smoothly connected by
an error function type profile (Chen & Meiburg 1998a). The boundary conditions of the
system are prescribed as follows:

x = ±1 : ψ = 0,
∂c
∂x

= 0,
∂2c
∂x2 = 0, (2.19a–c)

y = ±1 : ψ = 0,
∂c
∂y

= 0,
∂2c
∂y2 = 0. (2.20a–c)

The complete set of governing equations, i.e. the concentration c, the vorticity ω and
stream function ψ , are numerically solved by a highly accurate compact finite difference
discretization associated with pseudospectral method (Chen et al. 2011, 2014; Huang &
Chen 2015; Li et al. 2022). Time integration for the concentration c is fully explicit
and utilizes a third-order Runge–Kutta procedure. Spatial discretizations are performed
by compact finite differences of fourth- and sixth-order accuracy for the convective
and diffusive terms, respectively. A uniform grid size of 
x = 
y = 1

512 is applied.
Dynamical time step (
t) determined by the local maximum Courant–Friedrichs–Lewy
number (CFL), i.e. CFL = (
t/
x)(u, v)max = 0.1, is applied to advance in time.

The updated concentration c is discretized by a sixth-order compact finite difference
scheme to evaluate the vorticity. Then, the Poisson equation of the stream function is
solved by a pseudospectral method, in which a Galerkin-type discretization using a cosine
expansion is employed in the x-direction and a sixth-order compact finite difference in
the y-direction. Shown in figure 3 is the phase separation of a partially miscible drop for
cs = 0.2 without external convection. The initial concentration (t = 0) of the drop and
the surrounding fluid are c = 1 and c = 0, respectively. The partial miscibility results in
the phase separation, in which the drop concentration and the surrounding fluid gradually
approaches c = 0.8 and c = 0.2, respectively, as shown at t = 1. The separation phase
agrees with the sketches of figure 1(b) in Suzuki et al. (2020). Additional validations of
the present methods are supported by the good qualitative and quantitative agreements
with experiments and linear stability analysis achieved in the early works of rotational
flows (Chen et al. 2011), suction flows (Chen et al. 2014) and gravity-driven flows
(Li et al. 2022). Similar numerical schemes have also been recently implemented on a
reactive condition (Sharma et al. 2019; Tsuzuki et al. 2019b). For more details on the
implementations of the present numerical methods and their validations in non-reactive
and reactive Hele-Shaw flows, the reader is referred to Chen et al. (2011, 2014), Huang &
Chen (2015), Li et al. (2022), Tsuzuki et al. (2019b) and Sharma et al. (2019), respectively.
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(a) (b)

0.25

0.50

0.75

1.00

Figure 3. Phase separation of a partially miscible drop for cs = 0.2 at (a) t = 0 and (b) t = 1.

3. Results and discussion

It is noticed that phase separation occurs when the system is thermodynamically unstable,
for instance, in the spinodal region. On the other hand, VF is triggered when the interface
of the two fluids becomes hydrodynamically unstable, such as the displacement of one
more viscous fluid by another less viscous fluid. Even though the causes of these two
interfacial phenomena are distinct by their underlying mechanisms, the continuous process
of morphological change by phase separation and VF is both called unstable or interfacial
instability in the following presentation for easier understanding. The main objective is
to study VF and phase separation coupling effects. Hence, the concentration of injected
fluid ci is within the 0.5 � ci < 1 − cs range to trigger possible phase separation. The
study primarily focuses on the influences of concentration of the injected fluid ci and
the miscibility cs. In the following presentation, the rest of the parameters are fixed as
Rv = 3.5, Pe = 50, C = 10−5, I = 12.5, and co = 0 unless mentioned.

3.1. Pattern formation
Shown in figure 4 are the concentration images of three representative cases of a fixed
cs = 0.1 for ci = 0.5, ci = 0.6, and ci = 0.7 at t = 0.25, 0.5, 1.0, 1.5. Based on figure 2,
all three cases are in the spinodal region, i.e. Θ < 0, so phase separation of the injected
fluid is expected. In addition, because of the magnitude ofΘ , i.e. |Θ(ci = 0.5)| > |Θ(ci =
0.6)| > |Θ(ci = 0.7)|, the prominence of phase separation would be in the order of
ci = 0.5, ci = 0.6, ci = 0.7. These cases are carried out without initial disturbances, so the
patterns appear artificially symmetric. The corresponding randomly perturbed simulations
are shown in figure 5 for direct comparison. The symmetric patterns by non-perturbed
conditions result in consistent features of the overall patterns, such as droplets or slim-stem
fingers, with their correspondent perturbed asymmetric counterparts. Even though the
perturbed conditions are more realistic, their highly irregular patterns might hinder the
detailed analysis. As a result, the ideally non-perturbed simulations are used for the latter
discussion because of their more straightforward pattern formation.

It is noticed that the number of fingers remains identical regardless of the prominence
of phase separation, i.e. the value of ci. This indicates that the dominant instability at the
early time is VF, which triggers the same number of fingers by fixed viscosity contrast
and interfacial tension in all three cases. As time proceeds, because the fluids are partially

1003 A12-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
32

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1032


Y.F. Deki and others

t = 0.25(a)
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(i)

(c) (d )t = 0.50 t = 1.00 t = 1.50
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1.00

( f ) (g) (h)
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Figure 4. Representative series, images of concentration of Rv = 3.5, Pe = 50, C = 10−5, I = 12.5 and
cs = 0.1 at t = 0.25, 0.5, 1.0, 1.5. Here (a–d) ci = 0.5; (e–h) ci = 0.6; (i–l) ci = 0.7.

(a)

0.25

0.50

0.75

1.00

(b) (c) (d )

Figure 5. Images of perturbed initial concentration for Rv = 3.5, Pe = 50, C = 10−5, I = 12.5 at t = 1.5.
Here (a) cs = 0.1 and ci = 0.5; (b) cs = 0.1 and ci = 0.6; (c) cs = 0.1 and ci = 0.7; (d) cs = 0 and ci = 0.5.

miscible, the concentration of the injected and the displaced fluid tends to separate to
the complementary miscibility at c = 0.9 and the miscibility at c = 0.1, respectively. For
the most thermodynamically unstable case of ci = 0.5 shown in figure 4(a–d), several
protruding fingers evolve at t = 0.25. The concentration of these protrusions appears
denser, e.g. close to the complementary miscibility c = 0.9, than the inner circular core
area, which is the aftermath of phase separation. In the meantime, apparent mixing to the
miscibility c = 0.1 proceeds outside the core and between fingers. The concurrence of two
instabilities, i.e. hydrodynamical VF and thermodynamical phase separation, is observed
and forms an interesting corona pattern. At t = 0.5, the denser fingers keep evolving. They
are cut off by the thermodynamical phase separation, as shown in figure 4(b), which is
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Figure 6. Concentration profiles along the centreline ( y = 0, 0 � x � 1) of cs = 0.1 at t = 0.25, 0.5, 1.0 and
1.5: (a) ci = 0.5, (b) ci = 0.6 and (c) ci = 0.7, whose correspondent images are shown in figure 4.

hardly observed in conventional hydrodynamic VF. As time proceeds to t = 1.0, multiple
low-concentration (more viscous) grooves and high-concentration (less viscous) ridges
develop azimuthally around the boundary of the core and the phase is completely separated
to form fluid threads. At t = 1.5, when the simulation is terminated, the overall pattern
appears broken with numerous isolated fluid fragments. The formation of droplets (or
fluid fragments) is in line with experiments (Suzuki et al. 2020, 2021a).

To further elucidate the phase separation, the concentration profiles between 0 � x � 1
along the centreline ( y = 0) are shown in figure 6(a). Because of phase separation, the
concentration profile appears non-monotonically, oscillating between ci = 0.5 and co = 0
at x = 0 and x = 1, respectively. At t = 0.25, two oscillating cycles exist. Because of the
continuous supply of injected fluid, the amplitude of waves closer to the origin is smaller.
The amplitude is much more significant for the second oscillation, whose maximum and
minimum concentration reaches nearly the complementary miscibility c = 0.9 and the
miscibility c = 0.1, respectively. The dramatic drop in concentration from c = 0.9 to c =
0.1 corresponds to the formation of isolated fragments or droplets shown in the image.
A smooth transition evolves from c ≈ 0.1 to c = 1 at the outermost region. As a result,
three regions are categorized between injected fluid (ci) and displaced fluid (co), such as
(1) the phase separation from c = ci (0.5) to c ≈ 1 − cs (0.9), (2) the sharp interface from
c ≈ 1 − cs (0.9) to c ≈ cs (0.1) and (3) the diffusive mixing from c ≈ cs (0.1) to c = co
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(0). The peaks and troughs of oscillating waves caused by phase separation correspond to
the more dilute grooves and the denser ridges observed around the circular core in figure 4,
respectively. In the meantime, the partial miscibility results in a sharp interface bounded
by miscibility amid cs and 1 − cs. Limited diffusion takes place beyond the miscibility
cs > c > co. As time proceeds, the continuous phase separation produces more oscillating
waves (grooves and ridges). These oscillating waves are also propagated outwardly by the
injection flow in the present condition, as shown in figure 6(a). The completeness of the
sharp interface and diffusive region is broken by the prominent formation of droplets along
the centreline at later times t � 0.5, also shown in figure 6(a).

There are two effects for increasing ci: strengthening the VF because of the lower
viscosity of the injected fluid, i.e. ηinjected = exp((1 − ci)Rv), and weakening the phase
separation due to lower magnitude of Θ as shown in figure 2. Consequently, VF is more
dominant over phase separation. Also shown in figures 4 and 6 are the concentration
images and concentration profiles, respectively, of higher ci = 0.6 (figures 4e–h and 6b)
and ci = 0.7 (figures 4i–l and 6c). As expected, instead of the formation of broken fluid
fragments, the fingers are much better preserved and evolve continuously. Only a few
droplets are observed at the fingertips in the cases of ci = 0.6. For the case of ci = 0.7,
VF dominates, so no fingers are completely separated to form droplets. Nevertheless, even
though the fingers evolve continuously, their shapes are distinct from the conventional
viscous fingers. The denser fingertip appears bulb-shaped with a slim stem connecting
the core, developing from corona-shaped at early time to lollipop-shaped later. It is worth
mentioning again that the interesting lollipop-shaped patterns resemble what had been
observed in the experiments (Suzuki et al. 2021b). The weakening phase separation results
in less significant oscillation of the concentration profiles. The three regions described
above, such as phase separation, sharp interface and diffusive mixing, are preserved for the
concentration profiles along the centreline. Notably, the interesting lollipop-shaped pattern
is anomalous in Newtonian fluids but involves a significant thermodynamic effect. Bulbed
fingertips are observed if the viscosity variation between the injected and displaced fluid is
non-monotonic with a minimum in the interfacial area, for instance, the fingering pattern
obtained in reactive flows in which the least viscous species is produced by a chemical
reaction between the injected and displaced fluid (Sharma et al. 2019). Nevertheless,
slim and elongated finger stems do not form. Despite the uniqueness, thermodynamic
effects have only been considered very recently. The mechanisms that generate such unique
lollipop-shaped fingers and droplets will be explained in more detail later in this section.

A few unique features of the overall pattern are worthy of further discussion. The pattern
mainly consists of four parts: (i) inner core c = ci, (ii) mixing zone c ≈ cs and (iii) fluid
fragments (droplets) or fingers c ≈ 1 − cs, which correspond to the regions indicated by
green, red and black texts, respectively, shown in figure 1. Additionally, (iv) dilute grooves
and dense ridges exist between the core (or finger) and mixing zone. To better illustrate
these parts, the representative concentration profile associated with droplets of ci = 0.5
and cs = 0.1 at t = 1.5 is shown in figure 7. The concentration remains c = 0.5 inside
the inner core as the region marked by the letter c. Subsequently, the profile starts to
oscillate, in which the troughs and peaks represent the low-concentration grooves (marked
by the letter g) and high-concentration ridges (marked by the letter r), respectively.
Nevertheless, the concentration of troughs/peaks is significantly higher/lower than the
miscibility 0.1/0.9, which indicates the pattern is not fully separated to form isolated fluid
fragments of droplets. The mixing zones, marked by the letter m, are the nearly flat regions
where concentrations remain close to the miscibility, i.e. c ≈ 0.1. Between the mixing
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d

Figure 7. Enlarged view of concentration profiles between 0.25 � x � 0.8 along the centreline ( y = 0) of
cs = 0.1, and ci = 0.5 at t = 1.5. The letters c, g, r, d and m represent the core, groove, ridge, droplet and
mixing area, respectively.

0.3 0.6 0.9

x

0.100

0.600
0.731

0.900

c

ci = 0.6; cs = 0.1 at t = 1.5

Core Meta

Spinodal
Diffusive

Interface

Figure 8. Enlarged view of concentration profiles between 0.3 � x � 0.9 along the centreline ( y = 0) of
cs = 0.1, and ci = 0.6 at t = 1.5.

zones, where concentration drops from c ≈ 0.9 to c ≈ 0.1, are the isolated fluid fragments
or droplets marked by the letter d.

The mechanisms of these parts can be understood by the close view of another
representative concentration profile of ci = 0.6 and cs = 0.1 at t = 1.5 shown in figure 8
and is also elucidated in figure 9. As mentioned above, the profile can be divided into
three regions: (1) the phase separation from c = 0.6 to c ≈ 0.9, (2) the sharp interface
from c ≈ 0.9 to c ≈ 0.1 and (3) the diffusive mixing from c ≈ 0.1 to c = 0. It is worth
noting that, in the present milder condition, the region of phase separation can be further
distinguished into two subregions of the spinodal instability and metastable region from
c = 0.6 to c = 0.731 and c = 0.731 to c ≈ 0.9, respectively. As shown in figure 8, areas
of concentration higher than the injected fluid, i.e. the denser ridge of c > 0.6, exist in
the spinodal region. Hence, the expansion of the inner core to the ridge is viscously
stable and remains nearly circular. On the other hand, the outer front of the densest
concentration of the sharp interface, whose viscosity is the smallest, can further enhance
hydrodynamical fingering instability to the displaced fluid. If the local strength of phase
separation is sufficiently strong, the protruding fingers may be separated, forming isolated
fragments or droplets. Finally, the injected and displaced fluid can partially mix because of
finite miscibility. Zones of limited mixing with a maximum concentration of cs = 0.1 are
located beyond the sharp interface, which corresponds to the diffusive region presented
in figure 8. Another interesting observation is the transition of concentration profile
from the spinodal region to the metastable region. Unlike non-monotonic oscillating
waves of concentration in the spinodal region, as shown in figure 8, the concentration
profile monotonically increases within the meta-stable range, i.e. from c = 0.731 to the
complementary miscibility of c = 0.9. The different behaviours verify the two distinct
modes of thermodynamical instability in the spinodal and metastable regions.

It should be pointed out that the lollipop pattern, which is not observed in the
hydrodynamical VF instability, is primarily related to thermodynamic instability, i.e. the
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Core

UD

DD
DD

c = ci

c = co

c ≈ cs
c ≈ cs

c ≈

Diffusive

1 – cs

Figure 9. Sample sketch for the elucidation of the interfacial phenomena. Radial concentration distribution
evolves from the core to the diffusive region, e.g. along the purple arrow as the representative profile shown in
figure 8. The UD and DD, taking place towards the radial (blue arrow) and azimuthal (red arrow) orientations,
result in slim-stem fingers.

competition between metastable states and spinodal decomposition. In the present source
flow configuration, the radial distance of the injected fluid can also represent the evolving
time for thermodynamic instability, i.e. r ∼ √

t. Therefore, the ripening time increases
from the core centre towards the fingertips. As demonstrated in figure 8, the concentration
profile is divided into three regions depending on the distance from the centre, i.e. the
nearest core, the middle spinodal region and the farthest metastable region. Consequently,
the metastable region has the longest ripening time, while the spinodal decomposition
zone has an intermediate ripening time. The core, where the concentration is the same
as the injected fluid, has a very short ripening time. Suppose the injected fluid is in
a spinodal state, which is the present condition; the spontaneous separation results in
concentration oscillation, in which the local concentration can be higher and lower than
the injected fluid, as shown in figure 8. The portion separated into higher concentrations
will undergo diffusion towards the high equilibrium concentration (the complementary
miscibility 1 − cs), referred to as the UD. In contrast, the portion of the fluid separated into
lower concentrations will undergo diffusion towards the low equilibrium concentration
(the miscibility cs), referred to as the DD. The orientations of the UD and DD are
demonstrated in figures 2 and 9.

If the highest/lowest amplitude of the oscillating concentration profile, induced by
spinodal decomposition, reaches 1 − cs/cs within the repining time, respectively, the fluids
are completely separated to form droplets. Otherwise, the concentration of UD proceeds
radially so that regions of high concentration (low viscosity) continuously evolve away
from the core and eventually far enough to pass the state of spinodal decomposition.
Subsequently, it becomes metastable, where phase separation is no longer significant. The
concentration increases monotonically by the UD towards the complementary miscibility
and then drops to the miscibility, forming a sharp interface as also shown in figure 8.
On the other hand, the DD proceeds circumferentially towards the outer fluid of the
low-concentration region. Local concentration gradually decreases and eventually reaches
the miscibility, mixing with the outer fluid. The DD along the azimuthal direction
continuously decreases the local concentration to thinning the middle portion, i.e. the
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finger’s stem. On the contrary, the radially UD results in high concentrations at the
fingertip. Driven by the radially injected flow, the thinning stem is elongated. In the
meantime, the least viscous fingertip swells to form a lollipop-shaped pattern. Sufficient
ripening time of the metastable state allows these unique features to evolve, forming the
lollipop-shaped pattern.

In summary, under sufficiently large Θ conditions in which spinodal separation is
dominant, as shown in figure 7, the concentration oscillates dramatically without an
apparent region of smooth growth towards the maximum. So that no distinguishable
metastable state is observed. Once the amplitude reaches the miscibility and complemental
miscibility, the continuous concentration supply by the UD is cut off so that isolated
fragments or droplets evolve. On the other hand, a lollipop-shaped finger forms when
the spinodal region (concentration oscillation) and metastable state (monotonic growth of
concentration) coexist.

3.2. Parametric study
The miscibility cs is another crucial parameter to determine the magnitude of Θ as shown
in figure 2. Based on figure 2, a lower cs for a fixed ci results in a higher magnitude
of Θ; thus, more prominent phase separation is expected. In the meantime, a lower cs
increases the concentration drop (or viscosity contrast) on the sharp interface, i.e. from
c = 1 − cs to c = cs as shown in figure 8 to trigger more vigorous fingering locally. The
patterns for a lower cs = 0 with various ci = 0.5, 0.6 and 0.7 are shown in figure 10.
These three conditions are all within the spinodal region. The pattern is highly broken
for the most vital phase separation of ci = 0.5 and cs = 0, as shown in figure 10(a–d).
The typical structures caused by phase separation, such as numerous isolated fragments
around the core, multiple layers of droplets, and multiple circularly dilute grooves and
dense ridges, are more prominent. These main features of the pattern are also preserved
in the perturbed condition, as shown in figure 5(d). Another interesting observation is that
the core size does not change significantly. It is the aftermath of the continuous formation
of the circular grooves and ridges by phase separation. Under the present condition, the
ability of the injecting source can no longer effectively suppress the phase separation to
push away the continuous formation of the circular grooves and ridges from the origin.
The continuous evolvements of circular grooves/ridges and fragments associated with the
apparent growth of cutoff fingers indicate that the phase separation and the VF remain
prominent throughout the injection process. All the above phenomena can also be observed
in the concentration profiles shown in figure 11(a). The number and amplitudes of waves
are much higher, which reflects the more prominent phase separation. Because of cs = co,
no diffusive zone exists with the concentration drop amid the sharp interface from c ≈ 1 to
c ≈ 0. The onset location of the wave, which can be approximated as the radius of the core,
remains nearly unchanged. A more quantitative analysis of the core size will be discussed
in a later section.

Cases of higher ci = 0.6 and 0.7 are also shown in figure 10(e–h) and figure 10(i–l). As
mentioned in the previous section, the prominence of phase separation is weakened, so the
number of fragments from the isolated grooves/ridges and droplets by the cutoff fingers is
reduced for ci = 0.6. The injected fluid is completely unbroken for the case of ci = 0.7.
In addition, the size of the core gradually increases. For the case of the weakest phase
separation ci = 0.7, the increase of the core size is the most apparent. These reflect the
fewer number and farther onset locations of the waves of concentration profiles at various
times, as shown in figures 11(b) and 11(c). In the meantime, strengthening the VF results
in tip-split at the tips of lollipop-shaped fingers.
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Figure 10. Images of concentration of Rv = 3.5, Pe = 50, C = 10−5, I = 12.5 and cs = 0 at t = 0.25, 0.5,
1.0, 1.5. Here (a–d) ci = 0.5; (e–h) ci = 0.6; (i–l) ci = 0.7.

The influence of miscibility can be realized by comparing the three series of cs = 0.1,
cs = 0 and cs = 0.2 shown in figures 4, 10 and 12, respectively. Note that the case
of cs = 0.2 and ci = 0.7 shown in figure 12(e–h) is in the metastable region. Unlike
the effects of ci, a decrease of cs strengthens both the phase separation because of a
larger magnitude of Θ , and VF due to a higher viscosity contrast at the sharp interface,
i.e. 
ηinterface = exp((1 − cs)Rv)− exp(csRv) as shown in figures 6 and 11. As a result,
among the cases presented, the pattern appears the most fragmented for the case of cs = 0
and ci = 0.5 featuring multiple layers of isolated fragments and droplets along the circular
core and fingers, respectively, as shown in figure 10(a–d). On the other hand, the effect
of phase separation is the weakest for the case of cs = 0.2 and ci = 0.7, in which no
droplets are formed as shown in figure 12(e–h). It is interesting to compare the patterns
of the case of cs = 0.1 and ci = 0.6 shown in figure 4(e–h) with the case of cs = 0 and
ci = 0.7 shown in figure 10(i–l), whose magnitudes of Θ are identical, i.e. Θ = −0.52.
For the case of cs = 0 and ci = 0.7 whose 
ηinterface is higher, fingering appears more
vigorous, e.g. longer length of fingers with splits at the tips. Nevertheless, the main
features of phase separation of these two cases remain similar, such as barely formed
droplets and lollipop-shaped fingers. The similarity between these two cases suggests that
the magnitudes of Θ dominate the phase separation.

To complete the study, all the rest of the parameters, such as the viscosity contrast Rv , the
mobility Pe, the Cahn number C, and the injection parameter I, are varied to evaluate their
influences as the images at t = 1.5 shown in figure 13. The reference values of parameters
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Figure 11. Concentration profiles along the centreline ( y = 0, 0 � x � 1) of cs = 0 at t = 0.25, 0.5, 1.0 and

1.5: (a) ci = 0.5, (b) ci = 0.6 and (c) ci = 0.7, whose correspondent images are shown in figure 10.
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Figure 12. Images of concentration of Rv = 3.5, Pe = 50, C = 10−5, I = 12.5 and cs = 0.2 at t = 0.25, 0.5,
1.0, 1.5. Here (a–d) ci = 0.5; (e–h) ci = 0.7.
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Figure 13. Influences of various parameters: (a,b) ci = 0.5 and ci = 0.6; (b,c) C = 10−5 and C = 5 × 10−6;
(b,d) cs = 0.1 and cs = 0; (a,e) Rv = 3.5 and Rv = 2.3; (b, f ) Pe = 50 and Pe = 25; (c,g) I = 12.5 and
I = 6.25; (d,h) Pe = 50 and Pe = 200.

are for Rv = 3.5, C = 10−5, I = 12.5, cs = 0, ci = 0.6. Only the studied parameter varies
for each group, while others are fixed, such that the influence of ci, C, cs, Rv , Pe and I is
demonstrated in figures 13(a,b), 13(b,c), 13(b,d), 13(a,e), 13(b, f ) and 13(c,g), respectively.

Figures 13(a) and 13(e) are the cases for Rv = 3.5 and Rv = 2.3, respectively, in a
condition of strong phase separation (cs = 0.1 and ci = 0.5). Not too much fingering
instability is triggered for the case of Rv = 2.3 as expected, so the pattern appears as
numerous fragments and droplets without preferable orientation. On the contrary, for the
case of Rv = 3.5, even though no continuous fingers are observed, fingering instability can
be distinguished by the radial alignments of droplets along several cutoff fingers.

The prominence of phase separation, as presented in the previous sections, is mainly
determined by the magnitude of Θ , which is the second derivative of dimensionless free
energy Θ ≡ (1/f ∗)(∂2f0/∂c2). Because the characteristic free energy f ∗ appears in the
denominator of dimensionless expression of Pe, C and I, these parameters may also play a
role in the influence of phase separation. Consequently, a more prominent effect of phase
separation may be expected for lower Pe, C and I, i.e. larger f ∗. Figures 13(b) and 13( f ) are
the cases for Pe = 50 and Pe = 25, respectively, in a condition of milder phase separation
(cs = 0.1 and ci = 0.6). The phase separation for Pe = 25, compared with Pe = 50, is
significantly strengthened by forming continuous threads and reducing the size of the
circular core. In contrast, the cases of Pe = 50 and Pe = 200 in a condition of cs = 0
and ci = 0.6, as shown in figures 13(d) and 13(h), a higher Pe = 200 completely prevents
the formation of broken fragments and droplets, indicating weaker phase separation.
Nevertheless, the fingering instability is slightly enhanced for Pe = 200 with the more
apparent tip-split, consistent with the common expectation of conventional VF. The results
indicate the strong influence of Pe on the pattern formation, especially the effect of phase
separation. Besides the reason for the scaling factor f ∗, this is also understood by the
fundamental mechanism of the concentration equation, in which Pe explicitly controls the
response of phase separation.

The Cahn number C and the injection parameter I are also related to the effective
interfacial tension (Chen et al. 2011, 2014; Tsuzuki et al. 2019b). A weaker interfacial
tension (lower C and larger I) results in a more unstable interface. The influence of
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(a) (b) (c) (d )

Figure 14. The four typical types of interfacial patterns, represented by the contours of τ . (a) Core separation
(CS) for Rv = 2.3, Pe = 50, C = 10−5, cs = 0.1 and ci = 0.5. (b) Fingering separation (FS) for Rv = 3.5,
Pe = 50, C = 10−5, cs = 0 and ci = 0.5. (c) Separation fingering (SF) for Rv = 3.5, Pe = 50, C = 5 × 10−6,
cs = 0.1 and ci = 0.6. (d) Lollipop fingering (LF) for Rv = 3.5, Pe = 200, C = 10−5, cs = 0 and ci = 0.6.

C can be observed by comparing the cases of C = 10−5 and C = 5 × 10−6 shown in
figures 13(b) and 13(c), respectively. The pattern of lower C = 5 × 10−6, compared with
C = 10−5, appears more unstable for phase separation with broken fragments around the
core and droplets along the fingers. In the meantime, VF is also more vigorous, with
tip-split at the fingertips. As a result, C can also affect the overall pattern significantly.
On the other hand, even though a lower I could enhance the phase separation, it may be
offset by a stronger effect of interfacial tension. As shown in figures 13(c) and 13(g) for
I = 12.5 and I = 6.25, respectively, the overall patterns remain similar with only minor
differences.

3.3. Pattern categorization and quantitative analysis
To summarize the patterns presented above, four types can be quantitatively categorized
such as (i) CS, (ii) FS, (iii) SF and (iv) LF, whose particular interfacial patterns and
rotational streamlines are shown in figures 14 and 15, respectively. To more clearly
demonstrate the patterns, interfaces at t = 1.5 shown in figure 14 are represented by the
values of τ(x, y) defined as

τ(x, y) =
(
∂c
∂x

)2

+
(
∂c
∂y

)2

. (3.1)

Note that τ(x, y) is also related to the magnitudes of local interfacial tension (Chen
et al. 2011, 2014; Tsuzuki et al. 2019b). Nevertheless, unlike the immiscible situation, in
which a simple sharp interface exists between the injected and displaced fluids, the entire
interfacial area in the present partially miscible condition includes a sharp-drop interface
and prolonged diffusive area, as shown in figure 8. As a result, the conventional treatment
of surface tension may not be suitable and not discussed here.

For the case dominated by prominent phase separation (cs = 0.1 and ci = 0.5)
associated with milder VF (Rv = 2.3) as shown in figure 14(a), the interfaces feature
multiple layers of tiny fragments distributed around the circular core without preferred
orientations. The overall pattern appears wholly broken. The typical vortex pairs
commonly seen in the conventional VF (Chen & Meiburg 1998a; Tsuzuki et al. 2019b)
are insignificant, as shown in figure 15(a). Since the separated fluid fragments mainly
form around the core without apparent fingers, thus this pattern is called core separation.
If both the influences of phase separation and VF are strengthened, e.g. cs = 0 and
Rv = 3.5 as shown in figures 14(b) and 15(b), even though the interface remains
almost completely broken, apparently outward expansion of multilayer droplets can be
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(a) (b) (c) (d )

Figure 15. Streamlines of the four typical patterns shown in figure 14: (a) CS; (b) FS; (c) SF; (d) LF.

distinguished, indicating the vigorous fingering. On the other hand, the isolated fragments
around the core develop reversely inward because of strong separation. The streamlines
consist of multilayer vortex pairs, the typical structures of fingering instability, but
significantly scattering without concentrating flow paths. The pattern is categorized as
FS because its viscous fingers are entirely cut off, breaking the overall pattern by phase
separation.

The previous two patterns possess the typical features of phase separation, i.e. fluid
fragments and droplets. On the other hand, fingering formation can be better preserved if
the prominence of phase separation is weakened, e.g. ci = 0.6 and cs = 0.1 for Rv = 3.5,
as shown in figures 14(c) and 15(c). The formation of viscous fingers is well retained; even
droplets form at the tips. The cutoff fingers result in a two-layer formation of vortex pairs
in the streamlines. In addition, flow paths of denser streamlines connecting the two layers
of vortex pairs indicate the better development of viscous fingers. This pattern is called SF
because distinguishable fingers are preserved with fewer droplets. Finally, if the influence
of phase separation is further reduced by taking a higher Pe = 200 as patterns shown in
figures 14(d) and 15(d), the cutoff of injected fluid is completely suppressed. Nevertheless,
as discussed in the previous section, the fingers appear lollipop-shaped with slim stems and
bulb tips. As a result, the streamlines consist of continuous flow paths connected with the
wide vortex pairs at the tips. This unconventional fingering pattern is categorized as LF.

To quantify the pattern, the radius of the circumscribed (Ro) and the inscribed circle (Ri)
of injected fluid, as marked in figure 1, is measured by the outermost and the innermost
position of ci, respectively. The mixing radius Rm representing the longest length of fingers
is defined as Rm = Ro − Ri. It is worth mentioning that Ri, representing the initial position
of the concentration oscillation, can be viewed as the onset of phase separation. Hence, a
shorter Ri corresponds to a more prominent phase separation. Shown in figure 16(a) are
Ri and Rm of the three cases presented in figure 10, representing the three conditions of
vigorous fingering as FS (ci = 0.5), SF (ci = 0.6) and LF (ci = 0.7). Note that fingering
is not significant for the case of CS and is not measured. For the condition of FS (ci = 0.5),
Ri does not keep increasing, or even decreasing, at later times even though the injection
continues. The decrease of Ri confirms the prominent phase separation of the dilute
grooves and dense ridges around the core and is the unique feature to categorize the
dominance of phase separation. On the contrary, for the conditions of SF (ci = 0.6) and
LF (ci = 0.7), Ri increases with time due to the injection of fluid, which behaves similarly
to conventional VF. Nevertheless, the continuous increase of Rm for all three conditions
indicates the active growth of fingers. The Rm is in the opposite trend with Ri, in which the
Rm is longer for stronger phase separation. Ro, i.e. Ro = Ri + Rm, remains nearly the same
for all three cases due to the same viscosity contrast at the fingering interface between the
injected fluid and displaced fluid, i.e. identical cs. So, an increased Rm for more prominent
phase separation mainly decreases the core size Ri. At the same time, the position of
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(b) cs = 0; ci = 0.5

cs = 0.1; ci = 0.5

cs = 0; ci = 0.6

cs = 0.1; ci = 0.6

cs = 0; ci = 0.7

cs = 0.1; ci = 0.7

Figure 16. (a) Core radius Ri and mixing radius Rm of cs = 0 for various ci. The empty and colour-filled marks
refer to Rm and Ri, respectively. (b) Normalized interfacial length Ln for various ci and cs. The corresponding
images of these cases are shown in figures 4 and 10.

outwardly evolving fingers Ro is determined by VF. As shown in figure 16(a), the shorter
Ri and longer Rm of FS deviate apparently from the other two cases of SF and LF in which
the VF dominates.

Another measure used to quantify the instability is the interfacial length L(t), which can
be approximated by (Chen & Meiburg 1998a)

L(t) =
∫

x

∫
y

√
τ(x, y) dx dy. (3.2)

A normalized length Ln is scaled by the circumference of a stable injection without phase
separation (Tsuzuki et al. 2019b; Chou et al. 2023) and shown in figure 16(b) for the
cases whose images are demonstrated in figures 4 and 10. Note that the condition of
Ln = 1 represents a stably circular pattern, so the value of Ln represents the prominence
of interfacial instability. The immediate growths of Ln shown in figure 16(b) are due to
the prominent phase separation around the core, such as formations of grooves and ridges,
so that the initial growth rates at t = 0 directly depend on the magnitudes of Θ , i.e. a
higher initial growth rate for a largerΘ . For instance, the initial growth rates of cs = 0 and
ci = 0.7 are very close to cs = 0.1 and ci = 0.6, whose Θ are identical. The temporal
development of Ln is strongly affected by the miscibility cs and the concentration of
injected fluid ci. A smaller cs results in a sharper interface. Besides, a lower ci leads to
a more non-monotonic concentration distribution in the separation region. Consequently,
Ln is longer for a smaller cs or ci. The different temporal evolution of Ln for the distinct
patterns can also be observed. Ln of the FS (cs = 0 and ci = 0.5) is the largest because of
the additional interface caused by rapid phase separation. Nevertheless, the growth of Ln is
very insignificant at the later times. On the other hand, in the case of SF, Ln keeps growing
even though the Ln is lower than the FS. As shown in figure 16(b), the temporal trends of
Ln of the two SF cases, e.g. cs = 0 and ci = 0.6, cs = 0.1 and ci = 0.5, are quite similar.
Finally, for the three cases of LF (cs = 0 and ci = 0.7, cs = 0.1 and ci = 0.6, cs = 0.1 and
ci = 0.7) shown in figure 16(b), their Ln are the lowest, with gradually diminishing growth
rates.
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Figure 17. Pattern diagram for CS (Core), FS, SF and LF (Lollipop). The empty marks represent cases of
Rv = 3.5, Pe = 50, C = 5 × 10−5 and I = 12.5. The colour-filled marks are cases with varied parameters.

Based on the results discussed above, a pattern diagram is summarized in figure 17,
showing the distribution of four categorized patterns, such as the CS, the FS, the SF and
the LF. The pattern is mainly determined by the value of Θ if other parameters are fixed.
For instance, isolated fragments or droplets are formed if Θ < −0.5 for a representative
series of Rv = 3.5 Pe = 50, C = 10−5 and I = 12.5. The effect of phase separation is
the most significant in the case of Θ = −1 so that the fingers are completely separated,
forming the pattern of FS. As the increase of Θ , weaker separation results in SF. For the
cases of Θ > −0.5, phase separation is further weakened, so the pattern appears in the
LF. The CS occurs if the viscosity contrast is sufficiently low, e.g. Rv = 2.3. In addition,
the pattern may be altered by varying other parameters, for instance, from LF to SF by
lowering Pe, C or I.

3.4. Qualitative comparison with experiments
It is noticed that the present simulations emphasize verifying and analysing the newly
observed anomalous pattern in VF. Even direct quantitative comparisons are not presently
feasible because of the lack of knowledge of the key parameters, e.g. the exact free energy
profile, chemical potential, capillary coefficient and mobility, quantitative comparison
with experimental results is crucial to validate the simulations.

A similar trend has also been discovered in experiments. The partially miscible systems
have been designed by varying the compositions of sodium sulphate (Na2SO4) and PEG
in water (Suzuki et al. 2020, 2021b; Iwasaki et al. 2023). The less viscous sodium
sulphate solution is injected to displace the more viscous PEG solution as the four
typical patterns shown in figure 18. Note that the four cases are all within the region of
phase separation (Suzuki et al. 2019). Identical conditions of the last three cases are also
previously experimented with and reported in Suzuki et al. (2020, 2021b) and Iwasaki et al.
(2023). In these experiments, the viscosity contrast increases slightly from figures 18(a)
to 18(d). Particularly, for cases figures 18(b) to 18(d) of identical PEG concentration, the
prominence of phase separation gradually weakens as decreasing concentration of Na2SO4
(Suzuki et al. 2020). Therefore, a quantitative analogy can be made that the magnitude of
negative Θ also decreases from case figures 18(b) to 18(d).
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(a) (b) (c) (d )

Figure 18. Experimental images of typical phase separation coupled VF patterns. (a) Core separation, 20 wt %
sodium sulphate solution displaces 30 wt % polyethylene glycol (PEG) solution (Rv = 3.2); (b) FS, 20 wt %
sodium sulphate solution displaces 36.5 wt % PEG solution (Rv = 4.0); (c) SF, 17 wt % sodium sulphate
solution displaces 36.5 wt % PEG solution (Rv = 4.2); (d) LF, 10 wt % sodium sulphate solution displaces
36.5 wt % PEG solution (Rv = 4.5). For cases (b)–(d) of identical PEG concentration, the prominence of phase
separation gradually weakens as decreasing concentration of Na2SO4 (Suzuki et al. 2019). Note that (a–c) are
within the spinodal region, while (d) is metastable.

For the case in figure 18(a), the viscosity contrast is the smallest, so VF is the least
vigorous. Dominated by the strong spinodal decomposition, droplets form around the
injected core. If the viscosity contrast is increased, as shown in figure 18(b), VF starts
to show visible influence so that apparent fingers evolve simultaneously with droplets.
For the case of figure 18(c), with even higher viscosity contrast and weaker spinodal
decomposition, VF becomes the dominant mechanism. As a result, the pattern appears
in apparent fingers with few detached droplets. Thus, figures 18(a), 18(b) and 18(c) are
comparable to the CS, FS and SF, respectively. On the other hand, no detached droplets
are observed for the case of the highest viscosity contrast with the weakest effect of phase
separation, shown in figure 18(d). Similar to the simulations, several fingers in figure 18(d)
featuring slim finger stems with bulb tips correspond to the LF in the simulation. The trend
of coupling influence of VF and phase separation in these four experiments is consistent
with the cases presented in figure 14 so that the patterns can be qualitatively compared. The
good agreement of pattern evolution between the simulations and experiments justifies the
present categorization.

Additional comparisons with the simulations can be made by the quantitative measures
of core radius Ri, mixing radius Rm and normalized interfacial length Ln. These radii
are averaged by measuring the lengths of dominant fingers and scaled by the radius
of the circular experimental region. Because the experiments are terminated at the
breakthrough time, when the outmost finger reaches the boundary, the experimental
duration varies among these experiments. The dimensionless time is represented by
instantaneous injection volume Vi scaled by the total volume injected in the case of
figure 18(d), in which the largest volume Vo is injected. Shown in figure 19 are the cases
demonstrated in figures 18(b), 18(c) and 18(d), which correspond to the pattern of FS, SF
and LF, respectively. They can be compared with the simulation results of similar patterns
shown in figure 16. The evolving trends of Ri and Rm, as demonstrated in figure 19(a), also
appear consistently with the simulation presented in figure 16(a). Here Ri is the shortest
for the case of FS, which corresponds to the strongest phase separation, and increases
consequently with the dominance of VF, i.e. SF and LF.

Even though Ln might seem not completely consistent between figures 19(b) and 16(b),
i.e. the solid curves with the same colour in the two figures, it can be rationalized by
the viscosity contrast. The viscosity contrast in experiments is the highest in the case
of figure 18(d) (i.e. LF) so that rapidly emerging VF increases Ln at a very early time.
Nevertheless, the growth rate of Ln remains insignificant as time proceeds because of the

1003 A12-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
32

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1032


Y.F. Deki and others

0.25 0.50 0.75 1.00

Vi/Vo
0.25 0.50 0.75 1.00

Vi/Vo

0

0.2

0.4

0.6

0.8

R

(a)
Rm (LF)

Ri (LF)

Rm (SF)

Ri (SF)

Rm (FS)

Ri (FS)

2.5

5.0

7.5

10.0

Ln

(b)

LF
SF
FS

Figure 19. (a) Core radius Ri and mixing radius Rm, and (b) normalized interfacial length Ln for the
experiments shown in figures 18(b), 18(c) and 18(d), which corresponds to the pattern of FS, SF and LF,
respectively. Qualitatively consistent trends are observed with the simulation results shown in figure 16.

lack of droplets. On the other hand, for cases of figure 18(c) (i.e. SF) and figure 18(b)
(i.e. FS), even the Ln are much shorter at early time because of less vigorous VF, as
time proceeds, formation of droplets caused by prominent phase separation result in rapid
growth of Ln. As a result, Ln in the FS condition surpasses the LF condition shortly after.
It is also anticipated that Ln in the SF condition will exceed the LF condition if the
experiment lasts sufficiently long. A consistent trend with simulations is expected, such
that Ln is in the order of FS, SF and LF. The qualitative agreements of these measures also
justify the correctness of the present simulation.

4. Conclusions

The anomalous fingering patterns reported in experiments, i.e. the tip-widening finger
with a slim stem (referred to as the LF) and droplets, which are the aftermath of both
thermodynamic (phase separation) and hydrodynamic (i.e. VF) instability, have been
numerically verified by the Hele-Shaw–Cahn–Hilliard model incorporating a symmetric
double-well free energy profile. By this model, the positions of the lowest free energy
(or wells) represent the miscibility and complementary miscibility of the binary fluids.
The composition is in an equilibrium state at the miscibility, so phase separation may
occur if the local concentration is not equal to the miscibility or the complementary
miscibility. The injected fluid is a less viscous binary mixture to trigger VF. In addition,
the composition of injected fluid is in the spinodal or metastable region, i.e. the
concentration amid the miscibility and the complementary miscibility, to induce phase
separation. Because of VF, phase separation and partial miscibility, the concentration
distribution between the injected fluid and displaced fluid mainly includes four parts:
the inner core; the grooves and ridges; the isolated fragments or droplets; the mixing
zone, respectively located from the origin of injection source outwardly. Similar to the
conventional VF, the concentration within the circular core remains at the concentration
of injected fluid. Subsequently, phase separation occurs in the spinodal and metastable
regions, where the concentration is bounded by injected concentration and miscibility,

1003 A12-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
32

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1032


Effects of phase separation on viscous fingering

forming low-concentration grooves and high-concentration ridges around the core. If
the separation is sufficiently strong, such that the grooves and ridges reach nearly the
miscibility and complementary miscibility, the fluids are completed separated, forming
broken fragments. If the vital phase separation happens inside viscous fingers, the
fingers are cut off, forming droplets. This dramatic separation featuring a non-monotonic
concentration profile of grooves, ridges or broken fragments is mainly formed in the
spinodal region. In contrast, the concentration monotonically approaches complementary
miscibility in the metastable region. On the other hand, the displaced fluid also partially
mixes to approach the miscibility, forming a mixing zone. As a result, a sharp interface
exists between the metastable region and mixing zone, whose concentration drops nearly
from the complementary miscibility to miscibility. The non-monotonic concentration
profile, containing both spinodal and metastable regions, results in lollipop-shaped fingers,
referred to as LF, distinct from the conventional viscous finger, whose monotonic
concentration profile evolves radially outward.

By coupling VF with phase separation, four typical types of patterns are categorized:
CS; FS; SF; LF, in the order of the dominance of phase separation. For the patterns of CS
and FS, isolated fluid fragments or droplets around the inner core is the main feature so
that the inner core radius does not continuously increase or may decrease at later times
as injection proceeds. Consequently, the interfacial length deviates dramatically from the
stably circular shape. If the VF is not vigorous, like in the case of lower viscosity contrast,
the isolated fragments have no apparent aligned orientation. The pattern is categorized as
CS. On the other hand, if the VF is also vigorous, in addition to the isolated fragments
around the core, droplets along distinguished cutoff fingers also form. This pattern is
categorized as FS since the fingers are entirely cut off by phase separation. If the effect
of phase separation is weakened, the development of isolated fragments around the core
is less prominent. The formation of fingers is better preserved and thus categorized
as SF. As a result, the core’s radius and the pattern’s interfacial length increase as
injection proceeds. In the case of weakest phase separation, the formation of isolated fluid
fragments and droplets is entirely suppressed. Nevertheless, phase separation still results
in a non-monotonic concentration profile; the shape of the fingers is lollipop-shaped,
consisting of a slim stem connecting the circular core and bulb tips. Therefore, this pattern
is called LF. These patterns are in line with experiments of partially miscible sodium
sulphate and PEG solutions.

Finally, a pattern diagram mainly focusing on the magnitude of the second derivative
of the free energy profile is summarized. The influence of the rest of the dimensionless
parameters, such as the viscosity contrast, the mobility, the Cahn number and the injection
parameter, on the four patterns is also presented by parametric simulations.
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