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A UNITARY REPRESENTATION OF THE BASICAL

CENTRAL EXTENSION OF A LOOP GROUP

RÉMI LÉANDRE

Abstract. We construct a measure over the string bundle associated to the
loop space of a Riemannian manifold. We deduce a representation of a finite
energy Kac-Moody group analoguous to the energy representation.

I. Introduction

Let Q → M be a principal bundle with structure group G. We suppose

M is compact and 2 connected. We suppose that G is simple, compact and

simply connected.

Let Lx(M) and Lq(Q) be the based loop space of M and Q: Lq(Q) is a

principal bundle over Lx(M) with structure group the based loop space of G.

[Le5] has constructed over Lq(Q) a measure by gluing together measures in

the fiber and measure on the basis Lx(M): in the basis, [Le5] has considered

the Brownian bridge measure and in the fiber a measure over differentiable

paths, which is convenient for the purpose of the spin representation of a

loop group. Afterwards, [Le5] defines a circle fiber bundle over Lq(Q), when

the first Pontryagin class of the bundle Q → M is equal to zero. In order

to be more precise, the transition functionals over Lq(Q) contain stochastic

integrals: therefore [Le5] has constructed this bundle by using the space of

its functionals. It is possible to speak in [Le5] of the space of Lp functionals.

Moreover the basical central extension constituted in the basis of a loop

group of loops which have two derivatives acts over the Hilbert space of L2

functionals over this bundle.

The point of view presented here is different: instead of working over

the based loop space of Q, we consider the free loop space of Q called L(Q).

As a matter of fact, we consider continuous loops. Instead of constructing

the measure over L(Q) by starting from a measure over the basis and of

measures over the fiber, we construct a measure globally. For that, we in-
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114 R. LÉANDRE

troduce a Riemannian structure over Q such that the action of G over Q

is an action by isometries. We consider over L(Q) the B-H-K measure (See

[Bi2], [H-K], [Le1], [Le2]) µ. We consider L2(µ). The differentiable C1 free

loop group L1(G) acts over L(Q) by: q. → q.g.. This transformation keeps

the measure quasi-invariant. We deduce a unitary representation of L1(G)

over L2(µ) which generalizes the Albeverio-Hoegh-Krohn representation of

a loop group.

It is important for the purpose of the quantum field theory to construct

the Dirac operator over the free loop space (See the survey of Segal [Se], the

work of Witten [Wi] and the survey of Léandre [Le10]). For that, we need to

construct a circle bundle over L(Q), L̃(Q), such that we get a bundle over

L(M) whose structure group is the basical central extension L̃1(G) of L1(G).

In this purpose, we construct a system of transition maps over L(Q), which

belong locally to all the Sobolev spaces (See [Le1], [Le2]) and we construct

a circle bundle over L(Q) by using the spaces of its functionals. We use for

that a stochastic interpretation of the construction of Coquereaux-Pilch in

the deterministic context (See [C.P], [Le4]). We define this lift L̃(Q) by its

functionals and introduce a formal measure µ̃ over it and the associated

Hilbert space L̃2(µ̃).

We have the following theorem:

Theorem 1. L̃1(G) induces a unitary representation of L̃2(µ̃).

We thank M. Arnaudon and A. Vershik for helpfull discussions.

We thank for its warm hospitality the I.H.E.S. where this work was

done.

II. A unitary representation of the loop group

Let Q → M be a principal bundle with compact structure group G

and compact basis M . Let us introduce over this principal bundle a connec-

tion ∇. We split Tq(Q) into the horizontal and the vertical vector spaces:

this decomposition is kept under the right action of G. We will say that

this gives an orthonormal decomposition of the tangent of Q for a conve-

nient Riemannian metric over Q. Since G is compact, we suppose that this

Riemannian metric is invariant under the action of G over Q.

Let ∇Q be the Levi-Civita connection over Q. Let ∆ be the Laplace-

Beltrami operator over Q. It has a heat semi-group represented by a heat

kernel pt(q, q
′). Let dPq,1 the law of the Brownian bridge over Q starting
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BASICAL CENTRAL EXTENSION OF A LOOP GROUP 115

from q and arriving in time 1 in q. We consider the measure over L(Q), the

free loop space of continuous applications from the circle S1 into Q:

(2.1) dµ =
p1(q, q)dq ⊗ dP1,q

∫

p1(q, q)dq

This measure is invariant under the natural circle action over L(Q).

We denote by q. a typical element of L(Q) and by g. a typical element

of the free loop group of C1 loops in G denoted by L1(G).

Let g. be an element of L1(G). We deduce an action Ψg. : q. → q.g..

We have:

Theorem 2. the law of q.g. under µ is equivalent to the law of q..

Proof. Let us suppose that g. = g0. Since g0 is an isometry, if q. follows

the law of the Brownian bridge starting from q0 and arriving in q0, q.g0

follows the law of the Brownian bridge starting from q0g0 and arriving

at q0g0. Moreover p1(q0g0, q0g0) = p1(q0, q0) and the Jacobian of the map

q0 → q0g0 is equal to 1. Therefore the total law is invariant. We can suppose

g0 = e. It is the same to check that the law of the Brownian bridge starting

from q0 and arriving in q0 is quasi-invariant under the transformation q. →

q.g..

It is the purpose of the quasi-invariance formula of Albeverio-Hoegh-

Krohn ([A-H-K], [Sh], [Le3]). We identify an element g of G with the isom-

etry q → qg. Namely the parallel transport over q.g. is written as ∂
∂qgtτtOt

where τt is the parallel transport over q. for the Levi-Civita connection ∇Q

over Q, and Ot is an adapted process of isometries in Tq0
(Q) solution of the

differential equation (See [Le3] (2.5)):

(2.2) dOt = τ−1
t

(

∂

∂q
gt

)

−1 (

−d/dt
∂

∂q
gtτtOtdt − Γ ∂

∂q
gtτtOt

d/dtgtdt

)

where O0 = Id and where we have trivialized the tangent bundle by adding

another bundle such that the Christoffel symbols Γ are globally defined. We

used too the Itô-Stratonovitch formula which says that:

(2.3) dgt(qt) =
∂

∂q
gt(qt)dqt + (d/dtgt)(qt)dt

Therefore

(2.4) τ−1
t (q.g.)d(q.g.)t = O−1

t τ−1
t dqt + O−1

t τ−1
t

∂

∂q
g−1
t (d/dtgt(qt)dt

= CtdBt + Htdt
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116 R. LÉANDRE

where Ct is a semi-martingale of rotations in Tq0
(Q) and Ht a bounded

previsible process. Let us remark that the isometry q → qg is denoted

q → g(q) in order to be consistent with the traditional definition of function

theory: the parenthesis means that we take the value of this isometry in q,

and the absence of parenthesis means we take the action of the Lie group on

the total space of the principal bundle. Since in the previous computation,

we don’t look at an action of a group over the total space of the principal

bundle, but to a particular action of a fixed element of G, there is no

confusion possible, if we add a parenthesis.

Let us do the same computations for the based path space of Q: it

is the space of continuous applications from [0,1] into Q endowed with the

Brownian measure. Let us recall that τ−1
t dqt = dBt is a Brownian motion in

Tq0
(Q). The law of q. and of q.g. over the path space are therefore equivalent.

The quasi-invariance density denoted by exp[g.] belongs to all the Lp. We

would like to disintegrate it over the Brownian bridge. Let us recall for that

the differential Calculus over the based path space.

We consider as tangent vector field of a path q. the section of the tangent

bundle over q. constituted by τ.H. where H. is of finite energy and is a

process in Tq0
(Q) ([Bi1], [J.L]).

A cylindrical functional has a derivative < dF,X >=
∫ 1
0 k(s)H ′

sds. We

endow it with the Sobolev structure:

(2.5) ‖F‖1,p = E
[(

∫ 1

0
k(s)2ds

)p/2]1/p

We can close the notion of a derivative of a functional in Sobolev spaces

because we have the integration by parts E[< dF,X >] = E[F div X] if

X. = τ.H. and H. is deterministic ([Dr], [Bi1]).

By using the connection

(2.6) ∇X. = τ.DH.

where DH. is the H-derivative of H., we can define higher order Sobolev

spaces: a functional F belongs to these Sobolev spaces if

(2.7) ∇kF (X1, ..,Xk) =

∫

..

∫

k(s1, .., sk)H
′1
s1

..H ′k
sk

ds1..dsk

and if the following Sobolev norms are finite:

(2.8) ‖F‖k,p = E
[(

∫

..

∫

k2(s1, .., sk)ds1..dsk

)p/2]1/p
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See [Le1] and [Le2] for more precisions. A functional which belongs to all

the Sobolev spaces over the based path space can be restricted in a func-

tional which belongs to all the Sobolev spaces over the based loop space,

and its Sobolev norms over the based loop space can be estimated in

terms of its Sobolev norms over the based loop space. exp[g.] belongs to

all the Sobolev spaces over the based path space. We deduce from this that

supq0
E[exp[g.]

p]1/p < ∞ where we take the expectation over the based loop

space starting from q0. We deduce that the law of q.g. is absolutely contin-

uous with the law of q. over the free loop space for µ.

Let us introduce the map Ψg. from L2(µ) into himself:

(2.9) Ψg.(F (q.)) = exp[g.]
1/2(q.)F (q.g.)

for a functional F belonging to L2(µ).

Theorem 3. g. → Ψg. is a unitary representation in L2(µ) of L1(G).

III. A unitary representation of a central extension of the

loop group

Let us suppose that G is simple, simply connected and that Q and M

are two connected. We construct a central extension L̃1(G) of L1(G) by

considering the Kac-Moody form, which at the level of the Lie algebra of

L1(G) satisfies to:

(3.1) c(X., Y.) =
1

2π

∫ 1

0
< Xs, dYs >

There is, since G is simple simply connected, and since H3(G;Z) = Z

a smallest Killing product over the Lie algebra of G such that c/2π is a

closed Z-valued two form over L1(G). We can construct L̃1(G) explicitly

(See [C.P], [Mi], [P.S], [Ott]).

Let e. be the unit loop in L1(G). Let lt(g.) be a smooth path from e.

to g.. The bundle L̃1(G) is the set of (l.(g.), α) α ∈ S1 submitted to the

equivalence relation: (l.(g.), α) ≡ (l′.(g
′

.), α
′) if g. = g′. and if

(3.2) α′ = exp
[

− i

∫

S
c
]

α

where S is a surface with boundary the loop constituted of the path going

from e. to g. by lt(g.) and coming back to e. by l′t(g.) circled in the oppo-

site sense. We can find such a surface because L1(G) is simply connected.
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118 R. LÉANDRE

Since c/2π is closed Z-valued, the integral
∫

S c depends on S by an integer

multiplied by 2π. Therefore (3.2) has a meaning.

We define a group law over the bundle by putting:

(3.3) (l.(g.), α).(l′.(g
′

.), α
′) = (l.(g.) ∗ l′.(g

′

.), αα′)

where l.(g.) ∗ l′.(g
′

.) is the path going from e. to g.g
′

. in the following way:

first we go from e. to g. by lt(g.) and afterwards we go from g. to g.g
′

. by

g.l
′

t(g
′

.). It is the same to consider the couple of the path lt(g.)l
′

t(g
′

.) and β

where

(3.4) β = exp
[

− i

∫

S
c
]

αα′

S is a surface bounded by the triangle t → lt(g.), t → g.l
′

t(g
′

.) and t →

lt(g.)l
′

t(g
′

.), the last path being circled in the opposite direction.

(3.3) defines a group law. It is in particular compatible with the given

equivalence relation. This allows us to define L̃1(G), the basical central

extension of L1(G).

The problem is to find an Hilbert space L̃2(µ̃) where Ψg. lifts in some

sense in an action Ψ̃g̃. of the central extension of the loop group.

Let AQ be a principal connection over Q. AQ is a Lie-G valued 1 form on

the total space. If ξ̃q is the fundamental vector field at q ∈ Q corresponding

to ξ ∈ Lie G, we have:

(3.5) AQ(ξ̃q) = ξ

The curvature FQ is given by:

(3.6) FQ = dAQ + 1/2[AQ, AQ]

Let us recall that:

(3.7) 1/2[AQ, AQ](X,Y ) = AQ(X)AQ(Y ) − AQ(Y )AQ(X)

We follow the construction of Coquereaux-Pilch ([C.P]). We introduce:

(3.8) σQ =
1

8π2
< AQ, FQ − 1/6[AQ, AQ] >

dσQ = −π∗p1(Q) where p1(Q) is the first Pontryagin class of Q (represented

by a form). Moreover, on the fiber:

(3.9) σQ(X,Y,Z) =
1

8π2
< X, [Y,Z] >= σ(X,Y,Z)
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BASICAL CENTRAL EXTENSION OF A LOOP GROUP 119

We say that σQ transgresses σ, the canonical 3 form over the fiber.

We consider the transgression over the free loop space of the total space

of σQ. It is given by:

(3.10) τ(σQ)(X., Y.) =

∫ 1

0
σQ(dqs,Xs, Ys)

(We work over the finite energy loop space over Q, such that a tangent

vector over a loop q. is a section of finite energy in the tangent bundle of Q

over q..).

The last ingredient of [C.P] is to produce a 2-form ωQ over L1(Q), the

space of finite energy loops in Q, which is equal to c in the fiber, modulo a

normalizing term. It is:

(3.12) ω′

Q =
1

2π

∫ 1

0
(1/2 < AQ, d/dtAQ > − < FQ, AQ(dqs) >)

d/dtAQ is the form which to a vector Xt over q. associates the time deriva-

tive in t of AQ(qt)(Xt).

We have ([C.P]):

(3.13)
1

2π
ω′

Q = τ(σQ) − d
( 1

8π2

∫ 1

0
< AQ, AQ(dqs) >

)

We do the following hypothesis:

Hypothesis. p1(Q) = 0 in cohomology.

By the theory of Chern-Simons form, if p1(Q) = 0, in cohomology, it is

possible to find a representative ν such that −p1(Q) = dν and such that

σQ − π∗ν is a Z-valued form over Q ([C.S] Theorem 3.10).

Let us introduce the form:

(3.14)
ωQ

2π
=

ω′

Q

2π
− τ(π∗ν)

ωQ/2π is closed Z-valued over L1(Q). Since L1(Q) is simply connected, it

defines a unique circle bundle whose curvature is iωQ. Our purpose is to

generalize this result in the stochastic context.

Let qref,. be a finite energy loop of reference in Q. Let qi,. be finite energy

loops in Q such that the union of balls B(qi,.; δ) for the uniform distance is

equal to L(Q).
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120 R. LÉANDRE

If q. belongs to B(qi,.; δ), there is a distinguished curve joining q. to qi,.;

it is

(3.15) li,t(q.)s = expqi,s
[t(qs − qi,s)]

(Let us recall that we have over Q a Riemannian metric such that the

exponential map are defined and are local bijection. Moreover, (qs − qi,s)

denotes the vector of the unique geodesic joining qi,s to qs.) We join by

li,t(q.) q. to qi,.. We choose a path joining qi,. to qref,.. We glue the two

paths. We get a path joining q. to qref,. still denoted by li,.(q.).

Let q. belonging to B(qj,.; δ) too. We produce another distinguished

curve lj,.(q.). We can find a surface whose boundary is the curve li,.(q.) cir-

cled in the direct sense and the curve lj,.(q.) circled in the opposite sense. We

fulfill the small stochastic triangle constituted by li,.(q.), t ∈ [0, 1], lj,.(q.),

t ∈ [0, 1] and by the segment constituted by the exponential charts joining

qi,. to qj,.. It is possible to use a system of exponential in order to produce

such a small stochastic surface, because we have supposed δ enough small

(See [Le4] (1.7)). And we find, since L1(Q) is supposed simply connected, a

big deterministic surface whose boundary is the triangle qi,., qj,., qref,.. We

deduce a distinguished surface whose boundary is constituted of path li,.(q.)

circled in the direct sense and of lj,.(q.) circled in the opposite sense. We

denote one generic element of this distinguished surface by lu,v,i,j(q.).

We put:

(3.16) ρi,j(q.) = exp
[

− i

∫

Si,j(q.)
ωQ

]

The integral of τ(π∗ν) over Si,j(q.) does not put any difficulty and leads

as in [Le6] to some non anticipative Stratonovich integrals. The only term

which put some difficulty is the term d/dtAQ. First of all, we take the dif-

ferential in s of s → lu,v,i,j(q.)s, which is a semi-martingale and which leads

to a Stratonovich integral. The term where we use the time differential of

(∂/∂u)(lu,v,i,j (q.)s) leads too to a non anticipative Stratonovich integral, be-

cause s → (∂/∂u)(lu,v,i,j (q.)s) is a semi-martingale over the semi-martingale

s → lu,v,i,j(q.)s.

Moreover, q. → ρi,j(q.) belongs to all the Sobolev spaces. It can be

seen as follows: we plung Q in Rd, we extend A, F and π∗ν to Rd, and

we extend to Rd × Rd the map (x, y) → expx(y). Therefore we extend to

all L(Q) the surface Si,j(q.),, and we extend the integral
∫

Si,j(q.)
ωQ to all
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L(Q). This shows us that ρi,j(q.) is the restriction to B(qi,.; δ) ∩ B(qj,.; δ)

of an application with values in S1 which belongs to all the Sobolev spaces.

Moreover, by the properties of the Stratonovich integral, if qn
. is the polyg-

onal approximation of q., which is defined if the length of the subdivision

is big enough, we get almost surely:

(3.17) ρi,j(q
n
. ) → ρi,j(q.)

Moreover, ρi,j(q
n
. )ρj,k(q

n
. )ρk,i(q

n
. ) = 1 and ρi,j(q

n
. )ρj,i(q

n
. ) = 1. This shows

that almost surely over B(qi,.; δ) ∩ B(qj,; δ) ∩ B(qk,.; δ):

(3.18) ρi,j(q.)ρj,k(q.)ρk,i(q.) = 1

and

(3.19) ρi,j(q.)ρj,i(q.) = 1

So we cannot define the topological space of the circle bundle associated to

ωQ. But we can define its space of L2 functionals.

A functional of L̃(Q) is given by the following data:

A system of applications from B(qi,.; δ) × S1 → R called F̃i(q., ui) sat-

isfying to the relation F̃j(q., uj) = F̃i(q., ui) if uj = ρj,i(q.)ui almost surely.

Over the fiber, we put:

(3.20) ‖F̃‖p,q. =
(

∫

S1

|Fi(q., ui)|
pdui

)1/p

Since the Haar measure over the circle is invariant under rotation, (3.20) is

compatible with the change of trivialization.

We put

(3.21) ‖F̃‖L̃2 = E[‖F̃ ‖2
2,q.

]1/2 = Ẽ[|F̃ |2]1/2

We define as that an Hilbert space L̃2(µ̃).

Let q. ∈ B(qi,.; δ) and li,.(q.) be the associated distinguished path. Let

gi,. be a countable family of C1 loops in the group such that the ball for the

uniform distance B(gi,.; δ) constitute a cover of L1(G). Let g. ∈ B(gi,.; δ).

We can construct as before a curve which joins g. to gi,., by using the

exponential of a Lie group instead of the exponential of the Riemannian

structure over Q. We go afterwards from gi,. to e., the unit path in G.

We produce by this procedure a distinguished curve joining g. to e., called
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122 R. LÉANDRE

li,.(g.). An element of L̃(Q) is the couple of the distinguished curve joining

qref,. to q. li,.(q.) and of α when q. ∈ B(qi,.; δ). Let us denote (li,.(q.), α) = q̃..

g̃. = (lj,.(g.), β) acts as follows over q̃..

We consider the curve li,.(q.)lj,.(g.), and the couple of (li,.(q.)lj,.(g.),

exp[−i
∫

S1(q.,g.)
ωQ]αβ) where S1(q., g.) is the surface li,t(q.)lj,s(g.); s ≤ t

and where ωQ is integrated over this distinguished surface by using the the-

ory of Stratonovitch integral. Let us suppose that q.g. belongs to B(qk,.; δ).

We can find a distinguished surface S(q., g.) with boundary li,.(q.)lj,.(g.)

and lk,.(g.q.) such that we can integrate ωQ over S(q., g.) by using the the-

ory of stochastic integrals (Let us recall that q. is random and that g. is

deterministic). We proceed as before in order to do that: we find a small

stochastic surface whose boundary is the small stochastic triangle consti-

tuted of q.g., qi,.gj,. and qk,. by using a system of exponential maps. And

we find a big deterministic surface whose boundary is the big deterministic

triangle constituted of qi,.gj,., qk,. and qref,..

We identify (li,.(q.)lj,.(g.), exp[−i
∫

S1(q.,g.)
ωQ]αβ) with (lk,.(q.g.),

exp[−i
∫

S(q.,g.)
ωQ]αβ) = q̃.g̃..

Let π the application which to q̃. associates the end of the path which

represents it. Let π the application which to g̃. associates the end of a path

which represents g̃..

We put:

(3.23) Ψ̃g̃.(F̃ )(q̃.) =

{

dµ(πq̃.πg̃.)

dµ(πq̃.)

}1/2

F̃ (q̃.g̃.)

where this expression is defined in local charts by previous rules. We check

(See [C.P]) that these local transformations are compatible with all the

equivalence relation, and that it gives a group action of L̃1(G). Moreover

the formal law of q̃.g̃. is equivalent to the formal law of q̃.: namely the law

of πq̃.πg̃. is equivalent to the law of g̃. (See chapter II). And the action

of g̃. induces a multiplication in the fiber, which keeps the Haar measure

invariant.

We deduce:

Theorem 4. g̃. → Ψ̃g̃. induces a unitary representation of L̃1(G) over

L̃2(µ̃).

Remark. It can be seen that ωQ is a stochastic form for the stochastic

diffeology of [Le9] over the free loop space of the total space of the principal
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bundle. So the circle bundle considered here, whose fiber is almost surely

defined, is isomorphic to a true bundle over the Hölderian loop space. The

problem is that this true bundle is given by an abstract argument, and that

we cannot do explicit computation over it.
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