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ON SCALAR DEPENDENT ALGEBRAS 

RAYMOND COUGHLIN AND MICHAEL RICH 

1. Introduction. The intent of this paper is to study a class of algebras 
which do not necessarily obey the association law but instead obey a law which 
bears a marked resemblance to associativity. For lack of a better name we call 
this class the class of scalar dependent algebras. Specifically, an algebra A 
over a field F is called scalar dependent if there is a map g: A X A X A —>• F 
such that (xy)z — g(x, y, z)x(yz), for all x, y, z in A. To obtain our results we 
shall assume throughout that A is a scalar dependent algebra with an identity 
element e over a field of characteristic not 2 satisfying 

(I) (x, x, x) = 0. 

As usual, the associator (x,y,z) is defined by (x,y,z) = (xy)z — x(yz). An 
example is given to show that (I) is not implied by scalar dependency. 

The main result of the paper is that if A has an idempotent other than e 
then A is associative. If A has no such idempotent then the same result can 
be obtained if the assumptions of finite dimensionality and semisimplicity are 
added. Finally an example is given to show that not every scalar dependent 
algebra is associative even if it is both power-associative and finite dimensional. 
These results generalize the authors' earlier work [3; 6] where it was shown that 
a finite dimensional semisimple scalar dependent algebra satisfying (I) and the 
additional property that g(xi, x2, x3) = g{xiT, x^, x^T) for all Xi, x2, x3 in A and 
all 7T in 53, is associative. 

2. Power-associativity. An algebra is called power-associative if every 
subalgebra generated by a single element is associative. 

THEOREM 1. If A is a scalar dependent algebra with identity element e satisfying 
(I) over a field F of characteristic ^ 2 , then A is power-associative. 

Proof. We show first that A is fourth power-associative. Let x be in A, 
s = g(x, x, x2), and t = g(x + x2, x, x). Then x2x2 = sxx3. If s = 1 for all x 
in A, then A is fourth power-associative and we are done. Suppose s 5* I for 
some x in A. Then ((x + x2)x)x = t(x + x2)x2 or (1 — t)xz = /x2x2 — x3x = 
tsxx3 — x3x. Since characteristic F 9e 2, however, linearization of (I) implies 
that xx3 = x3x. Therefore (1 — t)xz = (ts — l)xx3. If ts = 1 then t 9e 1 since 
s 9e I. Thus x3 = 0 which implies that xx3 = 0 and, from x2x2 = xx3, that 
x2x2 = 0. Therefore, if ts = 1, x2x2 = xx3 and A is fourth power-associative. 
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If ts 9e 1 then xx3 = ax3 for a = (1 — t)/{ts — 1). Hence we have x3x = 
xx3 = ax3 or x2x2 = asx3. 

Next let m = g(e + x2, e + x, e + x). Then [(e + x2) (e + x)](e + x) = 
m(e + x2) (e + x)2 or e + 2x + 2x2 + 2x3 + x3x = m{e + 2x + 2x2 + 2x3 + 
x2x2). If m = 1 then x3x = x2x2 and we are done. Otherwise (1 — m) (e + 2x + 
2x2 + 2x3) = mx2x2 — x3x. However, x3x = ax3 and x2x2 = asx3. Therefore 
(1 - m) (e + 2x + 2x2 + 2x3) = a(ms - l)x3 and (1 - m) (e + 2x + 2x2) = 
yx3 with 7 = ams — a — 2(1 — m). If 7 = 0 then e, x, x2 are linearly depend­
ent and x2 = ae + /3x for a, /3 in T7. Therefore (x2, x, x) = (ae + fix, x, x) = 
(x, x, x) = 0 by (I) and A is fourth power-associative. If 7 ^ 0 then 
x3 = fie + 2fix + 2fix2 for fi in F. Therefore xx3 = fix + 2fix2 + 2fix3 or 
ax3 = fix + 2fix2 + 2fix3. Hence (a - 2fi)x3 = fix + 20x2. But x3 = fie + 2fix 
+ 2fix2. Therefore (a - 2fi)x3 = (a - 2fi)fie + 2 (a - 2fi)fix + 2 (a - 2fi)fix2 

or fix + 2fix2 = (a - 2fi)fie + 2 (a - 2fi)fix + 2 (a - 2fi)fix2. Now if e, x, x2 

are linearly dependent we have fourth power-associativity as before. Therefore 
e, x, x2 are linearly independent. Equating coefficients in the last identity we 
have, (a - 2fi)fi = 0 and (a - 2fi)fi = fi. Therefore fi = 0 and from x3 = 
fi + 2fix + 2fix2 we get x3 = 0. Therefore xx3 = 0 and x2x2 = sxx3 = 0 and 
we conclude that A is fourth power-associative. 

By [4, Theorem 1] third and fourth power-associativity and xxn = xnx for 
all n is sufficient to guarantee power-associativity if the characteristic of F is 
not equal to 2,3, or 5. We next show that xxn = xnx for all positive integers n by 
induction on the power of x. First note that the attached algebra A+ is power-
associative; (̂ 4+ is the same vector space as A with multiplication in A+ 

denned by x • y = (xy + yx)/2 with xy the multiplication in A) for A+ is 
commutative so that fourth power-associativity implies power-associativity [1]. 

Assume now that for all m < n. By repeated application of scalar 
dependency it follows that xnx = rxxn for some r in F. If r = 1 we are done. 
Otherwise let 5 = g(x + xw_1, x, x) and let xw_1x2 = txxn. Then ((x + xw-1)x)x 
= s(x + xn~1)x2 or x3 + xwx = s(x3 + /xxn). Therefore (1 — s)x3 = (st — r)xxn. 
First, if s = 1 then (t — r)xxn = 0. Therefore either xxn = xnx = 0 or t = r. 
If t = r, however, then xwx = rxxn and xw_1x2 = rxxn. Thus xnx = xw-1x2. 
Since A+ is power-associative xn • x = xn~l • x2 or xnx + xxn = xw_1x2+x2xn_1. 
Therefore xxn = x2xw_1. A linearization of (x, x, x) = 0 gives (x, xw_1, x) + 
(x, x, xn~l) + (xw_1, x, x) = 0 which reduces to 2xwx — 2xxn = xw_1x2 —x2xw_1. 
But xnx = xn~lx2 and xxw = x2xw_1. Therefore xxn = xnx ii s = 1. Assume then 
that s 9e 1. lî st = r then x3 = 0 which implies that xn = 0 so that xxn — 
xnx = 0. Finally if 5 5̂  l and st ^ r thenxxw = ax3 with a = (1 — s)/(st — r)9é0 
and xnx — arx3. 

Let g(e + x, e + xw_1, e + x) = &. Then 

((e + x){e + x^"1))^ + x) = k(e + x)((e + x^- 1 )^ + x)) 

or 

« + 2x + x2 + x71"1 + 2xw + xnx = k(e + 2x + x2 + x71"1 + 2xw + xxw). 
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If k = 1 then X X XX and we are done. Otherwise 

(1 - k)e + 2(1 - k)x + (1 - k)x2 + (1 - k)xn~l + 2(1 - k)xn 

= kxxn — xnx = (k — r)xxn = (k — r)axz. 

Therefore xn is a linear combination of e, x, x2, xs, and xn~l. Now by the induc­
tion hypothesis these elements commute with x. Therefore xxn = xnx. 

For characteristic F = 3, 5 one must in addition show that xAx = xzx2 and 
xhx = x4x2, respectively [4, Theorems 2 and 3]. The same methods as those 
employed in the general case yield these results so that if F is not of charac­
teristic 2 then A is power-associative. 

Not every scalar dependent algebra is third power-associative as shown by 
the following example. Let A have basis a, b, c, d, e, f over a field F whose 
characteristic is not 2 with multiplication given by ab = c, cd = e, bd = af, 
af = e, and all other products zero. Here a, denotes a fixed non zero scalar in 
F. It is easily verified that A is scalar dependent with g(xy y, z) = a~l for all 
x, y, z in A, However (a + b + d)2(a -\- b -\- d) = (c + af) (a + b + d) = e 
and (a + b + d) (a + b + d)2 = (a + b + d) (c + af) = ae. Thus if a is 
chosen so that a 9e 1 then A is not third power-associative. 

3. The Peirce decomposition. As before, A denotes a scalar dependent 
algebra with identity e satisfying (I) throughout. 

LEMMA 1. Ifuis an idempotent of A then (u, u, a) = (u, a, u) = (a, u, u) = 0 
for all a in A. 

Proof. Let a = g (a, u — e,u). Then 

(a, u, u) — (au)u — au = (au — a)u = [a(u — e)]u = aa(u2 — u) = 0. 

Now let ft = g(u, a — au, a). Then 

(u, a, u)u = [(ua)u]u — [u(au)]u = (ua)u — [u(au)]u = (ua — u(au))u 

= [u(a — au)]u = Pu[(a — au)u\. 

But au = (au)u. Therefore (u, a, u)u = 0 or ((ua)u)u = (u(au))u. Again 

0 = (ua, u, u) = ((ua)u)u — (ua)u = (u(au))u — (ua)u 

= (u(au))u — (u, a, u) — u(au) = — (u, a, u) + (u(au))(u — e) 

= — (u, a, u) + yu ( (au) (u — e)) 

where y = g(u, au, u — e). However 

(au) (u — e) — (au)u — au = (a, u, u) = 0. 

Therefore (u, a, u) = 0. From (a, u, u) = (u, a, u) = 0 and (I) we conclude 
that (u, u, a) = 0 which completes the proof. 

An immediate consequence of Lemma 1 is: 
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LEMMA 2. Relative to any idempotent u, A has a vector space decomposition 

A = An(u) + A10(u) + A01(u) + Aoo(u) 
where 

Aij(u) = {x\ux = ix, xu = jx) 
for i,j = 0, 1. 

We will write Atj for Atj(u) whenever there is no danger of confusion as to 
which idempotent we are dealing with. 

LEMMA 3. An and i 0 o are subalgebras of A. 

Proof. Let x, y be in Au(u) and let a = g(u, x, y). Then xy = (ux)y = 
au(xy). Now if xy = an + aio + #oi + #oo then we have that 

an + a10 + a0i + &oo = aan + aai0. 

Therefore a0i + a00 = 0, and xy G An + i i o . Thus we have 

(1) i n 2 ^ i n + i i o 

Similarly, let w, z be in A0o(u). Then (wz)u = g(w, z, u)w(zu) = 0. There­
fore 

(2) i o o 2 ^ i o o + i i o 

It is clear that A iô(u) = Aji(e — u). Therefore x, y are in A0o(e — u). Now 
from (1) xy G AQ0(e — u) + A0i(e — u) and from (2) xy G A00(e — u) + 
A\o(e — u). Therefore xy G ioo(e — u) = An M and i n is a subalgebra. 
Since ioo(^) = An(e — u), it follows that i 0 o is also a subalgebra. 

LEMMA 4. ( i n + i 0 i ) ( i oo + i 0 i ) = 0. 

Proof. Let x G i n + i 0 i , y G ioo + i o i and a = g(x, u, y). Then 

xy = (xu)y = ax(uy) = 0. 

LEMMA 5. i n i i o Q i i o , i o i i n Q i o i , awa7 i i o i o i £ i n -

Proof. For the first let x G An, y G i i o , and a = g(x, y, u). Then (xy)u = 
ax{yu) = 0 or xy G ioo + i i o . Let x;y = a00 + aio and let & = g(w, x, y). 
Then xy = (ux)y = fiu(xy) or a0o + #io = J&&10. Therefore a0o = 0 and 
xy G i i o . For the second inclusion let x G i i o M , 3> G ioo M - Then (xy)w = 
g(x, y, u)x(yu) = 0 so that xy G ioo M + i i 0 (w) . Therefore 

(3) i ioioo Ç i o o + i i o 

On the other hand xy = (ux)y = g(w, x, y)u(xy) so that x;y G i io(«) + 
An(u). Therefore 

(4) i ioioo ^ i i o + i n 

Combining (3) and (4), i io ioo Q (ioo + i io ) H ( i n + i io ) . Therefore 
i io ioo £ i i o . Since Aij(u) = iy<(e — w) it follows that i o i W ^ n W £ 
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Aoi(u) proving the second inclusion. For the last one let x G Aio, y G Aoi. 
Then xy = (ux)y = g(u, x,y)u(xy). Therefore xy G An + Ai0. Again 
x G A01(e — u),y G Ai0(e — u). Then (xy)(e — u)=g(x, y, e — u)x(y—yu) = 0. 
Therefore x;y G A0o(e — u) + Ai0(e — u) = An(u) + A0i(u). Thus 
xy G (Au + Aio) H (An + A0i) Q An. Hence ^10^01 Q An. 

Lemmas 3-5 and the duality relationship between Atj and Ajt yield 

THEOREM 2. The subspaces Atj = A tj(u) enjoy the multiplicative properties 

AijAjcs = 0 ifj j± k, i,j, k, s = 0, 1 

AijAjs ç Aisfor i,j, s = 0, 1. 

4. Classification of the algebras. In what follows we let (Atj, Akt, ATS) 
denote {(aijt akt, ars)\aij G Atj,akt G Akt, aTS G Ars) 

LEMMA 6. Relative to any idempotent u 9^ e, (An, Aijy Ajk) — 0 for any j , k. 

Proof. Let an G Au, a^ G A\j, and ajk G Ajk. From scalar dependency 

[ 0 + an)(e + aXj)}(e + ajk) = a(e + an)[(e + aXj)(e + ajk] 

with a = g(e + #n, e + aijy e + ajk). Therefore we have: 

(5) e + an + aXj + ajk + auaij + auajk + aXuajk + (aiiaij)ajk 

= a(e + an + aij + ajk + anaij + anajk + a^a^ + au(aijajk)). 

Now e = u + (e — u) G An + Aoo- First, if j ^ 0 or k ^ 0 then by Theorem2 
none of the ars appearing in (5) are in Aoo- Therefore, equating the elements of 
Aoo in (5) we have e — u = a(e — u). Since u ^ e it follows that a = 1 so that 
(a\\a\j)ajk = au(aijajk). Next, if j = k = 0 we get 

(e — u) + a00 = a(e — u + a0o) 

or (1 — a)[(e — u) + a0o] = 0. Thus, either a = 1 or a0o = ^ — e. If a: = 1 
then (5) gives (anaij)ajk = aii(aijajk) and we are done. On the other hand if 
a0o = u — e then (anai0)(u — e) = — anaio = an(aio(u — e)). Therefore the 
lemma holds. 

LEMMA 7. Relative to any idempotent u, (Aio, AGj, Ajk) = 0. 

Proof. Let a i0 G -4io, #o; G 4̂ô , and a^ G Ajk. As in the previous lemma we 
get 

(6) e + aio + aoj + ajk + a-ioaoj + ai0ajk + a0jajk + (ai0a0j)ajk 

= a(e + aio + doj + ajk + aioa0j + ai0ajk + a0jajk + aio(a0jajk)) 

with a = g(e + aio, e + a0;-, e + ajk). If k 9^ 0 then as in the previous lemma 
we obtain e — u — a(e — u) by equating the elements of A00 in (6).Therefore 
a = 1 and (aioaoj)aj]c = ai0(aojajk). lij = k = 0 we equate the elements of (6) 
which are in An to obtain u = au so that a = 1 and (aioaoj)ajk = aio(aojajk). 
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Finally, if a0j = a0i G A0i and ajk = &i0 G -4io we consider 

[ 0 + aio)aoi](e + &10) = P(e + aio)[aoi(e + 610)] 

with p = g(e + aio, a0i, e + 610) to get: 

(7) a0i + a01b10 + a10a0i + (a10a0i)b10 

= P(a0i + a0ib10 + a10a0i + ai0(aoi&io)) 

If aoi = 0 the lemma follows trivially. Otherwise equate the elements of (7) 
which are in A01 to get a0i = Pa0i. Therefore P = 1 and (ai0aoi)frio = 
^io(ûoi&io). Thus the lemma holds in all cases. 

Lemmas 6 and 7 together with Theorem 2 state that an associator whose 
first component is either in An or in Ai0 is zero. By duality the same result 
holds for associators whose first component is in A 00 or in A 01. We have proven 

THEOREM 3. If A has an idempotent u 7^ e then A is associative. 

If e is the only idempotent of A we are not able to prove that A is associative 
in general. However, the following theorem can be applied. Since A is power-
associative it has a nil radical. By semisimple we shall mean semisimple with 
respect to the nil radical. 

THEOREM 4. If A is finite dimensional and semisimple then A is associative. 

Proof. HA has an idempotent u 5̂  e then Theorem 3 applies. Therefore 
assume that e is the only idempotent of A. By a well known argument of 
Albert [2], A = Fe + N where N is the set of nilpotent elements of A. By 
Albert [2] and Oehmke [5], N is a subspace of A. Let x, y be elements of iVand 
assume that xy (? N. Then xy = ae + n with a 9e 0 and n in N. Therefore xy 
has an inverse (xy)"1 in A. Since y is in N there is a positive integer k such that 
yk-i -£ Q k u t yk _ Q By s c a l a r dependency 3/*-1 = [(xy)~x(xy)]yk~l = 
P(xy)~1[(xy)yk~1] = Py (xy)~l[xylc'] = 0 where P = ^((xjO-1, xy, y*-1) and 
y = g(x, y, y* -1). But this contradicts yk~l ^ 0. Therefore xy £ N and iV is a 
subalgebra of A. Hence N is a nil ideal of ^4. By semisimplicity it follows that 
N = 0, and 4̂ = Fe. Hence A is associative. 

Example. The following example illustrates that not every power-associative 
scalar dependent algebra is associaive. Let A be the 8-dimensional algebra 
over F of characteristic ^ 2 with basis a, b, c, d, e, f, g, h with multiplication 
given by ab = c, cd = e, bd = f, af = 2e, db = g, ga = —e,ba — h, dh = —2e 
and all other products equal to zero. Then 

[(A1a + BJ> + ... + H1h)(A2a + ...+ H2h)](A,a + . . . + HJi) 

= (A1B2DZ - DlB2Az)e 

(here capital letters denote scalars). On the other hand 

(Aia+... + HJi)[(A& + . . . + H2h) (A,a + . . . + HJi)] 

= 2(A1B2DS - D1B2Az)e. 
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Thus if we let g(x, y,z) = \ for all x, y, z in A then A is a scalar dependent 
algebra which is not associative. Notice that if A\ = A3 and D\ = Dz then 
both products are zero. In particular x2x = xx2 for all x in A. Since products of 
more than three elements are all zero, A is power associative. 
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