Journal of Functional Programming 1 (2): 235-43, April 1991

FUNCTIONAL PEARLS

On removing duplicates

RICHARD S. BIRD
Programming Research Group, Oxford University, UK

1 Introduction

The function remdup (also called mkset in some functional languages) removes
duplicates from a given list. The following definition of remdup is standard and leads
to a quadratic time algorithm

remdup] =l
remdup ([a] # x) = [a] + remdup (x —[a]).

The operator (—) used in the last expression subtracts one list from another; its
definition is

x—y=lala<x;a¢y]
Defined in this way remdup x returns the list of distinct elements of x in the order in
which they first appear in x. In other words, the position of remdup x as a subsequence
of x is lexically the smallest among all possible solutions.

Now let us change the problem and ask that remdup simply return the lexically least
solution. Note the subtle difference between this version and the previous one: before,
it was the position of the subsequence that was lexically the least, now it is the
subsequence itself. To make the distinction clear, consider x = [1, 4,2, 4, 3]. With the
original definition remdup x returns[1, 4, 2, 3]; the lexically least subsequence, however,
is [1,2,4,3].

The question we are interested in is this: can we also find a quadratic time
algorithm for the new problem? The answer turns out to be yes, but justifying it
requires a bit of work.

2 Specification
Formally, remdup x is the lexically least sequence y satisfying the following properties

1. y is a subsequence of x; in symbols, y € subs x.

2. y contains all the elements of x; in symbols, set y = set x, where set z is the set
of elements in the list z.

3. y does not contain duplicates.

To express these conditions in a form suitable for manipulation, let us define the

predicate ok by ok xy = (set x = sety) Anodup y,

https://doi.org/10.1017/50956796800020074 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020074

236 Richard S. Bird

where nodup y is the condition that y does not contain duplicates. Also, let 1 denote
the operation that selects the lexically smaller of its two arguments. Then we have

remdup x = I /ok x < subs x,)
where N/ distributes N over the elements in a list
N /[%1 Xgs oees X] = Xy M Xg .. N Xy,

and p<a x is an abbreviation for filter px. Thus (1) reads: the lexically smallest
subsequence of x satisfying the predicate ok x.

The above notations for reduce and filter, together with the abbreviation f* x for
map fx, are introduced elsewhere (Bird, 1987, 1989). They satisfy a number of useful
algebraic laws, and are the basic components of a calculus for deriving programs. It
would take up too much space to discuss all the laws here, and the reader is referred
to the cited references for full details. We shall try and get away with just using the
ones we need, appending a brief explanation when necessary.

3 First derivation

The specification of remdup given in (1) is incomplete because definitions of the
functions set, nodup, subs, and N are missing. These functions can reasonably be
defined in a number of ways, and the best method depends in part on the kind of
result we are looking for. For our first derivation we shall head for a standard
decomposition of the form

remdup[] =..
remdup ([a] # x) = ...,

so a similar style of definition is appropriate for the missing functions

subs(] ={[I}

subs ([al #x) = subsx U ([a] +)*subs x
set[] ={}

set(lal H+x) ={a}Userx

nodup|] = True

nodup ([a] H x) = nodup x A a¢ x.

In order to define the lexicographic ordering (which we denote by <), it is convenient
to introduce first the partial order = defined by

xcy=(Fk:takekx = takeky A x.k < y.k), 2)
where x.k denotes the kth element of x (counting from 0). Then we have
x<y=Xx€initsyvVxcy,

where inits y denotes the set of initial segments of y. The operator 1 is now defined
to return the smaller under < of its arguments.

https://doi.org/10.1017/50956796800020074 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020074

On removing duplicates 237
An important property of the lexicographic ordering is that
y<z=>x#y<x+Hz

for all x, y and z. In fact, this is the only property of < we use in the first derivation.
It is equivalent to the assertion that + distributes forward through n

xHNN(xH2)=x+H#(ynN2). 3)
The same law can also be phrased as a property of M/
N/(x+H)xxs = x+H N /xs,

for all x and set of sequences xs, provided xs is not empty. (The restriction that xs be
non-empty can be lifted provided we introduce a fictitious identity element ® = 1 /{}
of N, and make o the zero element of +.)

Although x < y does not imply x+z < y Hz, we do have

xcy=>x+4z <yHz,

for all z,, z,, and this is why the subordinate partial order = is useful in its own right.
Now for the derivation. It is carried out in some detail to show the kind of
manipulations that arise in our functional calculus. There are two cases to consider,

the first being dup []
remduy

(M}
N Jok[] < subs[]
= {given characterisation of subs}
n/ok[]< {1
{claim: ok [][] = True}
n/A
= {one-point rule: @ /{a} = a}
(1.

Hence, we have our first equation

remdup[] =[]

For the second case we argue

remdup ([a] H x)
{1}

N /ok ([a] # x) <1 subs ([a] H x)
{characterisation of subs}

1 /ok ([a] # x) <1 (subs x U ([a] +) * subs x)

= {< distributes over U}

N /(ok ({a] H x) < subs x U ok ([a] H x) < ([a] H-) * subs x)
{promoting M/ over U}

(N /ok ([a]l H# x) <a subs x) N (N /ok ([a) H# x) <a ([a] +) * subs x)

https://doi.org/10.1017/50956796800020074 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020074

238 Richard S. Bird

The two terms in the last expression are now simplified separately. We need the
following facts about the predicate ok; provided yesubsx we have

ok ([a] Hx)y = (aex—~>okxy, False), 4
and
ok ([a] +# x) ([d] +) = (aex—ok(x—[a])y Aa¢y, okxy). (%)

Here use is made of the McCarthy conditional form (p — a, b). Proofs of (4) and (5)
are straightforward given the definitions of set and nodup, and are omitted.

N
OW we argue n / ok ([a] H x) <a subs x

{3
Nn/(aex—okx<asubsx, {})
= {conditionals}

(aex— N /okx<asubsx, 1N /{})
= {(1) and introducing ® = N /{}}
(aex— remdup x,).

The step labelled ‘conditionals’ above refers to the law

flp—a,b) = (p~fa.fb),

which is valid provided p is a total predicate.
The second term is simplified as follows

N /ok ([a] # x) < ([a] +) * subs x
= {law:p<afsxs=f*(p.f)<2xs}
N /([a] +) * (ok ([a] + x) . ([a] +)) <0 subs x
{(5) and law: (pAg)<at xs = p<t g<a x5}
N /([a]#) *(ae x> ok (x—[a]) < (a¢) <t subs x, ok x <1 subsx)
{claim: see below}
N /([a]) * (ae x> ok (x—[a]) <t subs (x—[a]), ok x <1 subs x)

Il

= {3}

[al # N /(aex— ok (x—[a]) <t subs (x—[a]), ok x<a subsx)
= {conditionals}

(aex—[a]+ N /ok (x—[a]) < subs (x—[al), [a] # N /ok x <a subs x)
= {()}

(aex—[a] H#remdup (x—[a]), [a]+ remdup x).
The claim referred to in this calculation is the identity
(a¢) < subs x = subs (x—[a]),
The equation is an instance of a more general law

allp<a-subs = subs p<, ©)
in which
allp= N/ px.
Thus, all p x is the condition that every element of x satisfies the predicate p. The claim
is a special case of (6), since (a ¢) = all(a) and x—[a] = (a +) < x.

https://doi.org/10.1017/50956796800020074 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020074

On removing duplicates 239

Putting the two pieces of the derivation together, we have derived the following
program for remdup

remdup(] =[]
remdup x N [a] # remdup (x—[a]), if aex

remdup ([a] + x) = { [a] + remdup x, otherwise. M
Though it appears somewhat long, the above derivation can fairly be called routine.
Most of the laws used are standard, and much of the derivation is mechanical. The
only non-obvious part perhaps resides in the two equations (4) and (5) for ok.
However, it is here that the problem-specific information really enters the picture, so
it is not surprising that some work has to be done to see what is required.

It appears quite difficult to analyse the running time of (7). The reason is that
evaluation of x N y does not require complete evaluation of both x and y unless x = y.
It can be shown, however, that algorithm (7) takes exponential time in the worst
case. Nevertheless, our work has not been wasted, since (7) is used as the starting
point for a second derivation, one that achieves the goal of a quadratic time
algorithm.

4 Second derivation

In order to reach our goal, let us take a closer look at the computation of (7). Suppose
that a, be x with a < b. Unfolding the computation of remdup ([a, b] + x), we obtain

remdup ([a, b] + x) = remdup x
N [b] H remdup (x —[b])
N [a] H remdup (x —[a])
N [a, b] # remdup (x —[a, b)).

Since a < b, the second term is lexically larger than the third and can be omitted.
Thus, we can write the above expression as follows

remdup ([a, b] + x) = [] H remdup (x—[])
N [a] + remdup (x —[a])
N [a, b) + remdup (x —[a, b]).

The form of this expression suggests an appropriate generalization: for a strictly
increasing sequence w such that set w < set x, define

fwx = N/gxx*initsw, (®)
where
gxy=yHremdup(x—y).)

This is a large generalization to take in at one go, but the way it is discovered is
standard practice: symbolically unfold the computation to see what subcomputations
are required and how they can be combined. That f is a generalization of remdup
follows from

https://doi.org/10.1017/50956796800020074 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020074

240 Richard S. Bird

remdup x
= {9
gx[]
= {definition of /on singletons}
n/lgx(l
= {definition of the map operator *}
n/gx=([l
= {definition of inits [] and (8)}
fllx.

Having found our generalization, we now need to develop an efficient algorithm for
f. Again, we head for a standard recursion of the form

fwll =..
fw(al Hx)=....

The first step, namely to derive fw[] = [], is straightforward and details are omitted.
For the second step we have by instantiation in (8) that

fw(al#x) = N /g(a] + x) * inits w.

To simplify this expression we need to consider the value of g ([a] + x) y. After some
routine manipulations using (9) and (7) we obtain

‘ gxy if aey
glal+Hx)y=1gxyngx(y+I[a]), if a¢yraex (10)
gx(y+[a), if aé¢ynaéx.

Since g ([a] # x) y is required only for y € inits w, and the above expression divides into
cases depending on whether aey, we are led to consider those initial segments of w
which might contain a and those that do not. Suppose we split w into two parts
w = u+v, where
(u, v) = (takewhile (< a) w, dropwhile (< a) w).
Note that if aew, then a will be the last element of u, since w is assumed to be a
sequence of values in strictly increasing order.
Next we use the fact that

inits (u -+ v) = inits"u+ (u +) * inits v,

where inits~u is the list of initial segments of u excluding u itself, to rewrite fw ([a] + x)
as the minimum of two terms

fw(lal+x) = N /g([a] # x) * inits~u N
N /g ([a] H x) * (u+) * inits v. (11)

The remainder of the derivation is devoted to simplifying (11). To start with, consider
the first term on the right of (11). Since if @ appears at all in u, it appears only as the
last element of u, we have that no sequence in inits™u contains a. Hence, using (10)
and simplifying, we have

N /g ([a) # x) * inits"u = {tl ne, if aex

12, if aé¢x,

https://doi.org/10.1017/50956796800020074 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020074

On removing duplicates 241

where
tl = N /gx*initsu
12 = N /gxx* (4 [a]) * inits~u.

A similar simplification yields

13, if aeu
N /g ([a]l+x)* (u+)*initsv=113Nt4, if ad¢uAaex
t4, if adunaéx,

where
13 = N /gxx*(u+t)*initsv
t4 = N /gx*(H[a]) * (u)*inits v.

Putting these results together, we have

tInea2ni3, if aewAaex

_j2ns, if aewAaé¢x
fw(lal+x) = tine2n3nd, if a¢whAaex (12)

2N, if a¢wAaé¢x.

To simplify the right-hand side of (12) we need the following properties of g (the
proofs are left to the reader)

yEz=>gxy<gxz (13)
gx(utvy=uHgx—u)v. (14)

Implications (13) refers to the partial order = defined by (2). For ease of reference,
here are the relevant terms ¢1, ..., ¢4 again

tl = N /gxx*initsu

12 = N /gx*(+[a])*initsu

3= N/gx*u+)=initsv

t4 = N /gx*(H[a]) * (uH) * inits v.

To begin with, suppose 2 = gx(u’ +[a]), for some proper prefix ' of u. Thus
u = u’ #[b] +u”, where b < a by definition of u. Hence, u = u’ +-[a], and so by (13)
we have

gxu < gx(u +[a)).

But, by definition of ¢3 we have 3 < gxu, and so it follows that
R’2ne3=13.

Equation (12) can therefore be simplified to read

t1n1e3, if aewAaex
_)3, if aewnAaé¢x 15
IwEAHN =\ nanm, if aéwhaex ()
121 t4, if ag¢whaéx.

https://doi.org/10.1017/50956796800020074 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020074

242 Richard S. Bird

Now we simplify each term. First

t1ne
{definition of ¢1 and 3}
N/gx*inits ull 1 /g x*(u-+)* inits v
{decomposition of inits}

N /g x inits (u +v)
= {(8) and w = u+v}
fwx.

Second
13
= {definition of 3}

N/gx#*u+)*initsv

{distributive law;: f*.g* = (f.g) *, and (14)}
N /(u+)*g(x—y)*initsv

{3
uH N/g(x—u)=initsv
= {8}

uHfv(x—u).

To simplify the third term ¢1 N #3 N ¢4 of (15), observe that the first element of v, if it
exists, is greater than a. Hence

utlal=utv,
for any non-empty initial segment v’ of v. Using (13) it follows that

13N14 =gxungx(ua).
Thus
tin3nie
= {above}
tlngxungx(u+[a])
= {definition of ¢1 and inits}
N /g x * inits (u -+ [a])
{@®)}
S(u+[a]) x.

To simplify the final term 2N 14, assume a¢w Aa¢x, so last u < a. It follows that
u+[a) = v’ +[a] for any proper prefix ¥’ of u, and so

1210 14,
= {above and (13)}

gx (u+[a])
= {(9) and a¢x}

uH [a] # remdup (x —u)
= {@®)}

u+t[a] 4] (x—u).

https://doi.org/10.1017/50956796800020074 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020074

On removing duplicates 243

5 The result

Putting the above pieces together, we have that remdup = f[], where

Sfwll =[]
Sfwx, if aexAaew
uHfv(x—u), if a¢xnaew
fw(alHx) =1 f(u+I[a)) x, if aexAaé¢w

utlalHf[1(x—u), if aéxAaé¢w
where (u,v) = splitaw,

and
splitaw = (takewhile (< a) w, dropwhile (< a) w).

This program takes O(n®) steps for a sequence of length n. If we ignore the time spent
evaluating x—u, then O(n) steps are performed at each iteration since # w < n. This
gives O(n?) steps. However, the total time required for evaluating expressions of the
form x—u is also O(n®) steps, since the sum of the lengths of the us for which this
operation is performed is, at most, n. Hence, the total running time is O(n®) steps.
Well, it was a lot of work to achieve the above result. Is there a simpler solution?

References

Bird, R. S., 1987. An introduction to the theory of lists. In: M. Broy (editor), Logic of
Programming and Calculi of Discrete Design, NATO Series F, vol 36. Springer-Verlag.
Bird, R. S., 1989. Lectures on constructive functional programming. In: M. Broy (editor),
Constructive Methods in Computing Science, NATO Series F, vol 52. Springer-Verlag.

https://doi.org/10.1017/50956796800020074 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020074

