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DIRECT FINITENESS OF CERTAIN MONOID ALGEBRAS II

by W. D. MUNN
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Let S be a nontrivial monoid with zero and let F be a field. A sufficient condition, on the O-simple principal
factors of S and the characteristic of F, is given for the contracted monoid algebra of S over F to be directly
finite.

1991 Mathematics subject classification: 16S36, 2OM25.

A ring R with unity 1 is said to be directly finite (or von Neumann finite) if and only
if, for all a,beR,ab=l implies ba=\. It is shown here that the contracted monoid
algebra F0[S] of a monoid S = S° over a field F of characteristic zero is directly finite if
every O-simple principal factor of S is completely O-simple with either finitely many left
ideals or finitely many right ideals. A similar result holds if we replace the requirement
that F has characteristic zero by the restriction that each subgroup of S be abelian.

1. Preliminary remarks

We denote the ring [algebra] of all nxn matrices over a ring [algebra] R by Mn(R)
(neN). Otherwise the notation is that of [1], where all the key semigroup concepts are
introduced.

Let S be a semigroup. As in [1], we write 'S = S0' to indicate that S has a zero and at
least one other element. The semigroup algebra of S over a field F is denoted by F[S]
and, in the case where S = S°, the contracted semigroup algebra of S over F is denoted
by F0[S] (see [1, §5.2]). Clearly, every semigroup algebra can be regarded as a
contracted semigroup algebra (simply adjoin a zero to the semigroup!); but the converse
is false—for example, M2(F) is a contracted semigroup algebra that cannot be expressed
as a semigroup algebra over F. In the case where S = S° is a monoid (a semigroup with
identity) we call F0[S] the contracted monoid algebra of S over F.

It is shown in [1, Lemma 2.39] that each nonzero principal factor of a semigroup
S = S° is either null or O-simple. The proposition below gives a necessary condition for
the direct finiteness of a contracted monoid algebra in terms of the principal factors of
the monoid. In the proof we make use of a concept introduced in [4]: a ring R is said
to be quasidirectly finite if and only if, for all a,beR, ab = a + b implies ab = ba. If R has
a unity then quasidirect finiteness and direct finiteness are equivalent properties.
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Proposition. Let S = S° be a monoid and let F be a field. If F0[S] is directly finite
then each 0-simple principal factor of S that contains a nonzero idempotent is completely
0-simple.

Proof. Assume that FQ\S] is directly finite. Let Q be a 0-simple principal factor of S
containing a nonzero idempotent e. Then e is an idempotent in S itself. Now F0[S] IS

quasidirectly finite and so its subring F0[^Se] is quasidirectly finite. Since this subring
has unity e, it is directly finite. Hence if x, y e eSe are such that xy = e then yx = e. Thus
S contains no bicyclic subsemigroup with identity e and therefore the same is true of Q.
Consequently, by [1, Theorem 2.54], Q is completely 0-simple. •

Recall that a semigroup S = S° is termed completely semisimple if and only if each of
its nonzero principal factors is completely 0-simple.

Corollary. Let S = S° be a regular monoid and let F be a field. If F0[S] is directly
finite then S is completely semisimple.

In the proposition above, the necessary condition for direct finiteness involves
0-simple principal factors that contain nonzero idempotents. The following example
shows that it is possible for the contracted algebra of a monoid S = S° to be directly
finite when S has a 0-simple principal factor with no nonzero idempotent.

Example 1. Let/4: = <H eM2(IR):a>0 and b>0} and let S: = A u {O,/}, whereHG
O and / are the zero and unity of M2(IR). Under matrix multiplication S is a monoid. It
can be verified that A is a simple subsemigroup of S ('Andersen's semigroup'; see [1,
§2.1, Exercise 9]). Consequently, A u {0} is a 0-simple principal factor of S and it is
easily seen to contain no nonzero idempotent. On the other hand, A u {/} is a
submonoid of the multiplicative group G of all real 2 x 2 nonsingular matrices. Now, for
a field F of characteristic zero, F[G~\ is directly finite, by Kaplansky's theorem [2; 5,
Corollary 2.1.9]. Hence F\_A u {/}] is directly finite; that is, F0[S] is directly finite.

2. A sufficient condition for direct finiteness

We begin with a definition.

Definition. Let F be a field and let A be an F-algebra. By a countably infinite family
of matrix units in A we mean a family (ey) of nonzero elements of A, indexed by the set
N x N , such that etieu — djkeu for all choices of i,j, k, I.

The two lemmas below concern the nonexistence of such families in certain matrix
algebras.
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Lemma 1. Let F be a field of characteristic zero, let G be a group and let neN. Then
the F-algebra Mn(F[G]) contains no countably infinite family of matrix units.

Proof. Suppose that such a family (ey) does exist in Mn(F[GJ). Let K denote the
subfield of F generated by the coefficients of the entries of the e{j (i, j e M). Then K is
countable. Hence K can be embedded in C and so we can regard (cl7) as a countably
infinite family of matrix units in the C-algebra Mn(C[G]). By Kaplansky's trace theorem
for matrix algebras over a complex group ring ([2]; see also [3] and [5]), there exists a
linear functional tr:Mn(C[G])-»C such that

(1) (V

(2) (Ve = e2eAfn(C[G])\(O}) tr(e) is real and

For all ieN, tr(e11.) = tr(c11e11) = tr(ei1e1.1) = tr(c11), by (1). Write «: = tr(eu). By (2), a is
real and 0 < a ^ n . Choose keM such that kix>n and take / : = e 1 1 + e 2 2 + ... +ekk. Then
/ = / 2 # 0 in Afn(C[G]) and t r ( / ) = Zj= j tr(e,,) = k<x > n, contradicting (2). Thus no such
family (ei}) exists. •

Lemma 2. Let F be an arbitrary field, let A be a commutative F-algebra and let neN.
Then the F-algebra Mn(A) contains no countably infinite family of matrix units.

Proof. For each reN, let fT be the polynomial over F in the noncommuting
indeterminates xl,x2,...,xr defined by

<reSr

where Sr denotes the symmetric group on {1,2,...,r} and, for aeSr, sgntr is +1 or — 1
according as a is even or odd. Clearly Mn(A) = A ®F Mn(F). From the theorem of
Amitsur and Levitski [5, Theorem 5.1.9] f2n{bub2,...,bln) = 0 for all choices of
b1,b2,...,b2n in Mn(F). Hence, since A is commutative and f2n is homogeneous and
multilinear,

fln{aua2,...,a2n) = 0 (1)

for all choices of al,a2,...,a2n in Mn(A).
Now suppose that Mn(A) contains a countably infinite family (ey) of matrix units.

Then, in particular, from (1) we have that

0 = /2n(«12» «23. • • •» e2n2n+ l) = « i 2 n + 1-

But this is false, since each ey is nonzero. The result follows. •

From Lemmas 1 and 2 we derive
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Lemma 3. Let F be a field and let S be a completely O-simple semigroup with finitely
many left ideals or finitely many right ideals. If either (a) F has characteristic zero or (b)
every subgroup of S is abelian then F0[S] contains no countably infinite family of matrix
units.

Proof. Since S is completely 0-simple, it is isomorphic to a regular Rees matrix
semigroup J(°{G;I,h;P) [1, Theorem 3.5]. Here G is a nonzero maximal subgroup of S,
/ and A are nonempty sets, respectively indexing the 0-minimal right ideals and the 0-
minimal left ideals of S, and P is a A x / matrix over G° with at least one nonzero entry
in each row and column. Following the argument in [1, Lemma 5.17], we may assume
that the algebra F0[S] consists of all / xA matrices over F[G~] with at most finitely
many nonzero entries. Addition and scalar multiplication in F0[S] are just the usual
matrix operations, while multiplication o is given in terms of ordinary matrix
multiplication by

XoY=XPY (X,YeFolSJ).

Assume, without loss of generality, that S has finitely many right ideals. This is
equivalent to the assumption that / is finite. Write n: = |/|. Now suppose that F0[S]
contains a countably infinite family of matrix units (£y). Thus EijPEkl = 5jkEu and so
(EijP)(EklP) = 5jk(EilP) for all i,j,k,leN. For all i,jeN write ey: = £yP. Then e y / 0 ; for
otherwise we would have that £ y = ey£j7=0, which is false. Hence (ey) is a countably
infinite family of matrix units in Mn(F[G]). But if F has characteristic zero this
contradicts Lemma 1, while if G is abelian it contradicts Lemma 2. •

We now come to the main result.

Theorem. Let F be a field and let S = S° be a monoid in which each 0-simple principal
factor of S is completely 0-simple with finitely many left ideals or finitely many right
ideals. If either (a) F has characteristic zero or (b) every subgroup of S is abelian then
F0[S] is directly finite.

Proof. Suppose that there exist a,beF0[S] such that ab=\ and b a / 1 , where 1 is
the identity of S. Write e:=\-ba. Then e = e2^0. Clearly

ae = 0 = eb. (1)

Now define a family (/y) of elements of F0[S], with index set fol x N, by writing

Since ab=l, we have that

(VUelM) a'fijbJ = e (2)
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and so each / j , is nonzero. Also, for all i,j,k,leN, fijfkl=b'ebk~Jea', b'ea1 or b'eaJ~kea'
according as j<k, j = k or j>k; hence, from (1),

(Vi,j,k,leN) fi}fkl = djkfu. (3)

Let S* denote the set of nonzero elements of S. For aeF0[S] we have that
a=Y,x*sMxx for some elements <xxeF and we write suppa: = {xeS*:a;c#O}. If a^O this
is a nonempty finite subset of S*. Now choose J to be maximal (under the usual partial
ordering [1, §2.1]) in the finite collection of ./-classes of S that have nonempty
intersection with suppc. Let M denote the union of all ,/-classes J' of S such that J' ^.J.
It is easy to verify that M is an ideal of S. Next, let 6:F0[S]-*F0[S/M] denote the
homomorphism that extends, by linearity, the natural homomorphism from S to the
Rees quotient S/M. For all i,jeN, write. ey:=/y0. We show that (ey) is a countably
infinite family of matrix units in F0[[J u Af)/M].

Let i,j,eN. Since fij=b'eaJ
> it follows that for each xesupp/y there exists yesuppe

such that Jx^Jy. Thus either JX = J or JX^M. Hence s u p p / y £ J u M (an ideal of S)
and so e y eF 0 [ (Ju M)/M]. Also, from (2), (a'9)eij(b

i6) = e0, which is nonzero by the
choice of J, and so ey#0. Further, from (3),

(Vi,j,k,leN) eijeu = 5jkeu. (4)

Now (J u M)/M is isomorphic to the principal factor of S corresponding to J;
furthermore, from (4), this principal factor cannot be null. Hence, by hypothesis,
(J u M)/M is completely 0-simple, with either finitely many left ideals or finitely many
right ideals. But (4) shows that F0[(7 u M)/M] contains a countably infinite family of
matrix units—which, by Lemma 3, is impossible if either (a) F has characteristic zero or
(b) every subgroup of S is abelian. Thus if either (a) or (b) holds then F0[S] is directly
finite. •

Corollary. Let F be a field and let S = S° be a regular monoid in which each #-class
contains finitely many idempotents. If either (a) F has characteristic zero or (b) every
subgroup of S is abelian then F0[S] is directly finite.

Note that a nonzero ./-class of a regular monoid S = S° contains finitely many
idempotents if and only if the corresponding principal factor is completely 0-simple with
finitely many left ideals and finitely many right ideals. In fact, the corollary remains
valid if we replace '^/-class' in the statement by '<0-class', since the hypothesis still
ensures that S is completely semisimple and so / = 2) on S.

From the corollary we deduce, in particular, that the algebra of a free inverse monoid
over an arbitrary field is directly finite; for, by [6, Lemma 1.3], each such monoid has
trivial subgroups and finite ^-classes. A more direct proof of this result may be outlined
as follows. Let F be a field, let S be a free inverse monoid and let Q be a principal
factor of S. Then F0[Q]^Mn(F), where n is the number of nonzero idempotents in Q;
and, since F0[Q] has a unity, there is a surjective homomorphism from F[S] to F0[Q].
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We observe next that F[S] is isomorphic to a subdirect product of the family of all such
algebras F0[Q]. It follows easily that, since each F0[Q] is directly finite, so also is F[S~].

Finally, we remark that, for a monoid S = S° and a field F, F0[S] is directly finite if
and only if F0[T~\ is directly finite for every finitely generated submonoid T of S. We
conclude with an example of a finitely generated completely semisimple monoid S = S°
(see §1) that has a principal factor with infinitely many left and right ideals and whose
algebra over an arbitrary field is directly finite.

Example 2. Let G be an infinite cyclic group with generator a and let
= G u ( Z x Z ) u {0}, with multiplication extending that in G and satisfying the

a"(i, j) = (i + n, j), (i, j)a" = (i, j - n),

<UKM>-{(i
0" J £ * UU»H
0a" = a"0 = 0(i,;) = (i, j)0 = 02 = 0.

It is readily verified that S( = S°) is an inverse monoid, with nonzero /-classes G and
Z x Z. Further, since a'(0,0)a~j = {i,j) for all i,jeZ, it follows that S is generated by the
three elements a, a ~i and (0,0). Let M denote the principal factor of S corresponding to
Z x Z. Then M is a completely 0-simple semigroup with infinitely many left and right
ideals.

Now let F be a field. Clearly, F0\S] = F[G]®F0[M]; also F[G~\ is a subring and
F0[M] an ideal of F0[S]. But, by [4, Lemma 4 and subsequent Remark], F0[M] is
quasidirectly finite. Hence, since F[G~] is commutative, it follows from [4, Lemma 1]
that F0[S] is directly finite.
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