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ABSTRACT: While performing design tasks, engineers rely heavily on their knowledge. However, the expanding
knowledge space makes it impractical to perform the design tasks without external inputs. This study explores how AI
can bridge the knowledge space expansion gap in design. The study introduces the AICED framework implemented as
a web tool Pro-Explora, leveraging advanced multi-agent LLM technology to accelerate early-stage design tasks. Pro-
Explora generates professional problem definitions, PDS documents, and unique solution concept images within five
minutes, maintaining creative flow. Its effectiveness was validated in a real-life project, with outputs deemed highly
relevant by experienced designers. The study highlights the AICED framework’s industry implications, addressing
required knowledge. This pioneering study opens new avenues for specific LLM applications in engineering design.
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1. Introduction
Engineering design is vital for identifying and solving problems that benefit society. A design engineer’s
effectiveness in addressing engineering design challenges largely depends on their knowledge. While
design engineers possess core knowledge in design process tasks, including design specification, ideation,
and detail design (Lueptow, 2008), this alone is insufficient for successful engineering design activities
(Lindemann, 2015). Engineering design practice often requires knowledge beyond the design process,
including sustainability, materials, manufacturing, and consumer behaviour (Desai & Mital, 2021;
Pidaparti, 2023). Historically, design engineers could maintain comprehensive knowledge in various areas
necessary for effective design, including manufacturing requirements and sustainability demands.
However, the expansion of the knowledge space (Hatchuel et al., 2011; Kazakci et al., 2010) has created a
gap, making it impractical to perform design process tasks without external inputs. This gap arises because
design engineers can no longer independently map design concepts to the required domain knowledge.
According to the Concept-Knowledge (C-K) theory, creative design emerges when new concepts are
matched with appropriate knowledge (Michaeli et al., 2014). Advancements in computational
technologies have shifted the paradigm from using computers as tools to collaborating with them
(Przegalinska & Triantoro, 2024; Song et al., 2023). This shift necessitates reimagining engineering
design practices to explore new possibilities.
This study explores how design engineers can collaborate with AI to enhance engineering design
practices. The research question is: How can AI technologies bridge the knowledge space expansion gap
in engineering design? Specifically, we examine large language models (LLMs), particularly multi-agent
LLMs. An LLM is a deep learning AI model pre-trained on vast amounts of data to understand and
process natural language (Yao et al., 2024). LLMs’ ability to mimic human cognitive behaviour is
unprecedented, supporting complex activities across various fields. It is suggested that AI technologies
can become even more powerful when they reinforce each other or other technologies (Thomas &
Nicholas, 2018). Many AI systems and tools are available but often segregated and not specifically
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adapted to support engineering design activities. Aggregating these tools to support engineering design
practice specifically is explored in this study, highlighting its novelty and contribution. Trust and privacy
are significant concerns when adopting LLM technology for specific applications (Kibriya et al., 2024;
Mireshghallah et al., 2024). However, this study proposes an approach that minimises privacy risks when
using multi-agent LLMs as collaborators in engineering design.
The following section discusses advances in AI technologies that could support collaborative engineering
design, including multi-agent LLMs and retrieval-augmented generation (RAG). Based on related studies,
we explore the capabilities and applicability of these technologies in engineering design. Section 3
presents a framework of AI collaboration in engineering design (AICED) intended to assist engineers in
making informed design process decisions, reducing design process time, and improving the overall
quality of engineering design solutions. Section 4 delves into the implementation of the AICED
framework. Section 5 discusses the AICED framework, including its industry implications. Finally,
Section 6 provides the study’s conclusion.

2. Literature review

2.1. Technologies for AICED
2.1.1. Multi-agent LLM
LLMs represent a significant advancement in cloud-based AI technology, designed to comprehend human
language and perform tasks with high accuracy and coherence, particularly in generating new data
(Kumar, 2024). These models are trained on extensive datasets that include text, images, audio, codes, and
videos. This training enables them to differentiate between various types of data and generate new,
contextually relevant data with applications in engineering design (Chen et al., 2024; González & Nori,
2024). The Multi-agent LLM is a cutting-edge development in AI systems (Zou et al., 2023). This
technology involves multiple specialised agents, each powered by an LLM, collaborating to solve
complex tasks. An agent is defined as an entity capable of understanding and autonomously processing
information to achieve a common goal (Hauptman et al., 2024; Shu et al., 2024). Multi-agent LLMs are
particularly beneficial in supporting early-stage engineering design, and this process is inherently
challenging and involves iterative processes in defining concept requirements, conceptual design, and
concept evaluation (Mayda & Choi, 2017). Although early-stage design activities are initially low-cost,
they significantly influence the overall cost of design projects (Mirabito & Goucher-Lambert, 2022).
These activities also encompass socioeconomic, environmental, and manufacturing considerations, areas
in which design engineers often have limited expertise. Researchers have noted that LLMs are
underutilised and have proposed employing multi-agent LLMs to support various stages of engineering
design (Chiarello et al., 2024). The potential uses of LLMs for collaborative support are also being
explored in other fields, such as healthcare report generation and legal document drafting, highlighting
their precision and capability (Naveed et al., 2023).

2.1.2. Retrieval-augmented generation (RAG)
RAG is an advanced AI technique that enhances the accuracy of LLMs by integrating external knowledge
sources (Ibrahim et al., 2024). This reduces hallucination effects or the possibility of LLMs producing
incorrect information (Ji et al., 2023). In Figure 1, the RAG model is depicted within a rectangular box
with a dotted line, illustrating that users can provide the necessary external knowledge.

Figure 1. A representation of the RAG model
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The RAG model, Figure 1, indexes or organises the external data by loading it, splitting it into chunks,
embedding it (converting it into vectors), and storing it in a vector database. When a user submits a
prompt, the RAG model’s “Retriever” compares the prompt against the indexed vectors in the database to
retrieve the most relevant documents. These documents augment the prompt, providing context for the
LLM-generated response, and can be examples based on in-house practices. RAG has been explored in
engineering design for guiding LLM outputs (Siddharth & Luo, 2024).

2.2. Existing AI-supported design frameworks
The advancements in AI technology challenge the long-held belief that automating engineering design
activities is difficult (Eisenstein & Puerta, 2000). The capabilities demonstrated by AI technologies are
gradually overcoming their initial resistance and fostering a more receptive attitude towards their
adoption. Researchers have applied AI, particularly pre-trained LLMs, to support engineering design
activities. These models help generate more efficient and cost-effective conceptual ideas compared to
traditional methods, such as crowdsourcing (Ma et al., 2023). Similarly, guiding LLMs with prompt
templates has been explored in generative conceptual design research, resulting in more creative and
reasonable ideas compared with traditional methods (Wang et al., 2023).
Despite these advancements and others (For example, Jiang et al., 2022), a significant gap remains
between the general capabilities of AI technologies and their specific application in improving the design
process workflow to achieve productivity gains in engineering design, as demonstrated in this study.

2.3. The future of human knowledge considering AI
Knowledge is both infinite and immeasurable (Saad & Chakhar, 2010; Wood, 2013). Human knowledge
remains indispensable despite sophisticated advancements in AI technologies, systems, and tools
(Section 2.1). The concept of knowledge space expansion (Section 1) underscores the perpetual
challenge of managing knowledge’s infinite nature, even with computational advancements. For
instance, the development of LLMs has introduced the necessity for prompt engineering - the process of
designing and refining input prompts to elicit optimal responses from LLMs (Marvin et al., 2023). Skills
in prompting LLMs are increasingly recognised as crucial for design engineers (Thoring et al., 2023).
Both novice and professional design engineers who lack expertise in prompt engineering will require
training or simplified approaches to use LLM technology effectively. Foundational knowledge is also
essential to formulate prompts that yield the desired responses from LLMs. One significant challenge in
the early stages of engineering design is formulating the right questions to define and understand a design
problem, establish requirements, and develop satisfactory solutions. Collaborating with LLMs would
require effectively asking these questions to get a better response, particularly when using multi-agent
LLMs. Additionally, early-stage design involves creating precise documentation in specific formats,
which can be particularly challenging for novices. For example, producing a design specification - a
critical document that can inspire creativity - is often difficult for novice engineers and students to
execute accurately. A specialised computational system is necessary to enhance design engineers’
capabilities in tackling challenging engineering design tasks. However, while AI can outperform humans
in specific tasks, it is unlikely to replace human knowledge completely. AI is most effective when used in
conjunction with human expertise and judgment.

3. AICED framework
This section outlines the theoretical framework for AICED, as illustrated in Figure 2. The framework
facilitates effective collaboration between designers and AI during engineering design activities, primarily
focusing on early-stage design (problem definition, design specification, and concept generation) while
also considering later stages. The engineering design process necessitates a continuous flow of thought
across stages. When in a state of creative flow, design engineers experience total immersion and focus on
the task at hand, enhancing their creativity and problem-solving abilities (Doyle, 2017). Maintaining this
flow is crucial, particularly during early-stage activities up to the “Concept Generation” phase depicted in
Figure 2. Interruptions in flow can adversely affect performance in predominantly conceptual design tasks.
The scientific basis for uninterrupted flow in cognitive activities has been extensively studied (Vervaeke
et al., 2018). This research indicates that flow spontaneously occurs when there is a proper balance of
knowledge, skill, and challenge.
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Figure 2 illustrates the collaboration of the design engineer or team (human-in-the-loop) with AI systems
at each stage of the design process. AI systems can potentially serve as tools and collaborators in
engineering design. The AICED framework provides an integrated AI approach to maintaining creative
flow in design activities, allowing design engineers to maximise their cognitive abilities. This flow can be
disrupted when the required knowledge, skills, and tools are not immediately available or do not align with
the design problem. The AICED framework begins with an identified design problem and provides a
structured guide for solving any engineering design problem.
As illustrated in Figure 2, the design engineer or team collaborating with the AICED framework has two
options at each stage of the design process. Option A involves performing the task themselves, including
modifying, correcting, or rejecting the AI output. Option B allows the delegation of the task to AI agents,
with the design engineer responsible for validating and taking ownership of the AI-generated output.
Consequently, the AI outputs remain reversible, as indicated by the bidirectional arrows in Figure 2,
which also signify the communication between the design engineer or team and the process. At each
stage, the AICED framework activates relevant LLM agents, prompts, and backend examples to guide its
outputs, ensuring they are specific to the process or task.

3.1. The AICED LLM agents
The AICED framework incorporates four LLM agents, each with specific settings to accomplish
process-specific tasks. These agents are the “design engineer”, “manufacturer”, “sales engineer”, and
“writer”. The “design engineer” agent provides the problem context, design constraints, and functional
requirements. The “manufacturer” agent offers advice on manufacturing and sustainability. The “sales
engineer” agent identifies users and stakeholders. The “writer” agent arranges the data in the required
format. Each agent’s task background is detailed in the backstory setting, including the external
reference documents utilised. The LLM agent’s temperature setting, which ranges from 0 to 1, controls
the randomness of its output. Higher temperatures increase the variability and creativity of the
responses. Consequently, the agents’ temperatures are set higher (0.5 - 0.7) to produce rare and
insightful responses. These four agents simulate a collaborative problem-solving environment,
combining diverse expertise and knowledge areas.
The AICED framework shown in Figure 2 simulates the RAG concept in Figure 1 in that external
knowledge augments the multi-agent LLM. A few external examples (few-shot prompting) were used
with the multi-agent LLMs to achieve a satisfactory result (Schulhoff et al., 2024). For this purpose, the
RAG model alternative (dotted lines in Figure 2) would require more examples. A pilot consultation
with design professionals was conducted to determine the knowledge used as examples to augment the
multi-agent LLMs, as shown in Figure 2, ensuring appropriate responses. The examples are provided in
a comma-separated-value (CSV) file, encrypted with Fernet - a class of Python cryptography module
(Raj et al., 2023). The encryption ensures that the external reference data, which could be confidential,
cannot be read without the key. Section 4 provides further discussion on data privacy. The key design
process activities supported with the AICED, as indicated in Figure 2, are discussed next. These
activities are performed with consideration to manufacturing and sustainability issues.

3.2. Problem definition
The design process begins with defining or understanding the problem, a crucial yet challenging aspect
of a design engineer’s role (Newcamp, 2016; Singer et al., 2024). It sets the direction for the subsequent
market research and steers the ideation process towards viable solutions. An engineering design
problem can be defined from multiple perspectives, with four key perspectives identified: 1) customer

Figure 2. Theoretical AICED framework
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and stakeholder needs, 2) functional requirements, 3) design constraints, and 4) problem context (Liu,
2021). These perspectives were integral in developing a multi-agent LLM for the AICED framework.

3.3. Product design specification (PDS)
Following the problem definition, the next task involves preparing a PDS to guide the concept generation
for a potential solution (Mat et al., 2020). Effectively structuring a design problem within the PDS is
challenging but essential for fostering creativity and innovative solutions (Göhlich et al., 2021). The
design engineer LLM agent creates the PDS elements and their requirements for the AICED framework
shown in Figure 2, while the writer agent compiles and presents the data in CSV format. The design
engineer agent’s backstory included examples from the 32 PDS elements proposed by Pugh (1991).

3.4. Ideation
Ideation involves the conceptual activity of generating ideas to solve a given problem. This brainstorming
process is most effective when guided by constraints, such as those outlined in a PDS. The ideation process
typically includes multiple iterations, with creative visual images crucial in inspiring novel concepts (Han
et al., 2018; Ma et al., 2022). GPT-4, the LLM that powers DALL-E 3, was utilised to generate conceptual
imagery for the AICED model depicted in Figure 2. An engineering design problem was directly input to
prompt the model to ‘conceptualise’ ideas. For each design problem, two alternative image concepts were
generated: Solution Concept A and Solution Concept B (Figure 4).
This section introduces the AICED framework, which employs an external knowledge-augmented multi-
agent LLM approach to support the engineering design process. The framework integrates various stages
of the design process, maintaining creative flow and minimising delays associated with iterative cycles. It
applies to professional engineering tasks such as problem definition, concept generation, and creating
professional documentation like a PDS. The subsequent section will discuss the implementation of the
AICED framework.

4. Implementing the AICED framework
The AICED framework is implemented as a computational web tool, Pro-Explora, accessible through the
graphical user interface (GUI). An interface of Pro-Explora is shown in Figure 3; users can log in to the
tool at https://www.explorefoss.com. Pro-Explora is a simple yet supportive comprehensive tool for
AICED. It enables design engineers to seamlessly generate new engineering design problems, explore
imagery solution concepts, define problems, and create a PDS to guide further concept development.
This study does not cover the aspects of the tool that generate new engineering design problems. Due to
the concurrent and iterative nature of the early-stage design process, activities do not necessarily follow
sequential order (Obieke et al., 2020). Consequently, in Pro-Explora, the generation of image concepts
precedes problem definition and the creation of the PDS.

Figure 3 shows the Pro-Explora interface with a logged-in user, “Engineer,” who submitted a design
problem titled “The design of a one-hand-operated shovel,” an undergraduate final-year project. The user
can “Save the entered idea” to their Pro-Explora inbox or “Explore solution concepts.” Figure 4 shows a
Pro-Explora-generated concept for the design problem, allowing the user to generate alternative solution
concepts, define the problem, or create a PDS. Additionally, the user can return to the computational

Figure 3. Pro-explora interface for AICED
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problem-exploring interface, although this aspect is not covered in the current study. Figure 5 shows the
generated documents for the problem definition and PDS, which two experienced design engineers
vetted as highly relevant to guide the innovative design of the shovel.

5. Discussion

5.1. Addressing the research question
The AICED framework effectively addressed the research question posed in Section 1: “How can AI
technologies bridge the knowledge space expansion gap in engineering design?” This frameworkminimises
the knowledge gap that hinders early-stage engineering design activities. The limitation of design engineers

Figure 4. A generated concept of a design problem

Figure 5. Problem definition (A) and PDS (B) for shovel design
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due to knowledge space expansion became evident as an over-the-wall problem when solo engineering
design practice began yielding unsuccessful results (Ullman, 2010). Concurrent engineering design practice
emerged, incorporating inputs from technical and non-technical stakeholders and becoming essential to the
design process. Despite the widespread adoption of concurrent engineering design, engineers still perform
design tasks individually and make decisions constrained by knowledge space expansion. These decisions
are subsequently discussed with extended design team members, such as manufacturers and environ-
mentalists. To enhance the effectiveness of these discussions, it is crucial to support or augment the design
engineers’ knowledge at the design process level. The more informed the design engineers are about the
subject areas of the extended team members, the more streamlined the group discussions will be.
The manufacturing involvement details in Figure 5A enable the design engineer to assess their
understanding of the design’s manufacturing aspects, forming the basis for discussions with
manufacturers. Similarly, the initial sustainability and environmental assessment informs the design
engineer about the design’s potential sustainability and environmental implications. These elements shape
the design engineer’s concept of the potential solution to the problem. The problem definition document in
Figure 5A incorporates the four key perspectives in defining an engineering design problem (Section 3):
problem context, customers’ and stakeholders’ needs, functional requirements, and design constraints
(Liu, 2021). Additionally, it includes manufacturing involvement, sustainability, and environmental
assessment. With the AICED framework, the first cycle of early-stage engineering design activities—
defining the problem, establishing the essential and desirable PDS requirements, and creating a visual
concept of a possible solution—takes less than five minutes.

5.2. Design freedom for individual practitioners or freelancers
The AICED framework effectively supports design engineers working individually and as part of a team.
The importance of teamwork and individual work in engineering design is well-recognized in academia and
industry (Lindemann, 2015). Encouraging the effective utilisation of both approaches is essential (Han
et al., 2021; Zhang et al., 2022). In some cases, it is beneficial to have team discussions after individual
members have completed specific tasks (Mettler, 2023). This approach is supported by the nominal group
technique (NGT), where individually generated concepts are collectively evaluated to reach a decision
(Cassone, 2024; Messerschmidt et al., 2024). Working individually allows design engineers to concentrate
more efficiently on their tasks, particularly when focusing on design process tasks or conceptualising new
engineering design problems (Obieke et al., 2024). However, the decisions made by a design engineer
during this time are often subject to concurrent review and input from consultants, other design engineers,
or extended team members such as clients, manufacturers, or legal experts (Angelova et al., 2024).
Therefore, the AICED framework benefits student design engineers, freelancers, and individual
practitioners. It lets them quickly expand or enrich their conceptual knowledge of an idea or design
problem, facilitating more informed discussions with other professionals.

5.3. Industry implications: Open AICED framework
The AICED framework is designed as an adaptable, open framework that can be tailored to meet specific
organisational needs. For instance, the PDS document can be customised to a required length and
formatted according to organisational standards, including specific elements of interest. Similarly, any
perspective relevant to the problem can be incorporated into the problem definition document shown in
Figure 5A. Organisations can integrate external knowledge or example data to guide the AICED
framework contextually. The framework includes an encryption technique to protect confidential data
before transferring it to an LLM. However, it is important to note that despite this encryption, the data is
decrypted during LLM processing and may be logged by the LLM service provider (Yan et al., 2024).
Data protection at the LLM service provider’s level depends on the provider’s data control and logging
policies. Therefore, it is advised to contact the LLM service provider to understand their data logging
policies and maintain trust, security, and privacy.

5.4. The constraint of prompt engineering knowledge
Prompt engineering has become crucial for effective interaction with LLMs (Meskó, 2023). As discussed
in Section 2.3, proficiency in prompt engineering is essential for crafting text inputs that guide the
behaviour of LLM-powered applications (Alto, 2024). Without this knowledge, users may struggle to
leverage LLMs’ capabilities fully. Developing specialised support tools across various fields aims to
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democratise access to advanced technologies, enabling individuals who might otherwise be
disadvantaged to benefit from these technologies. For instance, computer-aided engineering tools
empower design engineers to utilise sophisticated technologies without needing in-depth knowledge of
the underlying systems. Similarly, the AICED framework addresses this need by facilitating a specialised
tool that allows design engineers to harness the power of LLMs without requiring extensive knowledge
of prompt engineering. The AICED framework bridges the prompt engineering knowledge gap by
managing LLM design tasks on the backend. As illustrated in Figure 2, using external examples with the
multi-agent LLM simplifies the prompt requirements, as the agent can interpret the example documents
to generate its prompts. This approach ensures that design engineers can focus on their core tasks while
benefiting from LLMs’ advanced capabilities.

5.5. Human in the loop in AICED
The level of safety required in engineering designmay not allow for complete digitalisation or the removal of
humans from the design process. The details generated by the Pro-Explora tool, based on the AICED
framework and shown in Figure 5, are highly relevant. These documents are formatted in a specific
engineering design layout to support conceptual thinking (Göhlich et al., 2021). While the tool did not
produce incorrect results, some information requires human interpretation. For instance, the “Weight”
element of thePDSspecifies that the shovel’sweightmustnot exceed15kg.This limit is quite high, evenwith
some content on the shovel. Additionally, the first essential requirement in the “Durability” element of the
PDS appears incomplete, and the “Cost” element does not specify the currency. However, design engineers
can interpret and update this information as needed. The one-page PDS and problem definition documents
facilitate the rapid conceptualisation of design solutions. Since these documents are downloadable in Word
format, they can be easily expanded, edited, or used seamlessly. This significantly simplifies the work of
design engineers, as illustrated in Figure 2, where the AI system handles the more challenging tasks.

6. Conclusion
While AI technologies are increasingly adopted across various sectors to support complex activities, their
application in engineering design remains underexplored. This study addresses this gap by introducing the
AICED framework, a novel approach for AI collaboration in engineering design. Utilising advanced
multi-agent LLM technology, the AICED framework enhances design process activities with AI
capabilities. Implemented as the computational tool Pro-Explora, it augments design engineers’ abilities in
problem definition, product design specification (PDS), and conceptual design. These early-stage
engineering design activities are often identified as challenging in practice. Pro-Explora, powered by the
AICED framework, generates a professional problem definition, a PDS document, and a unique image
description of a potential solution concept within five minutes. This rapid generation process accelerates
the early-stage design cycle and allows design engineers to maintain an uninterrupted creative flow. The
tool’s effectiveness was demonstrated in a real-life engineering design project, with outputs deemed
highly relevant by two experienced design professionals. The study also discusses the industry
implications of the AICED framework, particularly in addressing the growing need for prompt
engineering knowledge and skills. This pioneering study uses multi-agent LLMs as collaborators to
produce standard-format documents in engineering design, leading to new research directions in the
specific applications of LLMs within this field.
This study has limitations, primarily due to the pilot consultation with engineering design professionals to
assess the AICED framework’s outputs and the knowledge used as prompts. Future work will involve a
more formal consultation, including deploying the AICED framework in real-world case studies. Further
research will explore using LLMs for interpreting drawings and analysing 3D CAD models, which would
be particularly useful for creating patent sketches in the required format. By augmenting LLMs with
examples of patent sketches, the AICED framework could facilitate the production of patent sketches from
other engineering drawings. Additionally, the framework could produce other documents to support patent
applications for engineering design practitioners and freelancers, fostering innovation and invention.
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