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Finite Rank Operators in Certain Algebras
Sean Bradley

Abstract. Let Alg(L) be the algebra of all bounded linear operators on a normed linear space X leaving in-
variant each member of the complete lattice of closed subspaces L. We discuss when the subalgebra of finite
rank operators in Alg(L) is non-zero, and give an example which shows this subalgebra may be zero even for
finite lattices. We then give a necessary and sufficient lattice condition for decomposing a finite rank operator
F into a sum of a rank one operator and an operator whose range is smaller than that of F, each of which lies
in Alg(L). This unifies results of Erdos, Longstaff, Lambrou, and Spanoudakis. Finally, we use the existence
of finite rank operators in certain algebras to characterize the spectra of Riesz operators (generalizing results
of Ringrose and Clauss) and compute the Jacobson radical for closed algebras of Riesz operators and Alg(L)
for various types of lattices.

1 Introduction and Preliminaries

Let L be a complete lattice of closed subspaces of a normed linear space X (over C) con-
taining both (0) and X. (By complete we mean the lattice is closed under the operations ∩
and ∨ (closed linear span) on arbitrary collections of its members.) Then AL = Alg(L) is
the weakly closed unital algebra of operators which leave invariant each subspace of L. For
example, if A is any subset of B(X), the bounded linear operators on X, then Lat(A), the
lattice of all closed A-invariant subspaces of X is complete.

Finite rank operators, those operators whose ranges are finite dimensional, play an im-
portant role in the study of AL for many classes of lattices, and other algebras as well. For
example, Ringrose [16] utilized finite rank operators in nest algebras in his elegant char-
acterization of the Jacobson radical of a nest algebra. Longstaff and Lambrou [11] showed
that a strongly reflexive lattice L is characterized by a certain density condition satisfied by
the algebra generated by the rank one operators. Barnes and Katavolos [2] demonstrated
that when algebras of operators contain enough finite ranks (in a certain sense) the algebras
are simultaneously triangularizable.

In Section 3 we investigate the existence of finite rank operators in AL. Longstaff [14]
gives a necessary and sufficient condition for the existence of rank one operators in AL.
No necessary condition is known for AL to contain finite rank operators of arbitrary rank.
We discuss some situations where the existence of non-nilpotent finite rank operators can
be determined. We also provide an example which shows FL, the subalgebra of finite rank
operators in AL, can be zero even for finite lattices.

The main problem of Section 4 is whether a finite rank operator F ∈ AL is completely
decomposable in AL. Let F ∈ FL and let n be the rank of F. We say F is decomposable (in
L) if F can be written as F = F1 + F2 where F1 and F2 are in FL, and F1 has rank one, F2 has
rank n− 1. We say F is completely decomposable (in L) if F can be written as F =

∑n
j=1 F j

where each F j is a rank one operator in FL.
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Erdos [5] credited Ringrose with proving each finite rank operator in AL is completely
decomposable when L is a totally ordered lattice (nest) of subspaces of a Hilbert space,
and Spanoudakis [18] extended this result to nests on arbitrary normed linear spaces.
Longstaff showed this result holds for atomic Boolean subspace lattices (ABSLs) over a
Hilbert space, and Lambrou [11] generalized to normed linear spaces. In the same paper
he asked whether complete decomposability might hold for the class of strongly reflexive
lattices, a class which contains both nests and ABSLs. Hopenwasser and Moore [9] an-
swered this question in the negative. Spanoudakis [19] shows the result to be false even for
finite distributive lattices.

We provide a necessary and sufficient lattice condition for determining if finite rank
operators in AL are decomposable. This condition can be used to prove (easily) the results
stated above, thus unifying the theory. We also show, in the case where L is ∨-distributive,
a partial decomposition result is possible for non-nilpotent operators in FL.

In Section 5 we make use of finite rank operators to characterize the spectra of Riesz
operators in terms of a subspace lattice, and to find the Jacobson radical for various alge-
bras. These include AL for various types of lattices, and closed algebras of Riesz operators.
(An operator T ∈ B(X) is said to be a Riesz operator if its image in the Calkin algebra,
B(X)/K(X), under the canonical quotient map has zero spectrum. So, for example, all
compact operators are Riesz operators.) The work concerning Riesz operators generalizes
results of Ringrose [17] and Clauss [3]. Ringrose determined when a single compact oper-
ator T is quasinilpotent in terms of Lat(T), and Clauss extended Ringrose’s result to closed
algebras of compact operators which leave invariant a certain type of nest which he called
elementary.

2 Notation and Definitions

For a finite set of vectors x1, . . . , xn, we denote their linear span by 〈x1, . . . , xn〉. We reserve
the symbol⊂ for proper containment between subspaces, and use the symbol⊆ otherwise.
Given a subspace M ∈ L, let M⊥ be the collection of all linear functionals that annihilate
M. Define M− =

∨
{L ∈ L : M * L}. A gap in L is a pair of subspaces (N,M) such that

no other subspace in L lies properly between N and M. That is, if K ∈ L and N ⊂ K ⊆ M
then K = M. Given a nest N (a totally ordered lattice) which is a sublattice of L, we call
N an L-maximal nest if there is no other nest in L which properly contains N. When
(N,M) is a gap in L and N is an L-maximal nest containing both N and M we say N is the
predecessor of M in L, and write N = predN(M).

Let FL be the collection of all finite rank operators in AL. We shall use the notation
α ⊗ x (where α is a linear functional and x ∈ X) to denote the rank one operator whose
range is the one-dimensional subspace spanned by x. Given any operator T in B(X) we
use R(T) to denote the range of T, and σ(T) for the spectrum of T, the set of all complex
numbers λ such that λ− T is not invertible.

We call a lattice L reflexive if L = Lat(AL). The class of reflexive lattices includes nests,
finite distributive lattices, ABSLs, and Lat(A) as defined above. An atom of L is a subspace
A ∈ L such that (0) ⊆ L ⊂ A ⇒ L = (0). A lattice is called atomic if every subspace
is generated by the atoms it contains. Nests, ABSLs and finite distributive lattices are all
members of the class of strongly reflexive lattices. A lattice is said to be strongly reflexive if
it is both complete and completely distributive. Such lattices have been studied extensively
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by Longstaff [14], Lambrou [11], and others. The following characterization of a strongly
reflexive lattice will prove useful (see [11]). A lattice L is strongly reflexive if and only if
given x ∈ X and ε > 0, there exists a finite rank operator F ∈ AL (depending on x) such
that ‖Fx − x‖ < ε.

Finally, we denote the Jacobson radical of an algebra A, i.e., the intersection of the ker-
nels of all algebraically irreducible representations of A, by J(AL). A characterization of
J(AL) we shall find useful is the following: J(AL) is the smallest left (right, or two-sided)
ideal containing all quasinilpotent left (right, or two-sided) ideals. (See, for example, [15].)

3 Existence of Finite Rank Operators in AL

The following lemma (due to Longstaff [14]) gives a necessary and sufficient lattice-
theoretic condition for the existence of rank one operators in AL.

Lemma 3.1 The rank one operator α⊗ x is in AL if and only if there exists M ∈ L such that
x ∈ M and α ∈ (M−)⊥.

The membership of a rank one operator in the Jacobson radical of AL can also be char-
acterized in terms of the lattice. The following is an improvement of a result of Katavolos
and Katsoulis [10] (since they require L to be reflexive).

Lemma 3.2 Let α ⊗ x ∈ AL. Then α ⊗ x ∈ J(AL) if and only if there exists M ∈ L such
that x ∈ M and α ∈ M⊥.

Proof First, suppose whenever M ∈ L and x ∈ M that α /∈ M⊥. Then there exists M such
that x ∈ M, α ∈ (M−)⊥ (by Lemma 3.1, since α ⊗ x ∈ AL), and x /∈ M−. Since α ∈
(M−)⊥ \M⊥, M * M−. Choose y ∈ M such that α(y) = 1, and choose β ∈ (M−)⊥ such
that β(x) = 1. Again by Lemma 3.1, β⊗ y ∈ AL. Moreover, α⊗ y = (β⊗ y)(α⊗x) ∈ AL.
But (α ⊗ y)2 = α ⊗ y. So (β ⊗ y)(α ⊗ x) is not quasinilpotent, whence α ⊗ x is not in
J(AL).

Conversely, suppose x ∈ M ∈ L and α ∈ M⊥. Let T ∈ AL. Then T(α⊗ x) = α⊗ Tx,
and for all S ∈ AL, (α⊗ Tx)(α⊗ Sx) = 0. Thus the left ideal of AL generated by α⊗ x is
nilpotent, whence α⊗ x is contained in J(AL).

We introduce some terminology. Let (N,M) be a gap in L. If M * M− (i.e., M∩M− =
N ⊂ M) then we call (N,M) a strong gap. We call M a branch point for L if there are two
distinct subspaces, N1 and N2, such that each (N j ,M) is a gap in L. Note that a strong
gap cannot occur at a branch point of L, but if M is not a branch point and (N,M) is a
gap, then (N,M) need not be a strong gap. This can be seen by considering a five element
double-triangle lattice (described in Proposition 5.9 below).

The next two results point out some connections between the existence of finite rank
operators (in this case idempotents) and gaps in L. We mention these results do not require
reflexivity of L.

Proposition 3.3 If there is a non-zero idempotent in FL, then there is a gap in L. Moreover,
this gap occurs at an M ∈ L that is not a branch point.
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Proof The first statement is an easy generalization of the proof of Clauss’ Lemma 1.2 [3].
Let 0 6= E = E2 ∈ FL. Let N be any L-maximal nest and let

M =
⋂
{K ∈ N : R(E) ∩ K 6= (0)}.

It is easy to check that R(E) ∩M 6= (0) and that R(E) ∩ predN(M) = (0), since if L ⊂ M
then EL = (0). Thus predN(M) 6= M and so

(
predN(M),M

)
is a gap in L.

Now suppose M ∈ L is a branch point of L, i.e., suppose there are two L-maximal
nests, N1 and N2 with M j = predN j

(M) ( j = 1, 2), and M1 6= M2. Then E(M j) = 0 by
the way we chose M. Since M1 ⊂ M1 ∨ M2 ⊆ M, we must have M1 ∨ M2 = M (N1 is
L-maximal). But then E(M) = E(M1 ∨M2) = 0, a contradiction.

Proposition 3.4 Let L be ∨-distributive. Then there exists a non-zero finite rank idempotent
in AL if and only if there exists a strong gap in L.

Proof Let 0 6= E = E2 ∈ FL and choose M ∈ L such that dim
(
M∩R(E)

)
is non-zero and

minimal. By the proof of Proposition 3.3, there is a gap (N,M) at M. We claim M * M−,
whence (N,M) is a strong gap. So assume M ⊆ M−. Then there is a collection {Kα}
of subspaces in L with M ⊆ ∨Kα and M is not contained in any individual Kα. Then
Kα ∩M ⊆ N for each α, and

M =
(∨

Kα
)
∩M =

∨
(Kα ∩M) ⊆ N ⊂ M,

a contradiction.
Conversely, suppose there is a strong gap at M. Choose x ∈ M \M− and α ∈ (M−)⊥

such that α(x) = 1. By Lemma 3.1, α⊗ x ∈ AL, and (α⊗ x)2 = α⊗ x.

The following example shows even when L is a finite lattice, FL can be zero. (Such an
L can not be distributive, since a finite distributive lattice is strongly reflexive. In this case
there are plenty of finite rank operators. See, for example, Lambrou [11].)

Example 3.5 Let H be a separable, infinite dimensional Hilbert space, and let A be an
injective, non-surjective operator on H with dense range. By a theorem of von Neumann
(see [6]), there exists an injective, non-surjective operator B on H with dense range, satis-
fying R(A) ∩ R(B) = (0). Define six subspaces of X = H ⊕H ⊕H as follows:

M1 = {(x, y, 0) : x, y ∈ H} L1 = {(0, 0, x) : x ∈ H}

M2 = {(0, x, y) : x, y ∈ H} L2 = {(0, x,Ax) : x ∈ H}

M3 = {(x, 0, y) : x, y ∈ H} L3 = {(x, 0,Bx) : x ∈ H}.

One easily checks the lattice L consisting of these subspaces, together with L2∨L3, M1∩M3,
M1 ∩M2, (0), and X, is complete.

Now, suppose F ∈ FL. Since M1 + L2 = M1 ∨ L2 = X,

F(X) = F(M1 + L2) ⊆ F(M1 + L2) = F(M1 + L2) ⊆ M1 + L2.
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Likewise, F(X) ⊆ M1 + L3. Thus F(L2) ⊆ L2 ∩ (M1 + L3), and F(L3) ⊆ L3 ∩ (M1 + L2).
We claim L2 ∩ (M1 + L3) = (0) (and similarly, L3 ∩ (M1 + L2) = (0)). For if (0, x,Ax) ∈

L2∩(M1+L3) then there must exist (w, z, 0) ∈ M1 and (y, 0,By) ∈ L3 such that (0, x,Ax) =
(w, z, 0) + (y, 0,By). Then Ax = By ∈ R(A) ∩ R(B) = (0), and so Ax = x = 0, since A is
injective.

We have shown F(L2) = F(L3) = (0). Since X = M1 ∨ (L2 ∨ L3), F(X) ⊆ M1. But
X = L1∨ (L2 ∨L3) as well. So F(X) ⊆ L1. But then F(X) ⊆ L1 ∩M1 = (0), i.e., F = 0.

4 Decomposition of Finite Rank Operators in AL

The following theorem is the main result of this section. It gives a lattice condition for
when a finite rank operator is decomposable.

Theorem 4.1 Let F ∈ FL. F is decomposable if and only if there is a subspace M ∈ L such
that R(F) ∩M * F(M−).

Proof Suppose R(F) ∩M * F(M−). Let x1 ∈ R(F) ∩M \ F(M−). Let {x2, . . . , xm} be
a basis for F(M−), and use x1 and, if necessary, additional vectors xm+1, . . . , xn to form a
basis {x1, . . . , xn} for R(F). (We are assuming dim R(F) = n.) We claim x1 is not in the
closed subspace F(M−) ∨ 〈x2, . . . , xn〉 = F(M−) + 〈x2, . . . , xn〉. This is clear since the x j ’s
are linearly independent.

Now, by the Hahn-Banach Theorem, we can choose linear functionals

α1 ∈
(
F(M−) ∨ 〈x2, . . . , xn〉

)⊥
,

with α1(x1) = 1, and α2, . . . , αn such that αi(x j) = δi j for all 1 ≤ i, j ≤ n. If x ∈ X then
Fx =

∑n
j=1 λ j x j for some complex numbers λ j , and, for each 1 ≤ k ≤ n,

αk(Fx) = αk

( n∑
j=1

λ j x j

)
=

n∑
j=1

λ jαk(x j) = λk.

So Fx =
∑n

j=1 α j(Fx)x j , whence F =
∑n

j=1(α j ◦ F) ⊗ x j . But α1 ◦ F ∈ (M−)⊥ since

α1 ∈ F(M−)⊥. By Longstaff ’s Lemma (3.1), α1 ◦ F ⊗ x1 ∈ AL.
Now suppose F is decomposable, i.e., suppose F = α1 ⊗ x1 + R where α1 ⊗ x1 and R

are in FL. We may assume the range of R and 〈x1〉 are linearly independent subspaces. By
Lemma 3.1, there exists M ∈ L such that x1 ∈ M and α1 ∈ (M−)⊥. Suppose there is a
vector y ∈ M− with Fy = x1. Then x1 = Fy = α1(y)x1 + Ry. But then α1(y) = 1 (and
Ry = 0), impossible, since α1 ∈ (M−)⊥. Thus R(F) ∩M * F(M−)

Corollary 4.2 (Spanoudakis) If N is a nest and F ∈ FN then F is completely decomposable.

Proof It is enough to show every F ∈ FN is decomposable, since then we can write F =
F1 + F2 where F1 is rank one, dim R(F2) = dim R(F) − 1, and F2 is itself decomposable.
Let M =

⋂
{N ∈ N : R(F) ∩ N 6= (0)}. Since R(F) is finite dimensional and N is totally
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ordered, M 6= (0). If N ⊂ M then F(N) ⊆ N ∩ R(F) = (0). Thus F(M−) = (0), and we
may apply Theorem 4.1.

Suppose L is atomic, and F ∈ FL is non-zero. If F(A) = (0) for all atoms A ∈ L,
then F = 0. So there must exist an atom A with F(A) 6= (0). If in addition A * A−,
then F(A−) ∩ A ⊆ A− ∩ A = (0). In this case we can apply Theorem 4.1. In particular, if
every atom in L satisfies A * A−, then every F ∈ FL is decomposable, hence completely
decomposable. These observations prove the following two results.

Corollary 4.3 (Lambrou) If L is an ABSL and F ∈ FL then F is completely decomposable.

Corollary 4.4 If L is a pentagon lattice (see 5.10 below) and F ∈ FL then F is completely
decomposable.

The next result is a partial decomposition result for finite rank operators in AL where
L is ∨-distributive.

Proposition 4.5 Suppose L is ∨-distributive and F ∈ FL. Then F can be written as F =
F1 + F2 where F1 and F2 are in FL, F1 is completely decomposable, and F2 is nilpotent.

Proof It is enough to show every non-nilpotent finite rank operator in AL is decompos-
able. So assume F is not nilpotent. Let E be the linear span of all eigenvectors corresponding
to non-zero eigenvalues of F. Choose M ′ ∈ L such that dim(M ′∩E) is non-zero and min-
imal. Let M =

⋂
{L ∈ L : E ∩M ′ ⊆ L}. Then if L ∈ L and L ⊂ M, L does not contain an

eigenvector for F with nonzero eigenvalue.
We claim M * M−. To see this, assume the contrary. We will reach a contradiction. If

M ⊆ M− then there are subspaces {Kα} in L with M * Kα for each α, and

M ⊆ M ∩M− = M ∩
(∨

Kα
)
=
∨

(M ∩ Kα).

Thus M =
∨
{L ∈ L : L ⊂ M}. Let x ∈ M ∩ E, i.e., x = x1 + · · · + xn where each x j is

an eigenvector for F with nonzero eigenvalue. Then Fmx 6= 0 for all m > 0. This is true
since if Fx j = λ j x j for some complex numbers λ j 6= 0 (the eigenvalues corresponding to
the x ′j s) then

Fmx =
n∑

j=1

Fmx j =

n∑
j=1

λm
j x j .

But

F(M) = F
(∑

{L ⊂ M}
)
⊂ F
(∑

{L ⊂ M}
)
= F
(∑

{L ⊂ M}
)
,

since F is finite rank. Thus Fx ∈
∑
{L ∈ L : L ⊂ M}. So we may write Fx = y1 + · · · + ym

where each y j ∈ L j ⊂ M. Now, the restriction of F to each L j is nilpotent, by the definition
of M (since L j ⊂ M can not contain an eigenvector corresponding to a non-zero eigenvalue
of F). Hence there exists r > 0 such that Fr(y j ) = 0 for all j. But then we have

0 6= Fr+1x = Fr(y1 + · · · + ym) = 0,

a contradiction. This proves the claim.
Now for x ∈ M ∩ E, if there is a vector y ∈ M− with Fy = x, then x ∈ M ∩M− ⊂ M,

contradicting the definition of M. So F(M−) + R(F) ∩M. Apply Theorem 4.1.
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5 Applications

Throughout this section we assume each lattice L is reflexive, i.e., L = Lat
(
Alg(L)

)
. Recall,

if L = Lat(A), then L is reflexive. Let (N,M) be a gap in L. We can define (as in [3]) a
representation πM/N : AL → B(M/N), called a quotient representation, by restriction of an
operator T in AL to the subspace M and then reduction to the quotient space M/N . Thus
for T ∈ AL,

πM/N(T)(x + N) = Tx + N (x ∈ M).

These representations (one for each gap in L) are continuous in the norm topology on AL.
Note that T ∈ ker(πM/N) precisely when TM ⊆ N . It is not difficult to check ker(πM/N) is
a weakly closed, two-sided ideal of AL. Moreover, by virtue of the reflexivity of L, there are
no closed AL-invariant subspaces in L contained properly between N and M. Thus πM/N

is a topologically irreducible representation, and so ker(πM/N) is a prime ideal. (Recall
that an ideal P is prime if whenever I and J are ideals with IJ ⊆ P then one of I or
J must be contained in P.) To see that ker(πM/N ) is prime suppose I and J are ideals
in AL and that their product IJ is contained in ker(πM/N), but J * ker(πM/N ). Then

πM/N (J)(M/N) = M/N , since πM/N is topologically irreducible. So

πM/N(I)(M/N) = πM/N(I)
(
πM/N (J)(M/N)

)

⊆ πM/N(IJ)(M/N) = (0).

Thus I is contained in ker(πM/N).
Our first result allows us to characterize the spectrum of a Riesz operator in terms of

its invariant subspaces. It is a generalization of theorems of Ringrose [17], and Clauss [3].
Note that L can be taken to be Lat(T).

Theorem 5.1 Let T ∈ AL be a Riesz operator. Then

σ(T) ∪ {0} =
⋃
{σ
(
πM/N(T)

)
: (N,M) is a gap in L} ∪ {0}.

Proof If T is invertible in AL, and (N,M) is a gap in L, then we have πM/N(T−1) =
πM/N (T)−1. So πM/N (T) is also invertible. Thus σ

(
πM/N(T)

)
⊆ σAL

(T). Moreover, since
AL is a closed subalgebra of B(X), and since σ(T) is equal to its own boundary, standard
Banach algebra theory tells us σAL

(T) = σ(T). So σ
(
πM/N(T)

)
⊆ σ(T).

Conversely, suppose 0 6= λ ∈ σ(T). Let N be any maximal nest in L. By Theorem 3.13
of [17], there is a finite rank idempotent in AN with range K = ker(λ−T)n, where n <∞
is the smallest positive integer such that ker(λ−T)n = ker(λ−T)n+1 (the ascent of λ−T).
By the proof Proposition 3.3, there exists a gap in N at

M =
⋂
{L ∈ N : L ∩ K 6= (0)}.

Let N = predN(M). Choose z ∈ M ∩ ker(λ− T)n. Then z /∈ N . Let d < n be the smallest
integer such that w = (λ− T)dz 6= 0 but (λ− T)d+1z = 0. Since

w ∈ ker(λ− T) ⊆ ker(λ− T)n,
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and since ker(λ− T)n ∩ N = (0), w /∈ N . But w ∈ M. Thus
(
πM/N(λ− T)

)
(w + N) = N

whence λ ∈ σ
(
πM/N (T)

)
.

Suppose N is a nest and A = AN. By Corollary 4.2, if T ∈ J(A) ∩ F(A) then we may
write T =

∑n
j=1 α j ⊗ x j , where each α j ⊗ x j is in J(A). By Lemma 3.2, each α j ⊗ x j ∈

ker(πM/M−) whenever there is a gap at M. Hence T is also in ker(πM/M−). A much more
general statement is true, however, and forms the basis for the rest of this section. It was
suggested to me by Bruce A. Barnes.

Lemma 5.2 Let A be a unital subalgebra of B(X) and let P be a prime ideal in A. Then
J(A) ∩ F(A) ⊆ P.

Proof Let T be in J(A) ∩ F(A), and let n = dim
(
R(T)

)
. Then the ideal ATA generated

by T is contained in J(A) ∩ F(A), and for each S ∈ ATA, dim
(
R(S)
)
≤ n. We claim

Sn+1 = 0 for all S ∈ ATA. Indeed, if we choose a basis for R(S) with respect to which
the restriction of S is an upper triangular matrix, then the diagonal elements are each zero,
since S has zero spectrum. By the Nagata-Higman Theorem (Proposition 4.4.10 of [15]),
ATA is a nilpotent ideal. Thus there exists m such that (ATA)m = (0) ⊆ P. Since P is
prime, ATA ⊆ P, and since I ∈ A, we must have T ∈ P.

An immediate consequence of this lemma, and our main use for it, is the following: any
prime ideal which does not contain all the finite rank operators of A must contain J(A).
The kernels of representations on gaps are the necessary prime ideals. We first apply this
lemma to algebras of Riesz operators. If A is not unital, let Au be the unitization of A. That
is, Au = CI ⊕A. The following is stated for convenience. Its proof is elementary.

Proposition 5.3 Let A be an algebra of operators. Then F(A) = F(Au), J(A) = J(Au), and
Lat(A) = Lat(Au).

The following proposition is of independent interest. Its proof contains a key idea in the
proof of our next main result.

Proposition 5.4 Suppose A is a closed algebra of Riesz operators, and (N,M) is a gap in
Lat(A). Then A/ kerπM/N is semisimple.

Proof Write π = πM/N . Let T ∈ F(Au) with π(T) ∈ J
(
π(Au)

)
. Since π(T) is a finite-

rank operator, π(Tn) = π(T)n = 0, where n = dim
(
R(T)

)
. Thus Tn ∈ kerπ. But every

operator RTS ∈ AuTAu is rank-n or less and in J(Au), so (RTS)n ∈ kerπ for all RTS.
By the Nagata-Higman Theorem, π(AuTAu) is a nilpotent ideal in π(Au). Since kerπ is a
prime ideal, AuTAu is contained in kerπ. Thus T ∈ kerπ. We have shown

F(Au) ∩
(

J
(
π(Au)

))−1
⊆ kerπ.

Now suppose that F(Au) ⊆ kerπ. Then π(Au) = J
(
π(Au)

)
. (For if π(T) /∈ J

(
π(Au)

)
then there exists S such that π(ST) is not quasinilpotent, whence there exists a finite rank
spectral idempotent E ∈ Au with π(E) 6= 0. But then F(Au) * kerπ.) So, by a theorem

https://doi.org/10.4153/CMB-1999-053-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1999-053-3


460 Sean Bradley

of Barnes and Katavolos [2, Theorem 3.1], π(Au) is simultaneously triangularizable. This
implies dim(M/N) = 1, which forces π(Au) to be (0). So in this case π(Au) = Au/ kerπ
is certainly semisimple. On the other hand, if F(Au) * kerπ then, since kerπ is prime,(

J
(
π(Au)

))−1
⊆ kerπ. That is, J

(
π(Au)

)
= (0).

Our first application of Lemma 5.2 is to characterize the Jacobson radical of closed alge-
bras of Riesz operators in B(X).

Theorem 5.5 Let A be a closed algebra of Riesz operators. Then

J(A) =
⋂
{kerπM/N : (N,M) is a gap in Lat(A)}.

Proof By Theorem 5.1, and since Lat(A) ⊆ Lat(T) for all T ∈ A,

⋂
{kerπM/N : (N,M) is a gap in Lat(A)}

is a quasinilpotent ideal, hence contained in J(A). Conversely, since ker πM/N is a prime
ideal, we have F(Au) ∩ J(Au) ⊆ kerπM/N . Now if F(Au) = F(A) ⊆ kerπM/N then, as
in the proof of Proposition 5.4, πM/N(A) = (0), whence J(A) ⊆ kerπM/N . On the other
hand, if F(Au) * kerπM/N then J(Au) = J(A) ⊆ kerπM/N .

Next we apply Lemma 5.2 to AL for various reflexive lattices L.

Proposition 5.6 If L is strongly reflexive then J(AL) ⊆ ker(πM/N ) for every gap (N,M)
in L.

Proof Suppose FL ⊆ kerπM/N where (N,M) is a gap in L. Since L is strongly reflexive,
we may apply a theorem of Lambrou [11] which states, given x ∈ M \ N and ε > 0, there
exists F ∈ FL such that ‖Fx − x‖ < ε. But F ∈ kerπM/N by assumption, so Fx ∈ N .
This implies, since N is closed, that x is in N , a contradiction. Thus FL * kerπM/N . By
Lemma 5.2, J(AL) ⊆ ker(πM/N ).

Corollary 5.7 Let L be a finite distributive lattice. Then J(AL) =
⋂
{kerπM/N : (N,M) is

a gap in L}.

Proof Let J =
⋂
{ kerπM/N : (N,M) is a gap in L}. Since L is finite, J is a nilpotent

ideal, hence contained in J(AL). Since a finite distributive lattice is strongly reflexive, the
converse follows from Proposition 5.6.

The next corollary strengthens a result of Halmos [8], who proves it for the case where
L is an ABSL.

Corollary 5.8 If L is strongly reflexive and atomic then AL is semisimple. (The class of such
lattices includes ABSLs.)
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Proof Note there is a gap below each atom A ∈ L. Since L is strongly reflexive, if T is in
J(AL) then TA = (0) for all atoms, whence

T(X) = T
(∨
{A : A is an atom }

)
= (0),

i.e., T = 0.

We remark that while distributive lattices are reflexive, the converse may not hold. The
ensuing two propositions involve the so-called double triangle and pentagon lattices. These
play a special role in lattice theory because of their relationships to the conditions of dis-
tributivity and modularity of a lattice.

Proposition 5.9 (Longstaff, [12]) A double-triangle lattice is a five element lattice L =
{(0),K, L,M,X} such that K∩L = K∩M = L∩M = (0) and K∨L = K∨M = L∨M = X.
Suppose further that the vector sum K +L is closed, i.e., K +L = K∨L. Then AL is semisimple.

Proof Let Q be a projection onto K along L. (We do not assert that Q ∈ AL.) Choose
x ∈ M such that Qx 6= 0. Choose α ∈ M⊥ such that α(Qx) 6= 0. Let

R =
(
α ◦ (I − Q)

)
⊗ x − α⊗ Qx = α⊗ (I − Q)x − (α ◦ Q)⊗ x.

We check that R ∈ AL: If y ∈ K then

Ry = α(y − Qy)x − α(y)Qx = −α(y)Qx ∈ K

(since (I − Q)y = 0.) If y ∈ L then

Ry = α(y)(x − Qx)− α(Qy)x = α(y)(I − Q)x ∈ L

(since Qy = 0.) Finally, if y ∈ M then

Ry = α(y − Qy)x − α(y)Qx = α(y − Qy)x ∈ M

(since α(y) = 0.) So R ∈ AL, and indeed in FL. Now, RQx = −α(Qx)Qx 6= 0, and

R(I − Q)x = α
(
(I − Q)x

)
(x − Qx) = −α(Qx)(x − Qx) 6= 0.

So FL * kerπK/(0) and FL * kerπL/(0). Therefore J(AL) ⊆ kerπK/(0) ∩ kerπL/(0) = (0).

Proposition 5.10 (Longstaff, [12]) A pentagon lattice is a five element lattice L = {(0),K,
L,M,X} where L ⊂ K, K∩M = L∩M = (0) and K∨M = L∨M = (0). If L is a pentagon
then AL is semisimple.

Proof Since L− = M and M− = K, there are strong gaps below M and L. Thus, by the
proof of Proposition 3.4, there are finite rank operators not contained in kerπM/(0), and
finite rank operators not contained in kerπL/(0). By Lemma 5.2, J(AL) ⊆ kerπM/(0) ∩
kerπL/(0) = (0).
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