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Abstract

We construct a flow of continuous-time and discrete-state branching processes. Some
scaling limit theorems for the flow are proved, which lead to the path-valued branching
processes and nonlocal branching superprocesses, over the positive half line, studied in
Li (2014).
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1. Introduction

A genealogical tree is naturally associated with a Galton–Watson branching process.
A continuous-state branching process (CB process) can be obtained as the small particle limit
of rescaled Galton–Watson processes; see, e.g. Lamperti (1967). The genealogical structures
of binary branching CB processes were investigated by introducing continuum random trees
in the pioneering work of Aldous (1991), (1993). Continuum random trees corresponding to
general branching mechanisms were constructed in Le Gall and Le Jan (1998a), (1998b) and
were studied further in Duquesne and Le Gall (2002). By pruning a Galton–Watson tree, Aldous
and Pitman (1998) and Abraham et al. (2012) constructed a tree-valued Markov process. Tree-
valued processes associated with general CB processes were studied in Abraham and Delmas
(2012) by using pruning arguments.

Motivated by the study of genealogy trees for critical branching processes conditioned on
nonextinction, Bakhtin (2011) studied a flow of binary branching continuous-state branching
processes with immigration driven by a time-space Gaussian white noise. He also pointed out
the connection of the model with a superprocess conditioned on nonextinction. In Li (2014), a
class of path-valued branching processes were constructed and studied using the techniques of
stochastic equations and superprocesses. The work is closely related to those of Bertoin and Le
Gall (2006) and Dawson and Li (2014). In a special case, the path-valued branching processes
in Li (2014) can be coded by the tree-valued processes of Abraham and Delmas (2012). In
He and Ma (2014), two flows of discrete time and state Galton–Watson branching processes
were introduced. There it was showed that suitable rescaled sequences of those flows converge
to special forms of the flows of Dawson and Li (2012) and Li (2014). The limit theorems in
He and Ma (2014) were given in the setting of the corresponding superprocesses. From those
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limit theorems, the convergence of the finite-dimensional distributions of the corresponding
path-valued processes was derived. The results give a better understanding of the connection
between discrete and continuum tree-valued branching processes.

In this paper we introduce flows of continuous-time and discrete-state branching processes.
We shall prove the scaling limit theorems, of the type given in He and Ma (2014), for those
flows. In Section 2, a short review is given of the path-valued branching processes and nonlocal
branching superprocesses studied in Li (2014). In Section 3 we construct a continuous-time
and discrete-state branching process as the strong solution of a stochastic integral equation.
In Section 4, the construction is extended to branching flows by considering systems of
stochastic equations. In Section 5 we prove that suitable rescaled sequences of those flows
converge to the nonlocal branching superprocess. From the limit theorem we also derive the
convergence of the finite-dimensional distributions of the corresponding path-valued processes.

Let N = {0, 1, 2, . . . } and N+= {1, 2, . . . }. LetM[0, 1] be the set of finite Borel measures on
[0, 1] endowed with the topology of weak convergence. We identifyM[0, 1] with the setF [0, 1]
of positive right continuous increasing functions on [0, 1]. Let B[0, 1] be the Banach space of
bounded Borel functions on [0, 1] endowed with the supremum norm ‖ · ‖. Let C[0, 1] denote
its subspace of continuous functions. We use B[0, 1]+ and C[0, 1]+ to denote the subclasses
of nonnegative elements and C[0, 1]++ to denote the subset of C[0, 1]+ of functions bounded
away from 0. Forμ ∈ M[0, 1] and f ∈ B[0, 1], we write 〈μ, f 〉 =

∫
f dμ if the integral exists.

LetD([0,∞),M[0, 1]) denote the space of càdlàg paths from [0,∞) toM[0, 1] endowed with
the Skorokhod topology. Throughout this paper we only consider continuous-time processes,
so we shall often omit this phrase in the sequel.

2. Preliminaries

In this section we recall some results established in Li (2014) on flows of CB processes and
nonlocal branching superprocesses over the positive half line. By a branching mechanism φ

we mean a function φ on [0,∞) with the representation

φ(z) = bz+ 1

2
σ 2z2 +

∫ ∞

0
(e−zu − 1 + zu)m(du), (2.1)

where σ ≥ 0 and b are constants and (u ∧ u2)m(du) is a finite measure on (0,∞). Consider
a family of branching mechanisms {φq : q ∈ [0, 1]} that is admissible in the sense that each
φq is given by (2.1) with parameters (b,m) = (bq,mq) depending on q ∈ [0, 1] and, for each
z ≥ 0, the function q 
→ φq(z) is decreasing and continuously differentiable with the derivative
ψθ(z) = −(∂/∂θ)φθ (z) of the form

ψθ(z) = hθz+
∫ ∞

0
(1 − e−zu)nθ (du),

where hθ ≥ 0 and nθ (du) is a σ -finite kernel from [0, 1] to (0,∞) satisfying

sup
0≤θ≤1

[
hθ +

∫ ∞

0
unθ (du)

]
< ∞.

Let m(dz, dθ) be the measure on (0,∞)× [0, 1] defined by

m([c, d] × [0, q]) = mq [c, d], q ∈ [0, 1], d > c > 0.
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Let W(ds, du) be a white noise on (0,∞)2 based on the Lebesgue measure, and let

Ñ(ds, dz, dθ, du)

be a compensated Poisson random measure on (0,∞)2 × [0, 1] × (0,∞) with intensity
dsm(dz, dθ) du. By the results in Li (2014), the stochastic equation

Yt (q) = Y0(q)− bq

∫ t

0
Ys−(q) ds + σ

∫ t

0

∫ Ys−(q)

0
W(ds, du)

+
∫ t

0

∫ ∞

0

∫
[0,q]

∫ Ys−(q)

0
zÑ(ds, dz, dθ, du)

has a unique solution flow {Yt (q) : t ≥ 0, q ∈ [0, 1]}. For each q ∈ [0, 1], the one-dimensional
process {Yt (q) : t ≥ 0} is a CB process with branching mechanism φq . The flow is increasing in
q ∈ [0, 1]. It was verified in Li (2014) that {(Yt (q))t≥0 : q ∈ [0, 1]} can be identified as a path-
valued branching process. Moreover, the flow induces a càdlàg M[0, 1]-valued superprocess
{Yt : t ≥ 0} which is the unique solution of the following martingale problem: for every
G ∈ C2(R) and f ∈ C[0, 1],

G(〈Yt , f 〉) = G(〈Y0, f 〉)+
∫ t

0
G′(〈Ys, f 〉) ds

∫
[0,1]

Ys(dx)
∫

[0,1]
f (x ∨ θ)hθ dθ

− b0

∫ t

0
G′(〈Ys, f 〉)〈Ys, f 〉 ds + 1

2
σ 2

∫ t

0
G′′(〈Ys, f 〉)〈Ys, f 2〉 ds

+
∫ t

0
ds

∫
[0,1]

Ys(dx)
∫ ∞

0
[G(〈Ys, f 〉 + zf (x))−G(〈Ys, f 〉)

− zf (x)G′(〈Ys, f 〉)]m0(dz)

+
∫ t

0
ds

∫
[0,1]

Ys(dx)
∫

[0,1]
dθ

∫ ∞

0
[G(〈Ys, f 〉 + zf (x ∨ θ))−G(〈Ys, f 〉)]
× nθ (dz)+ local martingale. (2.2)

Let f 
→ �(·, f ) be the operator on C+[0, 1] defined by

�(x, f ) =
∫

[0,1]
f (x ∨ θ)hθ dθ +

∫
[0,1]

dθ
∫ ∞

0
(1 − e−zf (x∨θ))nθ (dz).

Then the superprocess {Yt : t ≥ 0} has local branching mechanism φ0 and nonlocal branching
mechanism �. The transition semigroup (Qt )t≥0 of {Yt : t ≥ 0} is given by∫

M[0,1]
e−〈ν,f 〉Qt(μ, dν) = exp{−〈μ,Vtf 〉}, f ∈ C+[0, 1], (2.3)

where t 
→ Vtf is the unique locally bounded positive solution of

Vtf (x) = f (x)−
∫ t

0
[φ0(Vsf (x))−�(x, Vsf )] ds, t ≥ 0, x ∈ [0, 1]. (2.4)

We refer the reader to Li (2014) for the derivations of the superprocess {Yt : t ≥ 0}.
Remark 2.1. Usually, we may only use the Lévy measure m in φ in (2.1) to integrate 1 ∧ u2,
and an indicator function is added in the integral. In fact, the assumption that (u ∧ u2)m(du)

is a finite measure on (0,∞) is equivalent to φ being locally Lipschitz; see Proposition 1.45
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of Li (2011). This assumption is technically required to construct the scaling limits of Galton–
Watson processes; see Proposition 3.40 of Li (2011) and Assumption 5.1 below.

3. Stochastic equations for discrete-state branching processes

In this section we give a construction of the continuous-time and discrete-state branching
process as the solution of a stochastic integral equation driven by a Poisson random measure.
Stochastic integral equations of this type were used in Li and Ma (2008) to construct catalytic
branching processes. We here give all the details for completeness.

Let g = g(z) = ∑∞
i=0 piz

i be a probability generating function with g′(1) < ∞. Let
N(ds, dz, du)be a Poisson random measure on (0,∞)×N×(0,∞)with intensityσdsπ(dz) du,
where σ > 0 is a constant and π(dz) := ∑∞

i=0piδi(dz). Suppose that X0 is a nonnegative
integer-valued random variable satisfying E[X0] < ∞. We assume that X0 is independent of
N(ds, dz, du) and consider the stochastic integral equation

Xt = X0 +
∫ t

0

∫
N

∫ Xs−

0
(z− 1)N(ds, dz, du). (3.1)

By a solution of (3.1) we mean a nonnegative càdlàg progressive process {Xt : t ≥ 0} satisfying
the equation almost surely (a.s.) for each t ≥ 0. We say pathwise uniqueness of solution holds
for (3.1) if any two solutions of the equation, with the same initial state, are indistinguishable.

Theorem 3.1. Suppose that {X1
t } and {X2

t } are two solutions of (3.1) satisfying the inequality
E[|X1

0 +X2
0|] < ∞. Then we have

E[|X2
t −X1

t |] ≤ E[|X2
0 −X1

0|] exp{σ t (g′(1)+ 1)}. (3.2)

Consequently, the pathwise uniqueness of solution holds for (3.1).

Proof. The pathwise uniqueness for (3.1) follows from Theorem 2.1 of Dawson and Li
(2012). We present a proof of the result here for completeness. Let ξt = X2

t −X1
t for t ≥ 0.

From (3.1) we have

ξt = X2
0 −X1

0 +
∫ t

0

∫
N

∫ X2
s−

X1
s−
(z− 1) 1{X1

s−≤X2
s−}N(ds, dz, du)

−
∫ t

0

∫
N

∫ X1
s−

X2
s−
(z− 1) 1{X1

s−>X2
s−}N(ds, dz, du).

Let τm = inf{t ≥ 0 : X1
t ≥ m or X2

t ≥ m}. Then we have

E[|ξt∧τm |] ≤ E[|ξ0|] + E

∫ t∧τm

0

∫
N

∫ X2
s−

X1
s−
(z+ 1) 1{X1

s−≤X2
s−}N(ds, dz, du)

+ E

∫ t∧τm

0

∫
N

∫ X1
s−

X2
s−
(z+ 1) 1{X1

s−>X2
s−}N(ds, dz, du)

= E[|ξ0|] + E

∫ t∧τm

0
ds

∫
N

ξs− 1{ξs−≥0}(z+ 1)σπ(dz)

+ E

∫ t∧τm

0
ds

∫
N

(−ξs−) 1{ξs−<0}(z+ 1)σπ(dz)

≤ E[|ξ0|] +
∫ t

0
E[|ξs∧τm |]σ(g′(1)+ 1) ds.
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By Gronwall’s inequality we obtain

E[|ξt∧τm |] ≤ E[|ξ0|] exp{σ t (g′(1)+ 1)}.
Then (3.2) follows by Fatou’s lemma, completing the proof.

By Theorem 2.5 of Dawson and Li (2012), there is a unique strong solution to (3.1). Here
we give a simple direct proof of the existence of the solution. We first take an n ∈ N+ and
consider the following stochastic equation

Xt = X0 +
∫ t

0

∫
N

∫ Xs−∧n

0
(z− 1)N(ds, dz, du). (3.3)

Proposition 3.1. For each n ≥ 1, there is a solution {Xnt : t ≥ 0} of (3.3).

Proof. Let {Sk : k = 1, 2, . . .} be the set of jump times of the Poisson process

t 
→
∫ t

0

∫
N

∫ n

0
N(ds, dz, du).

We clearly have Sk → ∞ as k → ∞. For 0 ≤ t < S1, set Xnt = X0. Suppose that Xnt has
been defined for 0 ≤ t < Sk and let

Xnt = XnSk− +
∫

{Sk}

∫
N

∫ XnSk−∧n

0
(z− 1)N(ds, dz, du), Sk ≤ t < Sk+1.

From the construction of XnSk we see that XnSk −XnSk−1
≥ −1. Furthermore, since XnSk−1

= 0
implies that XnSk = 0, we have XnSk ∈ N. By induction we have defined a nonnegative process
{Xnt : t ≥ 0} which is clearly a solution to (3.3).

Proposition 3.2. Let {Xnt } be a solution of (3.3). Then we have

E

[
sup

0≤s≤t
Xns

]
≤ E[X0] exp{σg′(1)t}, t ≥ 0.

Proof. From (3.3) we have

E

[
sup

0≤s≤t
Xns

]
≤ E[X0] + E

[∫ t

0

∫
N

∫ Xns−∧n

0
zN(ds, dz, du)

]

= E[X0] + E

[∫ t

0
ds

∫
N

(Xns− ∧ n)zσπ(dz)
]
.

Thus t 
→ E[sup0≤s≤t Xns ] is a locally bounded function. Moreover,

E

[
sup

0≤s≤t
Xns

]
≤ E[X0] +

∫ t

0
ds

∫
N

E

[
sup

0≤r≤s
Xnr

]
zσπ(dz)

= E[X0] + σg′(1)
∫ t

0
E

[
sup

0≤r≤s
Xnr

]
ds.

By Gronwall’s lemma we obtain the result, completing the proof.
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By a modification of the proof of Theorem 3.1 we obtain the following Proposition.

Proposition 3.3. Suppose that {Xn,1t } and {Xn,2t } are two solutions of (3.3). Then we have

E[|Xn,2t −X
n,1
t |] ≤ E[|Xn,20 −X

n,1
0 |] exp{σ t (g′(1)+ 1)}.

Consequently, the pathwise uniqueness of solution holds for (3.3).

Proposition 3.4. Let {Xnt : t ≥ 0} be the solution of (3.3) with n = 1, 2, . . .. Then the sequence
{Xnt : t ≥ 0} is tight in D([0,∞),N).

Proof. By Proposition 3.2, it is easy to see that

t 
→ Ct := sup
n≥1

E

[
sup

0≤s≤t
Xns

]

is locally bounded. Then, for every fixed t ≥ 0, the sequence of random variables Xnt is tight.
Moreover, in view of (3.3), if {τn} is a sequence of stopping times bounded above by T ≥ 0,
we have

E[|Xnt+τn −Xnτn |] = E

[∣∣∣∣
∫ t+τn

τn

∫
N

∫ Xns−∧n

0
(z− 1)N(ds, dz, du)

∣∣∣∣
]

≤ E

[∫ t

0
ds

∫
N

(Xn(s+τn)− ∧ n)(z+ 1)σπ(dz)

]

≤ σ(g′(1)+ 1)
∫ t

0
E[Xn(s+τn)−] ds

≤ E[X0] exp{σg′(1)(t + T )}σ(g′(1)+ 1)t,

where the last inequality follows by Proposition 3.2. Consequently, as t → 0,

sup
n≥1

E[|Xnt+τn −Xnτn |] → 0.

Then {Xnt : t ≥ 0} is tight in D([0,∞),N) by the criterion of Aldous (1978); see also Ethier
and Kurtz (1986, pp. 137–138).

Theorem 3.2. There is a solution {Xt : t ≥ 0} of (3.1).

Proof. For each n ≥ 1, let {Xnt : t ≥ 0} be the solution of (3.3). Furthermore, define
τn = inf{t ≥ 0 : Xnt ≥ n}. From Proposition 3.2, it follows that

E[Xnt∧τn ] ≤ E

[
sup

0≤s≤t
Xns

]
≤ E[X0] exp{σg′(1)t}, t ≥ 0.

Then we have
E[Xnt∧τn 1{τn≤t}] ≤ E[X0] exp{σg′(1)t}.

By the right continuity of {Xnt } we have Xnτn ≥ n, so

nP[{τn ≤ t}] ≤ E[X0] exp{σg′(1)t}, t ≥ 0.

This implies that τn → ∞ almost surely as n → ∞. On the other hand, {Xnt } satisfies (3.1) for
0 ≤ t < τn. By the pathwise uniqueness of the solution of (3.1) we obtain, for any i, j ∈ N,

Xit = X
j
t , t < τi ∧ τj .

Let {Xt } be the process such that Xt = Xnt for all 0 ≤ t < τn and n ≥ 1. It is easily seen that
{Xt } is a solution of (3.1). This completes the proof.
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Theorem 3.1 and Theorem 3.2 imply that (3.1) has a unique strong solution and the solution
{Xt : t ≥ 0} is a strong Markov process; see, e.g. Ikeda and Watanabe (1989, pp. 163–166, 215).
Let B(N) denote the set of bounded functions on N. By Itô’s formula, it is easy to see that
{Xt : t ≥ 0} has a generator A defined by

Af (x) = σx

∞∑
i=0

[f (x + i − 1)− f (x)]pi, x ∈ N, f ∈ B(N).

Hence, {Xt : t ≥ 0} is a Galton–Watson branching process with σ -exponentially distributed
life time and offspring distribution {pi : i ≥ 0}.

In fact, let N(1)(ds, dz, du) and N(2)(ds, dz, du) be two mutually independent Poisson
random measures on (0,∞)×N× (0,∞)with the same intensity σ dsπ(dz) du. Consider the
two stochastic equations

X
(1)
t = X

(1)
0 +

∫ t

0

∫
N

∫ X
(1)
s−

0
(z− 1)N(1)(ds, dz, du)

and

X
(2)
t = X

(2)
0 +

∫ t

0

∫
N

∫ X
(2)
s−

0
(z− 1)N(2)(ds, dz, du).

Clearly, X(1)t and X(2)t are mutually independent. Set Xt = X
(1)
t +X

(2)
t . Since the random

measure

N ′(ds, dz) :=
∫

{0<u≤X(1)s−}
N(1)(ds, dz, du)+

∫
{0<u≤X(2)s−}

N(2)(ds, dz, du)

has the predictable compensator σXs− dsπ(dz), by representation theorems for semimartin-
gales, on an extension of the original probability space, there is a Poisson random measure on
(0,∞)× N × (0,∞) with intensity σ dsπ(dz) du such that

Xt = X0 +
∫ t

0

∫
N

∫ Xs−

0
(z− 1)N(ds, dz, du);

see, e.g. Ikeda and Watanabe (1989, p. 93). Hence, the solution of (3.1) is a branching process
(continuous time and discrete state). This gives another derivation of the branching property
of {Xt : t ≥ 0}.

4. The flow of discrete-state branching processes

In this section we give a formulation of the discrete-state branching flow as the solution flow
of a set of stochastic integral equations. Let {gθ : θ ≥ 0} be a family of probability generating
functions, that is, for each θ ≥ 0,

gθ (z) =
∞∑
i=0

pi(θ)z
i, |z| ≤ 1,

where pi(θ) ≥ 0 and
∑∞
k=0 pi(θ) = 1. Moreover, we assume that θ 
→ g′

θ (1) is continuous
and pi(θ2) ≥ pi(θ1) holds for all θ2 ≥ θ1 ≥ 0 and i ∈ N+. Define a family of probability
measures {πθ : θ ≥ 0} on N by

πθ(dz) =
∞∑
i=0

pi(θ)δi(dz).
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Then we have πθ2 |N+ ≥ πθ1 |N+ for all θ2 ≥ θ1 ≥ 0. Let π̄(dz, dθ) be the measure on N+ ×
[0,∞) defined by

π̄(A× [0, θ ]) = πθ(A), A ⊂ N+, θ ≥ 0.

Note that the positive function θ 
→ b(θ) := πθ({0}) is decreasing.
Let q 
→ X0(q) be a deterministic, nonnegative, right-continuous, nondecreasing function

on [0,∞) that takes values in N. Let N(ds, dz, dθ, du) be a Poisson random measure on
(0,∞)× N × [0,∞)× (0,∞) with intensity σ dsπ̄(dz, dθ) du and N0(ds, dθ, du) a Poisson
random measure on (0,∞)3 with intensity σ ds dθ du. Suppose that N(ds, dz, dθ, du) and
N0(ds, dθ, du) are independent of each other. Consider the stochastic integral equation

Xt(q) = X0(q)+
∫ t

0

∫
N+

∫
[0,q]

∫ Xs−(q)

0
(z− 1)N(ds, dz, dθ, du)

−
∫ t

0

∫ b(q)

0

∫ Xs−(q)

0
N0(ds, dθ, du). (4.1)

Note that, for each q ≥ 0, ∫
{0<θ≤b(q)}

N0(ds, dθ, du)

is a Poisson random measure with intensity σb(q) ds du = σ π̄0(N × [0, q]) ds du, where
π̄0(dz, dθ) is a measure on N × [0,∞) defined by

π̄0(A× [0, q]) = πq({0})δ0(A), A ⊂ N, θ ≥ 0.

By representation theorems for semimartingales, there exists a Poisson random measure
N1(ds, dz, dθ, du) on (0,∞) × N × [0,∞) × (0,∞) with intensity σ dsπ̄0(dz, dθ) du such
that, for every E ∈ B(0,∞),

∫ t

0

∫ b(q)

0

∫
E

N0(ds, dθ, du) =
∫ t

0

∫
N

∫
[0,q]

∫
E

N1(ds, dz, dθ, du);

see, e.g. Ikeda and Watanabe (1989, p. 93). Define N2(ds, dz, du) by

N2(ds, dz, du) =
∫

{0≤θ≤q}
N(ds, dz, dθ, du)+

∫
{0≤θ≤q}

N1(ds, dz, dθ, du).

Then N2 is a Poisson random measure on (0,∞)× N × (0,∞) with intensity σ dsπq(dz) du,
and (4.1) can be rewritten as

Xt(q) = X0(q)+
∫ t

0

∫
N

∫ Xs−(q)

0
(z− 1)N2(ds, dz, du).

By Theorem 3.2 we see that, for each q ≥ 0, (4.1) has a unique strong solution {Xt(q) : t ≥ 0}.
Theorem 4.1. Suppose that q ≥ p ≥ 0. Let {Xt(q)} be the solution of (4.1) and {Xt(p)} be
the solution of the equation with q replaced by p. Then we have

P{Xt(q) ≥ Xt(p) for all t ≥ 0} = 1.
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Proof. Let ζt = Xt(p)−Xt(q) for t ≥ 0. From (4.1) we have

ζt = ζ0 +
∫ t

0

∫
N+

∫
[0,p]

∫ Xs−(p)

Xs−(q)
(z− 1)N(ds, dz, dθ, du)

−
∫ t

0

∫
N+

∫
(p,q]

∫ Xs−(q)

0
(z− 1)N(ds, dz, dθ, du)

−
∫ t

0

∫ b(q)

0

∫ Xs−(p)

Xs−(q)
N0(ds, dθ, du)−

∫ t

0

∫ b(p)

b(q)

∫ Xs−(p)

0
N0(ds, dθ, du). (4.2)

Let τm = inf{t ≥ 0 : Xt(q) ≥ m or Xt(p) ≥ m}. It is easy to construct a sequence of functions
{fn} on R such that 0 ≤ f ′

n(z) ≤ 1 for z ≥ 0, and fn(z) = f ′
n(z) = 0 for z ≤ 0. Moreover,

fn(z) → z+ := 0 ∨ z increasingly as n → ∞. By (4.2) and Itô’s formula,

fn(ζt∧τm) =
∫ t∧τm

0

∫
N+

∫
[0,p]

∫ Xs−(p)

Xs−(q)
[fn(ζs− + z− 1)− fn(ζs−)]
× 1{ζs−>0}N(ds, dz, dθ, du)

+
∫ t∧τm

0

∫
N+

∫
(p,q]

∫ Xs−(q)

0
[fn(ζs− − z+ 1)− fn(ζs−)]N(ds, dz, dθ, du)

+
∫ t∧τm

0

∫ b(q)

0

∫ Xs−(q)

Xs−(p)
[fn(ζs− − 1)− fn(ζs−)] 1{ζs−>0}N0(ds, dθ, du)

+
∫ t∧τm

0

∫ b(p)

b(q)

∫ Xs−(p)

0
[fn(ζs− − 1)− fn(ζs−)]N0(ds, dθ, du)

≤ σ

∫ t∧τm

0
ζs− 1{ζs−>0} ds

∫
N+
(z− 1)πp(dz)+ martingale.

Taking the expectation in both sides and letting n → ∞ gives

E[ζ+
t∧τm ] ≤ σ(g′

p(1)− 1 + b(p))

∫ t

0
E[ζ+

s∧τm ] ds.

Hence, E[ζ+
t∧τm ] = 0 for all t ≥ 0. Since τm → ∞ as m → ∞, this proves the desired

comparison result.

Proposition 4.1. There is a locally bounded positive function (t, u) 
→ C(t, u) on [0,∞)2

satisfying, for any t ≥ 0 and p ≤ q ≤ u < ∞,

E

{
sup

0≤s≤t
[Xs(q)−Xs(p)]

}
≤ C(t, u){X0(q)−X0(p)+ g′

q(1)− g′
p(1)}.

Proof. Let ξt = Xt(q)−Xt(p). From (4.1) we obtain

sup
0≤s≤t

ξs ≤ ξ0 +
∫ t

0

∫
N+

∫
[0,q]

∫ Xs−(q)

Xs−(p)
(z− 1)N(ds, dz, dθ, du)

+
∫ t

0

∫
N+

∫
(p,q]

∫ Xs−(p)

0
(z− 1)N(ds, dz, dθ, du)

+
∫ t

0

∫ b(p)

b(q)

∫ Xs−(p)

0
N0(ds, dθ, du).

https://doi.org/10.1239/jap/1402578627 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1402578627


326 H. HE AND R. MA

Hence,

E

[
sup

0≤s≤t
ξs

]
≤ ξ0 + σ [g′

p(1)− 1 + b(q)]
∫ t

0
E[ξs] ds + σ [g′

q(1)− g′
p(1)]

∫ t

0
E[Xs(p)] ds.

Since t 
→ E[Xt(p)] is locally bounded, by Gronwall’s inequality, we obtain the desired
estimate, completing the proof.

From the discussion above, given a constant σ > 0 and a family of probability generating
functions {gθ : θ ≥ 0}, we obtain a continuous-time and discrete-state branching process flow
{Xt(q) : t ≥ 0, q ≥ 0} as the solution of equation (4.1). For every t ≥ 0, define the random
function X̃t ∈ F [0, 1] by X̃t (1) = Xt(1) and

X̃t (q) = inf{Xt(u) : rational u ∈ (q, 1]}, 0 ≤ q < 1. (4.3)

By Proposition 4.1, for each q ∈ [0, 1], we have

P{X̃t (q) = Xt(q) for all t ≥ 0} = 1.

Therefore, {X̃t (q) : t ≥ 0} is also càdlàg and solves (4.1) for every q ∈ [0, 1].

5. Scaling limits of the discrete branching flows

In this section we prove some limit theorems for the discrete-state branching flows, which
will lead to the continuous-state branching flows of Li (2014). We shall present the limit
theorems in the settings of measure-valued processes and path-valued processes.

Suppose that, for each k ≥ 1, there is a positive constant σk and a family of generating
functions {g(k)θ : θ ≥ 0} satisfying the assumptions specified at the beginning of Section 4.
Then we can define π(k)θ (dz) and π̄ (k)(dz, dθ) in the same way as there. Let {X(k)t (q) : t ≥ 0}
be the corresponding solution of (4.1) and {X̃(k)t (q) : t ≥ 0, q ∈ [0, k]} be defined in the same
way as in (4.3). Define

Y
(k)
t (q) = 1

k
X̃
(k)
t (kq), q ∈ [0, 1].

From (4.1) we have

Y
(k)
t (q) = Y

(k)
0 (q)+ 1

k

∫ t

0

∫
N+

∫
[0,kq]

∫ kY
(k)
s− (q)

0
(z− 1)N(ds, dz, dθ, du)

− 1

k

∫ t

0

∫ bk(kq)

0

∫ kY
(k)
s− (q)

0
N0(ds, dθ, du). (5.1)

We can use a standard stopping time argument to show that, for any q ∈ [0, 1], the
function t 
→ E[Y (k)t (q)] is locally bounded. Then, by an argument similar to the proof of
Proposition 3.2, we have the following proposition.

Proposition 5.1. For any t ≥ 0 and q ∈ [0, 1], we have

E

[
sup

0≤s≤t
Y (k)s (q)

]
≤ Y

(k)
0 (q) exp{tσk((g(k)kq )′(1)− 1 + bk(kq))}.

The random function Y (k)t ∈ F [0, 1] induces a random measure Y (k)t ∈ M[0, 1] so that
Y
(k)
t ([0, q]) = Y

(k)
t (q) for q ∈ [0, 1]. We are interested in the asymptotic behavior of the
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process {Y (k)t : t ≥ 0} as k → ∞. For any f ∈ C1[0, 1], we can use Fubini’s theorem to see
that

〈Y (k)t , f 〉 = f (1)Y (k)t (1)−
∫ 1

0
f ′(q)Y (k)t (q) dq. (5.2)

Fix an integer n ≥ 1 and let qi = i/2n for i = 0, 1, . . . , 2n. By (5.1), we have

2n∑
i=1

f ′(qi)Y (k)t (qi) =
2n∑
i=1

f ′(qi)Y (k)0 (qi)

+ 1

k

2n∑
i=1

f (qi)

∫ t

0

∫
N+

∫
[0,kqi ]

∫ kY
(k)
s− (qi )

0
(z− 1)N(ds, dz, dθ, du)

− 1

k

2n∑
i=1

f ′(qi)
∫ t

0

∫ bk(kqi )

0

∫ kY
(k)
s− (qi )

0
N0(ds, dθ, du)

=
2n∑
i=1

f ′(qi)Y (k)0 (qi)

+ 1

k

∫ t

0

∫
N+

∫
[0,k]

∫ kY
(k)
s− (1)

0
F (k)n (s, θ, u)(z− 1)N(ds, dz, dθ, du)

− 1

k

∫ t

0

∫ bk(0)

0

∫ kY
(k)
s− (1)

0
F̃ (k)n (s, θ, u)N0(ds, dθ, du), (5.3)

where

F (k)n (s, θ, u) =
2n∑
i=1

f ′(qi) 1{θ≤kqi } 1{u≤kY (k)s− (qi )}

and F̃ (k)n (s, θ, u) =
2n∑
i=1

f ′(qi) 1{θ≤bk(kqi )} 1{u≤kY (k)s− (qi )} .

By the right continuity of q 
→ Y
(k)
t (q), it is easy to see that, as n → ∞,

2−nF (k)n (s, θ, u) → F (k)(s, θ, u) :=
∫ 1

0
f ′(q) 1{θ≤kq} 1{u≤kY (k)s− (q)} dq

and

2−nF̃ (k)n (s, θ, u) → F̃ (k)(s, θ, u) :=
∫ 1

0
f ′(q) 1{θ≤bk(kq)} 1{u≤kY (k)s− (q)} dq.

Then, by (5.3), we have, almost surely,
∫ 1

0
f ′(q)Y (k)t (q) dq =

∫ 1

0
f ′(q)Y (k)0 (q) dq

+ 1

k

∫ t

0

∫
N+

∫
[0,k]

∫ kY
(k)
s− (1)

0
F (k)(s, θ, u)(z− 1)N(ds, dz, dθ, du)

− 1

k

∫ t

0

∫ bk(0)

0

∫ kY
(k)
s− (1)

0
F̃ (k)(s, θ, u)N0(ds, dθ, du). (5.4)
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From (5.1), (5.2), and (5.4), it follows that, almost surely,

〈Y (k)t , f 〉 = 〈Y (k)0 , f 〉

+ 1

k

∫ t

0

∫
N+

∫
[0,k]

∫ kY
(k)
s− (1)

0
[f (1)− F (k)(s, θ, u)](z− 1)N(ds, dz, dθ, du)

− 1

k

∫ t

0

∫ bk(k)

0

∫ kY
(k)
s− (1)

0
[f (1)− F̃ (k)(s, θ, u)]N0(ds, dθ, du)

+ 1

k

∫ t

0

∫ bk(0)

bk(k)

∫ kY
(k)
s− (1)

0
F̃ (k)(s, θ, u)N0(ds, dθ, du). (5.5)

Proposition 5.2. Suppose that Y (k)0 (1) converges to some Y0(1) as k → ∞ and

sup
k≥1

σk[(g(k)k )′(1)− 1 + bk(0)] < ∞.

Then {Y (k)t : t ≥ 0}, k = 1, 2, . . . is a tight sequence in D([0,∞),M[0, 1]).
Proof. For any t ≥ 0 and f ∈ C[0, 1], by Proposition 5.1, it is easy to see that

t 
→ Ct := sup
k≥1

E

[
sup

0≤s≤t
〈Y (k)s , f 〉

]

is locally bounded. Hence, for every fixed t ≥ 0, the sequence 〈Y (k)t , f 〉 is tight. Let τk be a
bounded stopping time for {Y (k)t : t ≥ 0} and assume that the sequence {τk : k = 1, 2, . . .} is
bounded above by T ≥ 0. Let f ∈ C1[0, 1]. By (5.5), we see that

E[|〈Y (k)τk+t , f 〉 − 〈Y (k)τk
, f 〉|]

≤ σk

k
E

[∫ t

0
ds

∫
N+

∫
[0,k]

∫ kY
(k)
s+τk (1)

0
(z− 1)|f (1)− F (k)(s + τk, θ, u)|π̄ (k)(dz, dθ) du

]

+ σk

k
E

[∫ t

0
ds

∫ bk(k)

0
dθ

∫ kY
(k)
s+τk (1)

0
|f (1)− F̃ (k)(s + τk, θ, u)| du

]

+ σk

k
E

[∫ t

0
ds

∫ bk(0)

bk(k)

dθ
∫ kY

(k)
s+τk (1)

0
|F̃ (k)(s + τk, θ, u)| du

]
. (5.6)

For s, θ, u > 0, let Y−1
s,k (u) = inf{q ≥ 0 : Y (k)s (q) > u} and b−1

k (u) = inf{q ≥ 0 : bk(q) > u}.
It is easy to see that

{q ≥ 0 : u ≤ kY (k)s (q)} = [Y−1
s,k (u/k),∞), {q ≥ 0 : θ ≤ bk(kq)} = [0, b−1

k (θ)/k]
except for at most countably many u > 0 and θ > 0, respectively. Hence, in (5.6) we can
replace f (1)− F (k)(s, θ, u) by

f (1)−
∫ 1

θ/k

f ′(q) 1{Y−1
s,k (u/k)≤q} dq = f

(
Y−1
s,k

(
u

k

)
∨ θ

k

)

and F̃ (k)(s, θ, u) can be replaced by∫ 1

0
f ′(q) 1{q≤b−1

k (θ)/k} 1{Y−1
s,k (u/k)≤q} dq

= [f (1 ∧ (b−1
k (θ)/k))− f (Y−1

s,k (u/k))] 1{Y−1
s,k (u/k)≤b−1

k (θ)/k} .
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Then, from (5.6), we have

E[|〈Y (k)τk+t , f 〉 − 〈Y (k)τk
, f 〉|]

≤ σkE

[∫ t

0
ds

∫ 1

0
Y
(k)
s+τk (dx)

∫
N+

∫
[0,k]

(z− 1)|f (x ∨ θ)|π̄ (k)(dz, dθ)

]

+ σkE

[∫ t

0
ds

∫ bk(k)

0
dθ

∫ 1

0
|f (x)|Y (k)s+τk (dx)

]

+ σkE

[∫ t

0
ds

∫ bk(0)

bk(k)

dθ
∫ 1

0

∣∣∣∣f
(
b−1
k (θ)

k

)
− f (x)

∣∣∣∣Y (k)s+τk (dx)
]

≤ ‖f ‖σk
∫ t

0
E[Y (k)s+τk (1)] ds

∫
N+
(z− 1)π(k)k (dz)

+ ‖f ‖σkbk(k)E
∫ t

0
[Y (k)s+τk (1)] ds

+ 2‖f ‖σk[bk(0)− bk(k)]
∫ t

0
E[Y (k)s+τk (1)] ds

≤ ‖f ‖σk((g(k)k )′(1)− 1 + 2bk(0))
∫ t

0
E[Y (k)s+τk (1)] ds

≤ 2‖f ‖Y (k)0 (1)tσkAk exp{σkAk(t + T )}, (5.7)

where Ak = (g
(k)
k )′(1)− 1 + bk(0) and the last inequality follows by Proposition 5.1. For

f ∈ C[0, 1], the above inequality follows by an approximation argument. From (5.7) we have

lim
t→0

sup
k≥1

E[|〈Y (k)τk+t , f 〉 − 〈Y (k)τk
, f 〉|] = 0.

By a criterion of Aldous (1978), the sequence {〈Y (k)t , f 〉 : t ≥ 0} is tight in D([0,∞),R); see
also Ethier and Kurtz (1986, pp. 137–138). Hence, the tightness criterion of Roelly (1986)
implies that {Y (k)t : t ≥ 0} is tight in D([0,∞),M[0, 1]).

For z ≥ 0, define
φ
(k)
θ (z) = kσk[g(k)kθ (e−z/k)− e−z/k].

Let us consider the following assumption.

Assumption 5.1. For each l ≥ 0, the sequence {φ(k)θ (z)} is Lipschitz with respect to z uniformly
on [0, 1] × [0, l] and there is an admissible family of branching mechanisms {φθ (z) : θ ≥ 0}
with (∂/∂θ)φθ (z) = −ψθ(z) such that φ(k)θ (z) → φθ (z) uniformly on [0, 1]×[0, l] as k → ∞.

Let {Yt : t ≥ 0} be the càdlàg superprocess with the transition semigroup defined by (2.3)
and (2.4).

Theorem 5.1. Suppose that Assumption 5.1 holds and supk≥1 σkbk(0) < ∞. If Y (k)0 converges
weakly to Y0 ∈ M[0, 1] then {Y (k)t : t ≥ 0} converges in distribution to the superprocess
{Yt : t ≥ 0} on D([0,∞),M[0, 1]).

Proof. Under the assumption, we have

sup
k≥1

σk[(g(k)k )′(1)− 1 + bk(0)] < ∞.
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By Proposition 5.2 and Skorokhod’s representation theorem, to simplify the notation we pass to
a subsequence and simply assume {Y (k)t : t ≥ 0} converges a.s. to a process {Zt : t ≥ 0} in the
topology of D([0,∞),M[0, 1]). Since the solution of the martingale problem (2.2) is unique,
it suffices to prove that the weak limit point {Zt : t ≥ 0} of the sequence {Y (k)t : t ≥ 0} is the
solution of the martingale problem. Let Y−1

s,k (u) and b−1
k (u) be defined as in Proposition 5.2.

For every G ∈ C2(R) and f ∈ C1[0, 1], we use (5.5) and Itô’s formula to obtain

G(〈Y (k)t , f 〉)
= G(〈Y (k)0 , f 〉)

+ σk

∫ t

0
ds

∫
N+

∫
[0,k]

∫ kY
(k)
s− (1)

0
{G(〈Y (k)s− , f 〉 + k−1(z− 1)[f (1)− F (k)(s, θ, u)])

−G(〈Y (k)s− , f 〉)}π̄ (k)(dz, dθ) du

+ σk

∫ t

0
ds

∫ bk(k)

0
dθ

∫ kY
(k)
s− (1)

0
{G(〈Y (k)s− , f 〉 − k−1[f (1)− F̃ (k)(s, θ, u)])
−G(〈Y (k)s− , f 〉)} du

+ σk

∫ t

0
ds

∫ bk(0)

bk(k)

dθ
∫ kY

(k)
s− (1)

0
{G(〈Y (k)s− , f 〉 + k−1F̃ (k)(s, θ, u))−G(〈Y (k)s− , f 〉)} du

+ local martingale

= G(〈Y (k)0 , f 〉)

+ σk

∫ t

0
ds

∫
N+

∫
[0,k]

∫ kY
(k)
s− (1)

0
{G(〈Y (k)s− , f 〉 + k−1(z− 1)f (Y−1

s,k (u/k) ∨ (θ/k)))

−G(〈Y (k)s− , f 〉)}π̄ (k)(dz, dθ) du

+ σk

∫ t

0
ds

∫ bk(k)

0
dθ

∫ kY
(k)
s− (1)

0
{G(〈Y (k)s− , f 〉 − k−1f (Y−1

s,k (u/k)))

−G(〈Y (k)s− , f 〉)} du

+ σk

∫ t

0
ds

∫ bk(0)

bk(k)

dθ
∫ kY

(k)
s− (1)

0
{G(〈Y (k)s− , f 〉 + k−1[f (b−1

k (θ)/k)− f (Y−1
s,k (u/k))]

× 1{Y−1
s,k (u/k)≤b−1

k (θ)/k})

−G(〈Y (k)s− , f 〉)} du+ local martingale

= G(〈Y (k)0 , f 〉)
+ kσk

∫ t

0
ds

∫
[0,1]

Y
(k)
s− (dx)

∫
N+

∫
[0,1]

{G(〈Y (k)s− , f 〉 + k−1(z− 1)f (x ∨ θ))

−G(〈Y (k)s− , f 〉)}π̄ (k)(dz, k dθ)

+ kσkbk(k)

∫ t

0
ds

∫
[0,1]

{G(〈Y (k)s− , f 〉 − k−1f (x))−G(〈Y (k)s− , f 〉)}Y (k)s− (dx)

+ kσk

∫ t

0
ds

∫
[0,1]

Y
(k)
s− (dx)

∫ x

1
{G(〈Y (k)s− , f 〉 + k−1[f (θ)− f (x)])

−G(〈Y (k)s− , f 〉)}bk(k dθ)+ local martingale
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= G(〈Y (k)0 , f 〉)
+ kσk

∫ t

0
ds

∫
[0,1]

Y
(k)
s− (dx)

∫
N

∫
[0,1]

{G(〈Y (k)s− , f 〉 + k−1(z− 1)f (x ∨ θ))

−G(〈Y (k)s− , f 〉)}π̄ (k)(dz, k dθ)

+ kσk

∫ t

0
ds

∫
[0,1]

Y
(k)
s− (dx)

∫
{0}

∫ 1

x

εk(s, x, θ)π̄
(k)(dz, k dθ)

+ local martingale, (5.8)

where

εk(s, θ, x) = {G(〈Y (k)s− , f 〉 − k−1f (x))−G(〈Y (k)s− , f 〉 − k−1f (θ))}
− {G(〈Y (k)s− , f 〉 + k−1[f (θ)− f (x)])−G(〈Y (k)s− , f 〉)}.

It is easy to see that

kσk

∫
{0}

∫ 1

x

εk(s, x, θ)π̄
(k)(dz, k dθ)

tends to 0 uniformly as k → ∞. Let G(x) = e−x . By letting k → ∞ in (5.8) we obtain (2.2)
for f ∈ C1[0, 1]. A simple approximation shows that the martingale problem (2.2) actually
holds for all f ∈ C[0, 1]. By the proof of Theorem 7.13 in Li (2011), we obtain the result
completing the proof.

Let {0 ≤ a1 < a2 < · · · < an = 1} be an ordered set of constants. Denote by {Yt,ai : t ≥ 0}
and {Y (k)t,ai

: t ≥ 0} the restriction of {Yt : t ≥ 0} and {Y (k)t : t ≥ 0} to [0, ai], respectively. Let
Yt (ai) := Yt [0, ai] and Y (k)t (ai) := Y

(k)
t [0, ai] for every t ≥ 0, i = 1, 2, . . . , n. By arguments

similar to those in He and Ma (2014), we have the following results.

Theorem 5.2. Suppose that Assumption 5.1 is satisfied and supk≥1 σkbk(0) < ∞. If Y (k)0
converges weakly to Y0 ∈ M[0, 1] then {(Y (k)t,a1

, . . . , Y
(k)
t,an
) : t ≥ 0} converges in distribution to

{(Yt,a1 , . . . , Yt,an) : t ≥ 0} on D([0,∞),M[0, a1] × · · · ×M[0, an]).
Corollary 5.1. Suppose that Assumption 5.1 is satisfied and supk≥1 σkbk(0) < ∞. If

(Y
(k)
0 (a1), . . . , Y

(k)
0 (an))

converges to (Y0(a1), . . . , Y0(an)) then it follows that {(Y (k)t (a1), . . . , Y
(k)
t (an)) : t ≥ 0}

converges in distribution to {(Yt (a1), . . . , Yt (an)) : t ≥ 0} on D([0,∞),Rn+).

Example 5.1. Suppose that φ is defined in (2.1). Let �φ be the set of θ ≥ 0 such that
∫ ∞

1
ueθum(du) < ∞.

Then a particular choice of φθ is

φθ (·) = φ(· − θ)− φ(−θ), θ ∈ �φ.
Suppose that [0, 1] ⊂ �φ . Since φ1(·) is a branching mechanism, Li (2011, p.93) implies that
there is a sequence of generating functions {g(k)k : k ≥ 1} and some σk such that

kσk[g(k)k (e−z/k)− e−z/k] → φ(z− 1)− φ(−1) as k → ∞.
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Hence, for θ ∈ [0, 1], define

g
(k)
kθ (z) = 1 − e(1−θ)/kg(k)k (e−(1−θ)/k)+ e(1−θ)/kg(k)k (e−(1−θ)/kz).

The reader can check that Assumption 5.1 holds with φθ (·) = φ(· − θ) − φ(−θ). In fact, if
g
(k)
k corresponds to a probability measure {p(k)i : i ≥ 0} then, for each θ ∈ [0, 1], g(k)kθ is the

generating function of the probability measure

p
(k)
i (θ) = p

(k)
i e−(1−θ)(i−1)/k, i ≥ 1,

and p(k)0 (θ) = 1 − ∑
i≥1 p

(k)
i (θ).
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