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Objective. Clinical research involving humans is critically important, but it is a lengthy and expensive process. Most studies require institutional review board (IRB)
approval. Our objective is to identify predictors of delays or accelerations in the IRB review process and apply this knowledge to inform process change in an effort to
improve IRB efficiency, transparency, consistency and communication.

Methods. We analyzed timelines of protocol submissions to determine protocol or IRB characteristics associated with different processing times. Our evaluation
included single variable analysis to identify significant predictors of IRB processing time and machine learning methods to predict processing times through the IRB
review system. Based on initial identified predictors, changes to IRB workflow and staffing procedures were instituted and we repeated our analysis.

Results. Our analysis identified several predictors of delays in the IRB review process including type of IRB review to be conducted, whether a protocol falls under
Veteran’s Administration purview and specific staff in charge of a protocol's review.

Conclusions.We have identified several predictors of delays in IRB protocol review processing times using statistical and machine learning methods. Application of this
knowledge to process improvement efforts in two IRBs has led to increased efficiency in protocol review. The workflow and system enhancements that are being made
support our four-part goal of improving IRB efficiency, consistency, transparency, and communication.
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Introduction

The US research enterprise has been called upon by the Institute of
Medicine to improve its efficiency and efficacy [1, 2]. Clinical and
Translational Science Award Programs (CTSAs) have risen to this
challenge by developing metrics to identify areas for improvement in
the initiation and conduct of research. One area that has been a target
for those looking to improve research efficiency is the Institutional
Review Board (IRB) review process.

Since the 1975 National Research Act, but more especially since the
adoption of the Common Rule in 1991, IRBs have played a key role in
the institutions’ responsibilities to protect the rights and welfare of
research participants and especially ensuring compliance with the
federal regulations governing human subjects research [3]. Some
researchers have illuminated a lack of transparency about many
aspects of IRB processes [4, 5]. In an effort to better understand and
improve IRB processes, and to facilitate the timely approval and
initiation of human subjects research protocols at our institution, we
have undertaken a quantitative evaluation of the IRB review process
using 2 biomedical IRBs’ data. The main objective of this project is to
determine protocol and IRB characteristics that are predictors of
delays or accelerations in the IRB approval process of health-related
research.

Background and Significance

Institutions conducting federally funded research or research regu-
lated by the Food and Drug Administration are required to protect the
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rights and welfare of human subjects, and must ensure IRB review and
approval occurs before nonexempt human subjects research can begin
[6, 7]. Federal regulations outline the specific criteria for IRB approval
(21 CFR 56.111, 45 CFR 46.111). The criteria include: protection for
vulnerable subjects, data monitoring for patient safety, equitable
subject selection, obtaining and documenting informed consent,
privacy protection and confidentiality, risk/benefit analysis, and risk
minimization. The lack of specificity in the federal regulations has led to
significant variability in the processes, procedures, and decisions made
by IRBs [5, 8, 9]. This variability, coupled with a lack of understanding
of IRB processes, can result in frustration and confusion for
researchers [10–12]. Delays and obstructions in the initiation of
research projects, related to the IRB process and its lack of
consistency and efficiency, have also been described [4, 11, 13–16].

A review of the literature in this area shows that efforts to improve
efficiencies and guideline compliance have been undertaken at several
institutions. One such effort is a “compliance tool” of guidelines used
during a convened IRB to remind members of their goals for review
[17]. Another effort involves benchmarking targeted areas of interest
in IRB workflows [18]. However, fundamental variations in IRB
processing times have, thus far, been incompletely analyzed and
characterized [17, 18]. Related studies have evaluated the overall
research process to develop metrics to improve research process
timelines [19–21]. A more targeted evaluation of one institution’s
Human Research Protection Program has been reported [22]. And,
an evaluation of IRB processing times to inform development of an
electronic IRB database has been developed [23]. To our knowledge,
our analysis is the first to use both statistical and machine learning
methods to evaluate protocol and IRB factors affecting protocol
review processing times.

In this study, we investigated the hypothesis that specific features of
protocols and IRBs are correlated with different processing times, and
that these features can be identified through the use of machine
learning methods. The immediate goal of this study was to provide new
insight and understanding of protocol and IRB features that were
correlated with delays or accelerations in the IRB approval process in
order to inform IRB process improvement efforts at our institution.
Once patterns were discovered, this information guided IRB process
improvement efforts. After staff and process changes were in place for
15 months, we repeated this computational analysis of IRB processing
time. The goals of these iterative efforts were improvement of:
efficiency, consistency, transparency, communication, and, as a result,
timely initiation of research protocols.

Methods

We adapted principles from the business intelligence literature to
improve understanding and efficiency of the IRB review process [24].
Business intelligence methods have been successfully applied to
improve radiology workflows, patient safety, and cost efficiency
in healthcare systems [24–28]. Business process modeling has
previously been used for clinical research improvement evaluating
the overarching research workflow from protocol development to
implementation, but did not focus closely on the IRB process [21].
Using data from an electronic system supporting 2 IRBs, single variable
analysis and machine learning methods were evaluated to determine
if specific protocol or IRB features were associated with different
processing times within the IRB system (Fig. 1). The Waikato
Environment for Knowledge Analysis suite of machine learning
algorithms was used in this analysis [29, 30]. A simplified diagram of
the IRB review process is included in Fig. 2.

From the IRBs, we initially obtained information on 2834 IRB-
approved submissions, January 1, 2011 through December 31, 2012.
These approved submissions included initial reviews by a convened
IRB, initial reviews conducted under expedited procedures, initial
reviews of exemptions (including determinations that a project did not
meet the definition of human subjects research), change protocol
reviews that underwent either convened or expedited review, and
continuing reviews. The information collected by the electronic IRB
data system includes features such as whether a protocol involved
multiple sites, if the protocol included enrollment of vulnerable
populations (eg, prisoners or minors), and specific IRB subprocess
completion times along with total IRB processing time to obtain
approval. Data preprocessing included systematic review of the
data with IRB staff to confirm term meanings and stages within the
IRB process.

Features contained in the databases were divided as “early predictors”
or “late predictors.” “Early predictors” included mostly protocol
features (eg, whether a protocol was to be implemented at a Veterans
Administration Hospital). However, some IRB-related features are
also known immediately at the time of protocol submission (eg, IRB
staff in charge of a protocol’s review). One hundred seventy-six
features were evaluated and consisted of 149 early predictors and
27 late predictors [online Supplementary Material (Appendix A)
describes early predictors]. The “feature to be predicted” is the class
variable used in building the predictive models. The class variable used to
address the primary study question was the IRB processing time.

Usage
Database

from 2 IRBs

2834
protocols

(2011 – 2012)

Single Variable Analysis

T-tests
ANOVA

Machine Learning Analysis

Bagging of decision trees
Decision tables
Decision trees
Lazy kstar
Least median squared
Linear regression
Neural networks
Random forests
Support vector machines

2871
protocols

(2013 – 2014)

Fig. 1. Overview of data analysis.
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IRB processing time in this study does not include the time the IRB is
waiting for more information, clarification or documentation from the
protocol’s principal investigator or study team. For example, for the
purposes of this study, when a question or clarification request was
communicated to the study team during a review process, the IRB
processing time clock stopped and resumed once a response was
returned to the IRB. Our preliminary evaluations performed on a smaller
IRB data set used processing time as a numeric (continuous) variable.
After consultation with IRB staff, it was determined that using a
nominal (categorical) variable for specific processing “time-frames-
of-interest,” based on IRB workflows, may prove most informative for
the IRB’s process improvement efforts. Therefore, analyses were
performed separately using: (1) total processing time as a numeric
variable for regression analyses and (2) total processing time
discretized into “time-frames-of-interest.” The discretized total
processing time could take on 1 of 6 values for protocols undergoing
Initial Review-Convened (IR-Full) or Change Protocol Review-Convened (CP-
Full): A= 0–30 days, B= 31–45 days, C= 46–60 days, D= 61–75 days,
E= 76–90 days, and F> 90 days. For Expedited and Exempt reviews
the discretized total processing time could take on 1 of 5 values:
A= 0–7 days, B= 8–14 days, C=15–21 days, D= 22–28 days, and
E> 28 days. In addition, data were analyzed in 2 ways in relation
to type of IRB review performed (IRB-Determined Review Type):
(1) all protocols were pooled, regardless of type of IRB review
performed, and the variable IRB-Determined Review Type was used
as a feature that could be significant/predictive of the time for IRB
approval and (2) each type of IRB review was analyzed separately
with only protocols undergoing the same type of review analyzed
together.

Feature selection was based on: (1) input from domain experts,
(2) expected potential for information gain, and (3) information
from the Waikato Environment for Knowledge Analysis feature
selection tool. Features with numerous potential values (eg, ID
number) were eliminated because of “overfitting”: producing a
model that could accurately predict the class variable for data in the
training set, but would have too many specific values to generalize to
new data. The feature Department of Study Origin exhibited this
problem because it was initially represented as a nominal variable
that could take on 121 possible values. Due to the large number of
possible values that would be specific to a particular training set,
this feature was expected to cause overfitting issues. Therefore,
the single nominal feature was broken into 121 binary features
(ie, Department of Study Origin X—negative, positive) and each
binary feature was independently evaluated in the model. Despite
this approach, Departments of Study Origin were still not informative
in our single variable analysis or models. The Department of Study
Origin feature is listed in the Feature Table as a single entry due

to space considerations in the online Supplementary Material
(Appendix A).

Single variable analysis was completed for each early predictor.
Single variable analysis was performed using t-tests with individual
variable values compared with all possible values for that variable.
p Values (significance levels) were adjusted using the Bonferroni
correction to take into account the large number of multiple
comparisons [31]. In cases where a variable was represented as more
than 2 groups (ie, having more than 2 means, such as in the Month
Received variable’s time to protocol approval), we used 1-way analysis
of variance (ANOVA) testing to compare multiple means. Of those
showing significance, a post hoc Tukey range analysis was used to
determine all significant pairs.

This study used machine learning methods to determine if there
were combinations or functions of protocol and IRB characteristics
that were more predictive of our class variables than the individual
characteristics alone. Machine learning methods have been applied
to a variety of medical problems to find new patterns or correlations
within existing data [32–35]. Supervised machine learning methods
were used in our analysis. Given a training set consisting of protocol
and IRB characteristics, along with a known class variable for each
protocol, a supervised machine learning algorithm induces a model
that represents the class variable as a function of the protocol and
IRB characteristics. Such models can provide insight into the
factors that explain the class variable, and they can be applied to
previously unseen instances (ie, protocols) to predict their class
variables.

In this study, the input data consisted of protocol and IRB
representations, and the machine learning methods were used to
identify functions of the given features that were strongly predictive of
a specific time to IRB approval of that protocol. We started our
analysis using decision tree algorithms. Decision tree learners are
methods that recursively split the training set, based on identified
characteristics in the data, into subsets with purer collections of
data on the basis of the targeted class variable. This produces a model
that can be represented as an upside down tree with the “root” (at the
top) containing all the data with a mixture of class variable values
down to the “leaves” which contain data with only one or a few class
variable values. The goal is to identify functions of the variables
(eg, Month Received and IRB-Determined Review Type) that explain
the class variable. Then, by looking at the tree, an observer can
determine which characteristics (or combination of characteristics)
is/are predictive (found in the branch path) leading out to the particular
class variable value at the end of the branching [36, 37]. We also
learned bagged trees: ensembles of trees that have demonstrated

Fig. 2. Flow diagram of Institutional Review Board (IRB) processes (Convened IRB Review). Scientific review is not included in IRB processing time because this is
not under the purview of the IRB.
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state-of-the-art predictive accuracy in a wide array of problem
domains [38, 39]. Other supervised machine learning algorithms
used included linear regression, least median squared regression,
decision tables, support vector machines, neural networks, and lazy
kstar.

We validated models created from each of these algorithms using
a 10-fold cross validation method. The data were separated into
10 separate partitions (using the entire data set each time) with 90% of
each version of the data set used for training and 10% used for testing.
Thus, at the end of this validation, all of the study data were sequen-
tially used as a training and a test set. Our goal in developing and testing
these models was to understand the relationship of protocol and IRB
features and total IRB processing time. In addition to allowing predic-
tion of total processing times for newly submitted protocols, these
models offer knowledge about reasons for delays or accelerations in
the IRB approval process (ie, which features are most positively or

negatively correlated with long or short processing times). We are
continuing to apply this knowledge to our process improvement
efforts in the IRB. Starting in the Fall of 2013, improvements were
instituted that included: changes in staffing; changes in assignment
allocation; increased and improved staff training; improved commu-
nication of expected review timelines; and increased monitoring of
review timeframes. After these changes were in place for 15 months,
we repeated our analysis (using methods described above) and
compared post-improvement results with our initial results.

Results

Statistical Analysis Results

Fig. 3 shows variability in time to approval of Initial Review-Convened
(IR-Full) protocols submitted to the IRB during the 2013-2014 time

Fig. 3. Initial analysis distribution of time to protocol approval (IRB Time) for Initial Review-Convened (IR-Full) protocols submitted 2013-2014.

Table 1. Statistically significant binomial “early predictors” 2013–2014 in pooled analysis

Significant early predictors* p Value

Any scientific review—does this protocol require any scientific review (yes/no) <0.001
Cancer related—is this study cancer related (yes/no) <0.001
Nononcology scientific review committee—does this protocol require scientific review from a nononcology scientific review
committee (yes/no)

<0.001

Industry funded—yes/no 0.001
Investigator initiated—is this protocol investigator initiated (yes/no) 0.003
IRB name—name of IRB conducting review <0.001
Multi-site—is this protocol planned to be conducted at multiple sites (yes/no) 0.046
Point of contact—is the principal investigator the person the IRB contacts with questions or concerns (yes/no) 0.011
Replacement protocol—is this protocol a replacement (renewal) of a previously submitted protocol (yes/no) (Note: as a quality
assurance measure, the UW has a policy that for most studies that are open more than 5 y, that a new IRB application must be
submitted to replace the previous application)

<0.001

UW-coordinated—is this a multisite study coordinated by UW (yes/no) <0.001
VA—does this study fall under VA purview (yes/no) <0.001
Vulnerable children—does this protocol include children (defined as a vulnerable group per the Code of Federal Regulations) (yes/no) <0.001
Vulnerable groups—does this protocol include any vulnerable groups (eg, children, persons developmentally delayed) (yes/no) <0.001
Vulnerable impaired—does this protocol include vulnerable groups with developmental impairments (yes/no) <0.001

IRB, Institutional Review Board; VA, Veterans Administration; UW, University of Wisconsin-Madison.
* Predictors are variables that may influence how long a protocol spends in IRB Review before approval is obtained. An example is whether or

not the protocol has vulnerable populations included in its study. If vulnerable populations are included, the IRB may take longer to review the
protocol to ensure appropriate measures are outlined to protect these subjects.
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period. Only approved studies are included in this graph. Less than 5%
of submitted studies did not obtain IRB approval within 1 year of
submission.

Features that did not raise concerns for overfitting but contained many
possible values were converted to binary variables. For example, the
feature “issue” initially had several possible values corresponding
to different types of issues (eg, missing documentation, clarification
needed). On review with IRB staff, it was decided to bin all issues
together and determine how the presence of any “issue” would affect
processing. Another example is described above in the feature
selection section regarding Departments of Study Origin. Features that
are known early in the review process are called early predictors and
consist mostly of protocol features. Binomial early predictors that
were statistically significant are listed in Table 1.

ANOVA evaluations were also undertaken for variables with multiple
values to see pairings of values with significance. Variables with
pairs showing significant differences in ANOVA evaluations were
Principal Investigator-Requested Application, Conducting Organization,
IRB-Determined Review Type, IRB Staff, Month Received, Review Type
[for detailed description of the variable, see online Supplementary
Material (Appendix C)].

Processing time improvements and changes are shown in the 4 box
plot figures. Fig. 4 shows processing time improvements on the basis of
Month Received. Fig. 5 shows processing time improvements and
changes on the basis of IRB-Determined Review Type. Box plot data

components: the lower line of the box is the first quartile of the data,
the upper line of the box is the third quartile, the line within the box is
the median, the number within the box is the mean number of
processing days, the “whiskers” extending from the upper and lower
box represent the data that are within 1.5 times the upper and lower
quartile values, respectively, the open circles represent data values that
are outliers. The width of the box represents how many protocols
were received that month.

Machine Learning Analysis Results

Features used in machine learning analysis included early predictors
(features that are known early in the review process—mostly protocol
features) and late predictors (features known late in the review
process—mostly IRB process features). Early predictors were of
greatest interest in prediction as discussed in Discussion section.
Those early predictors proving most informative in our machine
learning models were:

1. Cancer related (is this protocol cancer related (yes/no))
2. IRB Staff (IRB member in charge of this protocol’s review)
3. IRB-Determined Review Type (the type of review that will be

conducted (eg, convened review, expedited review))
4. Month Received (the month the IRB received the protocol to begin

review)
5. Replacement (is this protocol a replacement application review of a

previously approved protocol (yes/no))
6. Veterans Administration (VA) (is this a VA study (yes/no))
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Fig. 4. Institutional Review Board (IRB) processing time (days) for all submissions by month received. (a) 2011–2012 and (b) 2013–2014.
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The variable to predict or classifier was All IRB Time (time for
IRB processing).

Machine learning algorithms’ predictive performances were
measured using correlation coefficients, with high values showing good
correspondence between the measured and predicted total IRB
processing time in these models. Mean absolute error was measured
using the number of days the prediction deviated from actual process-
ing time of a known protocol. Algorithms using time for IRB approval
as a numerical target variable (instead of the discretized time variable)
had higher correlation coefficients. Pooled machine learning results
with time as a numeric variable are shown in Table 2. Analysis of each
IRB-Determined Review Type separately did not show higher correlation
coefficients than the pooled analysis, thus results are not included.

Discussion

This study was performed to determine whether specific features of
protocols and/or the IRB protocol approval process could be predictive
of the total IRB processing time for previously unseen protocols.
Challenges in this analysis included the laborious, iterative task of
understanding and transforming the raw data into a useable form for
analysis. This study was undertaken as a quality improvement study.

Therefore, its primary limitation is the use of only 2 IRBs’ electronic data,
which may decrease generalizability. It is being shared with the scientific
community as an example of how an IRB process analysis and improve-
ment project can be undertaken. The results of this analysis are already
being used at our institution to inform process change for improved IRB
efficiency, transparency, and communication with investigators. Benefits
of the knowledge gained from this analysis are shown in improved IRB
protocol processing times as shown in Figs. 4 and 5.
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Fig. 5. Institutional Review Board (IRB) processing time (days) for protocol approval by IRB type. (a) 2011–2012 and (b) 2013–2014.

Table 2. Machine learning results (using the 6 early predictors)

Algorithms Correlation coefficient Mean absolute error (days)

M5P Model Tree Bagging 0.81 9.06
M5P Model Tree 0.81 9.11
Decision Table 0.78 9.37
Lazy KStar 0.77 9.60
Linear Regression 0.77 9.91
Support Vector Machine 0.76 9.41
Least Median Squared 0.73 9.98
M5P Regression Tree 0.73 10.17
Neural Networks 0.69 12.47
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Ensembles of decision trees (ie, bagging) produced the best
predictive models with the highest correlation coefficients. Using late
predictors (ie, information known downstream in the IRB process
flow) produced higher correlation coefficients, but we are most
interested in early prediction of how long a protocol will take to
complete the IRB approval evaluation. So, by using information known
early (ie, right after protocol submission), we could provide near
immediate feedback to the investigator on how long he or she
should expect the review to take. This improves communication,
transparency, and encourages realistic expectations on both sides.
Accordingly, we are continuing to work on improving our models and
increasing understanding of early predictors that contribute to delays
or accelerations in the process.

Some of our most interesting findings included the following:

1. The type of IRB review that was performed was significant in
predicting the time to IRB approval with convened reviews taking the
most time, followed by exempt reviews then expedited reviews in
the 2011–2012 data set. Initially, we were surprised that exempt
reviews took more time than expedited reviews. However, in the
2013–2014 data set expedited reviews were longer than exempt and
increased rather than decreased after improvement changes. This
finding is reflective of 4 facts. First, the expedited reviews conducted
during the initial evaluation period were limited primarily to a very
specific type of application (retrospective medical records review),
which is rather uniform in presentation and generally poses the same
review issues. Second, the longer review time in the later evaluation
period for expedited reviews reflected the IRB’s procedure change
that expanded the types of studies meeting criteria to undergo
expedited review. Third, only a small number of expedited reviews
were contained in the 2013–2014 data set. Fourth, staff changes
resulted in staff who had less experience performing the expedited
reviews in 2013–2014 than staff in the 2011–2012 data set.

2. We evaluated the data using a pooled analysis of all submitted protocols
that underwent any type of IRB review and individual analysis of each
IRB-Determined Review Type with only protocols undergoing one type
of IRB review (eg, evaluation of only protocols undergoing Initial
Review—Convened, separate from protocols undergoing Change
Protocol Review—Convened). Our results from the individual type
analyses did not show improved predictive performance.
The IRB-Determined Review Type used as a feature was very
significant and predictive of the time to complete the review in
the pooled analysis. Without this as a feature in the individual type
analyses, the predictive performance markedly decreased.

3. If a protocol was to be implemented through the VA, its review
took longer. Again, the IRB staff confirmed this to be true due to
further reviews having to be performed separately at the VA
before the protocol could be approved.

4. The 2011–2012 data set’sMonth Received was significant, as shown
in Fig. 4a. Upon review with IRB staff it was hypothesized that there
could be effects due to staff member availability (eg, vacation times
in the summer or at the end of the year and vacant positions). After
improvements were instituted, this difference inMonth Received did
not persist.

5. Our analyses demonstrated that the “human factor” is a strong
predictor of IRB processing time. Specifically the IRB staff member
in charge of a protocol’s review is statistically significant and a
strong predictor in our machine learning models. We hypothe-
sized that the amount of staff training may be explanatory of
differences in processing time, but that did not prove true on
analysis. Another possible impact was the complexity of the studies
that some staff handled compared with others. For example, more
experienced staff tend to be assigned studies with complicated
designs or have complex regulatory requirements. We further
hypothesized that staff workload played an important role in
determining IRB approval time, but thus far we have not been
successful in creating a metric that can accurately reflect differences

in protocol processing time based on staff workload. Ongoing and
future work on this project will include continued evaluation and
development of staff workload metrics reflecting both the number
and complexity of protocols each individual IRB staff member is
processing in a given time period. In the related area of oncology
clinical trials, a complexity rating scale has been developed to
facilitate workload planning. However, to our knowledge, a complex-
ity model that accurately reflects IRB processing time has not been
presented [40]. Information gained from our study has already been
applied to improve current IRB practices at this institution. Repeat
analyses similar to those performed in this study will be initiated
to compare performance after more changes are implemented.
Finally, we will develop optimization models using knowledge from
our studies to further improve resource allocation in the IRB.

6. Some authors have proposed that any evaluation of IRB efficiency
must address variability in IRB operating costs [11]. It has been
proposed that some of the variability in IRB efficiency can be
attributed to economies of scale (a larger volume of protocols can
be reviewed at a lower per-protocol cost) [41–44]. However,
other authors assert that efficiency of scale alone cannot explain
cost variability and that inefficiencies in processes should be
evaluated [45]. Through our current and future analyses, we will
address both IRB process and cost factors in our attempt to
increase IRB efficiency.

Our study and its results are timely in light of national efforts to
improve research efficiency and efficacy. The federal government is
currently seeking comments on proposed changes to the Federal
Policy for the Protection of Human Subjects (the Common Rule)
[46–48]. Our efforts are directly aligned with this proposal’s stated
purpose to “better protect human subjects involved in research, while
facilitating valuable research and reducing burden, delay, and ambiguity
for investigators” [46].

In the future, our research methods can be applied at other institutions
and easily adapted to address potential changes to research protocol
classifications that may be instituted by the Common Rule changes
under review.
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