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Abstract
We prove Farber’s conjecture on the stable topological complexity of configuration spaces of graphs. The conjecture
follows from a general lower bound derived from recent insights into the topological complexity of aspherical
spaces. Our arguments apply equally to higher topological complexity.

1. Introduction

The difficulty of collision-free motion planning is measured by the topological complexity of config-
uration spaces. In many situations, the ambient workspace is naturally modelled as a graph, and the
corresponding complexity was described conjecturally by Farber in 2005 [Far05]. Our purpose is to
prove this conjecture.

Write Conf𝑘 (Γ) for the configuration space of k ordered points in the graph Γ, denote the number
of vertices of Γ of valence at least 3 by 𝑚(Γ), and write TC𝑟 for the rth higher topological complexity
[Far03, Rud10]. Farber’s conjecture is the case 𝑟 = 2 of the following result.

Theorem 1.1. Let Γ be a connected graph with 𝑚(Γ) ≥ 2. For 𝑘 ≥ 2𝑚(Γ) and 𝑟 > 0, we have the
equality

1
𝑟

TC𝑟 (Conf𝑘 (Γ)) = 𝑚(Γ).

The case 𝑚(Γ) = 0 is trivial, and the case 𝑚(Γ) = 1 is completely understood—see [LRM19,
Theorem A], for example.

Using a cohomological argument, Farber proved this result for trees and 𝑟 = 2 [Far05]. This argument
was later adapted to establish the same result for fully articulated and banana graphs and 𝑟 = 2 [LRM19],
for trees and 𝑟 > 0 [AGGHM22] and for planar graphs and 𝑟 > 0 [Knu21].

The idea of Farber’s argument is easily explained. First, the quantity 1
𝑟 TC𝑟 is bounded above by the

homotopy dimension of the background space, which for Conf𝑘 (Γ) is 𝑚(Γ) in the regime of interest.
Second, this dimension is detected by a map from a torus of dimension 𝑚(Γ) (described geometrically
below). Third, one can produce long cup products in cohomology by combining classes detecting circle
factors of this torus—provided such classes exist. Since a variant of the cup length bounds topological
complexity from below, one obtains the desired conclusion.

Unfortunately, the cohomological decomposability of the torus in question is equivalent to planarity
[Knu21], so the requisite classes fail to exist in the nonplanar setting. We circumvent this obstacle
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by working at the level of fundamental groups, leveraging a theorem of [FO19], following [GLO13],
on the higher topological complexity of aspherical spaces to establish the necessary lower bound
(Theorem 3.1).

1.1. Conventions

We say that subgroups of a fixed group are disjoint if they intersect trivially. We write cd𝑅 (𝐺) for the
cohomological dimension of the group G over the commutative ring R, which is to say the minimal length
of a projective resolution of the trivial module R over the group ring 𝑅[𝐺]. We set cd(𝐺) = cdZ(𝐺).

Given a path 𝛾 in a space X, we denote its path homotopy class by [𝛾], its reverse by 𝛾̄ and its change-
of-basepoint isomorphism by 𝛾̂ : 𝜋1 (𝑋, 𝛾(0)) → 𝜋1 (𝑋, 𝛾(1)). We denote the concatenation operation
on paths by ★.

We use the ‘reduced’ convention for topological complexity in which TC(pt) = 0.

2. Graphs and their configuration spaces

For our purposes, a graph is a finite CW complex Γ of dimension at most 1. The degree or valence 𝑑 (𝑣)
of a vertex v of Γ is the number of connected components of its complement in a sufficiently small open
neighbourhood. A vertex of valence at least 3 is called essential.

The configuration spaces of a graph Γ depend only on the homeomorphism type of Γ; in particular,
they are invariant under subdivision. The fundamental fact concerning these configuration spaces is the
following.

Theorem 2.1 [Abr00]. For any graph Γ and 𝑘 ≥ 0, the space Conf𝑘 (Γ) is aspherical.

In particular, if Γ is connected and 𝑚(Γ) > 0, then the configuration space Conf𝑘 (Γ) is a classifying
space for its fundamental group, the pure graph braid group on k strands, denoted 𝑃𝑘 (Γ). We work
with a basepoint 𝑥0 ∈ Conf𝑘 (Γ) chosen so that every coordinate is a bivalent vertex, which is always
achievable after subdivision.

Fixing a vertex v, consider the subspace 𝜄𝑣 : Conf𝑘 (Γ)𝑣 ⊆ Conf𝑘 (Γ) consisting of configurations
with at most one coordinate in the open star of v.

Proposition 2.2. If the open star of v is contractible, then 𝜄𝑣 is a homotopy equivalence.

Proof. The assumption guarantees that Conf𝑘 (Γ)𝑣 coincides with the subspace considered in [ABGM21,
Lemma 2.0.1] after subdividing. �

In the remainder of the paper, we work with a connected graph Γ. We subdivide Γ to guarantee that
every essential vertex has a contractible open star (equivalent to requiring that Γ have no self-loops) and
that distinct essential vertices have disjoint closed stars. We fix a parametrisation of each edge of Γ and
an ordering of the set of edges at each essential vertex.

3. A general lower bound

The ‘higher’ or ‘sequential’ topological complexity TC𝑟 is a numerical homotopy invariant defined in
[Rud10] and developed in [BGRT14], recovering Farber’s topological complexity [Far03] for 𝑟 = 2 and
the Lusternik–Schnirelmann category for 𝑟 = 1. The reader is referred to these references for definitions;
we recall only that 1

𝑟 TC𝑟 is bounded above by the homotopy dimension in nonpathological settings,
such as for spaces homotopy equivalent to CW complexes.

Theorem 1.1 is an immediate consequence of the following result, together with the dimensional
bound and the well-known fact that the homotopy dimension of Conf𝑘 (Γ) is bounded above by 𝑚(Γ),
independent of k [Świ01].
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Theorem 3.1. Let Γ be a connected graph. For any 𝑟 > 0 and 𝑘 ≥ 4, we have the inequality

1
𝑟

TC𝑟 (Conf𝑘 (Γ)) ≥ min
{⌊

𝑘

2

⌋
, 𝑚(Γ)

}
.

This result recovers theorems of [AGGHM22] and [Knu21] for trees and planar graphs, respectively.
In these cases, the estimate follows from consideration of the zero-divisor cup length in the cohomology
of the relevant configuration space. If such a strategy is available in the nonplanar setting, it is not
without significant and non-obvious modification [Knu21, Theorem 8.1]. Instead, we aim to leverage the
advances in the study of the topological complexity of aspherical spaces made in the wake of [GLO13].

Theorem 3.2 ([FO19, Theorem 2.1]). Let G be a discrete group with subgroups H and K, and fix 𝑟 ≥ 2.
If every conjugate of H is disjoint from K, then

TC𝑟 (𝐵𝐺) ≥ cd(𝐻 × 𝐾 × 𝐺𝑟−2).

Our search for suitable subgroups will be organised by the following simple combinatorial object.

Definition 3.3. Fix a ground set S, a graph Γ and a set W of essential vertices. A binary W-partition of
S is a collection 𝜆 = {𝜆(𝑣)}𝑣 ∈𝑊 of disjoint subsets of S of cardinality 2 whose union is S. We say that
binary W-partitions 𝜆 and 𝜇 are orthogonal, and write 𝜆 ⊥ 𝜇, if 𝜆(𝑣) ≠ 𝜇(𝑤) for every (𝑣, 𝑤) ∈ 𝑊 ×𝑊 .

We will apply Theorem 3.2 to subgroups 𝑇𝜆 := im(𝜏𝜆), where 𝜆 is a binary W-partition of {1, . . . , 𝑘}
and 𝜏𝜆 : Z𝑊 → 𝑃𝑘 (Γ) a certain homomorphism. To study these toric subgroups, we construct detection
homomorphisms 𝛿𝜆 : 𝑃𝑘 (Γ) → 𝐺𝑊 , where 𝐺𝑊 is a certain product of free groups. These homomor-
phisms are constructed in Section 5, and they interact according to the following result, whose proof is
taken up in Section 6.

Proposition 3.4. Let 𝜆 and 𝜇 be binary W-partitions of {1, . . . , 𝑘}:

1. If 𝜆 = 𝜇, then the composite Z𝑊
𝜏𝜆
−−→ 𝑃𝑘 (Γ)

𝛿𝜇
−−→ 𝐺𝑊 is injective.

2. If 𝜆 ⊥ 𝜇, then the composite Z𝑊
𝜏𝜆
−−→ 𝑃𝑘 (Γ)

𝛿𝜇
−−→ 𝐺𝑊 is trivial.

Assuming this result, we prove the theorem.

Proof of Theorem 3.1. The cases 𝑚(Γ) ∈ {0, 1} are easily treated by other means, so assume otherwise.
By [LRM19, Proposition 5.6] and [Far03, page 4], the quantity TC𝑟 (Conf𝑘 (Γ)) is nondecreasing in k
for fixed r. Thus, we may assume without loss of generality that 𝑘 = 2𝑑 with 2 ≤ 𝑑 ≤ 𝑚(Γ). These
assumptions imply that there exist binary W-partitions 𝜆 and 𝜇 of {1, . . . , 2𝑑} with 𝜆 ⊥ 𝜇 for some set
W of essential vertices. Our aim is to show that TC𝑟 ≥ 𝑟𝑑.

Assume that 𝑟 ≥ 2. According to Proposition 3.4, we have the containment 𝑇𝜆 ⊆ ker(𝛿𝜇); therefore,
since the latter subgroup is normal, it contains every conjugate of the former. Since ker(𝛿𝜇) is disjoint
from 𝑇𝜇 by the same result, the group 𝐺 = 𝑃𝑘 (Γ) and subgroups 𝐻 = 𝑇𝜆 and 𝐾 = 𝑇𝜇 satisfy the
hypotheses of Theorem 3.2. We conclude the relations

TC𝑟 (Conf2𝑑 (Γ)) = TC𝑟 (𝐵𝑃2𝑑 (Γ))

≥ cd(𝑇𝜆 × 𝑇𝜇 × 𝑃2𝑑 (Γ)
𝑟−2)

= cd(Z𝑑 × Z𝑑 × 𝑃2𝑑 (Γ)
𝑟−2)

≥ cdQ(Z𝑑 × Z𝑑 × 𝑃2𝑑 (Γ)
𝑟−2),

where the first uses homotopy invariance and asphericity, the second is Theorem 3.2, the third follows
from Proposition 3.4, and the fourth follows by extension of scalars. Thus, it suffices to show that the
rational homology of the group Z𝑑 × Z𝑑 × 𝑃2𝑑 (Γ)

𝑟−2 is nonzero in degree 𝑟𝑑. Every group in sight has
homology of finite type, so the Künneth isomorphism applies, and the conclusion follows from the fact
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that 𝐻𝑑 (Conf2𝑑 (Γ);Q) ≠ 0 for 2 ≤ 𝑑 ≤ 𝑚(Γ), which is well known—see [ADCK20, Lemma 3.18], for
example.

In the case 𝑟 = 1, the claimed bound is well known; indeed, by asphericity and the Eilenberg–Ganea
theorem [EG57], the quantity to be estimated is simply cd(𝑃𝑘 (Γ)), and the same rational homology
calculation applies. �

4. Star graphs and theta graphs

This section is devoted to the simple calculation forming the basis for our later arguments.

Definition 4.1. The star graph S𝑛 is the cone on the discrete space 𝜕S𝑛 := {𝑣1, . . . , 𝑣𝑛}. The theta
graph Θ𝑛 is the quotient S𝑛/𝜕S𝑛.

Each star and theta graph has a canonical graph structure, which is canonically parametrised. We
denote the unique essential vertex of S𝑛 and its image in Θ𝑛, by 𝑣0. We denote the image of 𝜕S𝑛 in Θ𝑛

by 𝑣∞. Note that Θ𝑛 is (non-canonically) homotopy equivalent to a bouquet of 𝑛 − 1 circles.
The case 𝑛 = 3 is of fundamental importance. Within the configuration space Conf2(S3), there is the

loop given by the sixfold concatenated path

𝜖 = (𝑣1, 𝑒23) ★ (𝑒12, 𝑣3) ★ (𝑣2, 𝑒31) ★ (𝑒23, 𝑣1) ★ (𝑣3, 𝑒12) ★ (𝑒31, 𝑣2),

where 𝑣𝑖 denotes the constant path at 𝑣𝑖 and 𝑒𝑖 𝑗 : [0, 1] → S3 the unique piecewise linear path from 𝑣𝑖
to 𝑣 𝑗 with 𝑒𝑖 𝑗 (

1
2 ) = 𝑣0. Note that 𝜖 is a loop based at the configuration (𝑣1, 𝑣2).

It is a standard fact that 𝜖 : 𝑆1 → Conf2(S3) is a homotopy equivalence. More precisely, we have
the following.

Lemma 4.2. The map 𝜖 factors through an embedding 𝜖 : 𝑆1 → Conf2 (S3)𝑣0 as a deformation retract.

Proof. The image of 𝜖 lies in Conf2 (S3)𝑣0 by construction, so 𝜖 exists. It is easy to check that 𝜖 is
injective; therefore, since 𝑆1 is compact and Conf2 (S3) Hausdorff, it follows that 𝜖 is an embedding.
The space Conf2 (S3)𝑣0 is obtained from the image of 𝜖 by attaching half-open intervals, and collapsing
these intervals provides a deformation retraction. �

We define a function 𝑞 : Conf2 (S3)𝑣0 → Θ3 by recording the coordinate of any particle in S3\𝜕S3 and
sending all other configurations to 𝑣∞. Using the glueing lemma, one shows easily that q is continuous.

Lemma 4.3. The following composite homomorphism is injective:

𝜋1 (Conf2 (S3), (𝑣1, 𝑣2))
( 𝜄𝑣0 )

−1
∗

−−−−−→ 𝜋1 (Conf2(S3)𝑣0 , (𝑣1, 𝑣2))
𝑞∗
−→ 𝜋1 (Θ3, 𝑣∞).

Proof. By Proposition 2.2 and Lemma 4.2, it suffices to show that 𝑞∗𝜖∗ is injective. Since the target is
a free group and, in particular, torsion-free, it suffices to show that the path homotopy class [𝑞 ◦ 𝜖] is
nontrivial. Writing 𝛾𝑖 𝑗 for the loop in Θ3 induced by 𝑒𝑖 𝑗 , and noting the relations [𝛾31] = [𝛾32 ★ 𝛾21]
and 𝛾̄𝑖 𝑗 = 𝛾 𝑗𝑖 , we have

[𝑞 ◦ 𝜖] = [𝛾23 ★ 𝛾12 ★ 𝛾31 ★ 𝛾23 ★ 𝛾12 ★ 𝛾31]

= [𝛾23 ★ 𝛾12 ★ 𝛾32 ★ 𝛾21 ★ 𝛾23 ★ 𝛾12 ★ 𝛾32 ★ 𝛾21]

= [𝛾23 ★ 𝛾12 ★ 𝛾̄23 ★ 𝛾̄12 ★ 𝛾23 ★ 𝛾12 ★ 𝛾̄23 ★ 𝛾̄12]

= [𝛾23] [𝛾12] [𝛾23]
−1 [𝛾12]

−1 [𝛾23] [𝛾12] [𝛾23]
−1 [𝛾12]

−1.

This expression is a nonempty reduced word in the set {[𝛾12], [𝛾23]}, which forms a system of free
generators for 𝜋1 (Θ3, 𝑣∞), implying the claim. �
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Remark 4.4. One can interpret the theta graph appearing here (up to homotopy) as the configuration
space of two unordered points in the quotient S3/𝜕S3, regarded as a graph with a ‘sink’ vertex at which
points are permitted to collide [CL18]. Informally, a deformation retraction is provided by allowing
particles to flow down the edges of the graph until at least one reaches the sink. The use of graphs with
sinks in [LRM19] inspired some of the ideas in the present article.

Remark 4.5. The same calculation shows that the composite of Lemma 4.3 is trivial at the level
of homology. Ultimately, it is this fact that forms the obstacle to a cohomological proof of Farber’s
conjecture for nonplanar graphs; see [Knu21] for further discussion.

5. Toric and detection homomorphisms

Fix a set W of essential vertices and a binary W-partition 𝜆 of {1, . . . , 𝑘}. For each 𝑣 ∈ 𝑊 , given our
choice of parametrisation and subdivision, there is a piecewise linear cellular embedding 𝑓𝑣 : S3 → Γ
uniquely specified by requiring that it send the ith edge of S3 to the ith edge at v for 1 ≤ 𝑖 ≤ 3.
These embeddings induce an embedding f from a W-indexed disjoint union of star graphs (we use our
assumption on the closed stars at essential vertices). Consider the composite embedding

𝜑𝜆 : (𝑆1)𝑊 → Conf2(S3)
𝑊 → Conf𝑘

( ∐
𝑣 ∈𝑊

S3

)
→ Conf𝑘 (Γ),

where the first map is the canonical map 𝜖 in each factor, the second is the inclusion of the subspace in
which the coordinates indexed by the elements of 𝜆(𝑣) lie in the component indexed by v, and the third
is induced by the embedding f.

Finally, we choose a path 𝛼𝜆 in Conf𝑘 (Γ) from 𝜑𝜆 (1) to 𝑥0. We require this path to be a concatenation
of coordinatewise linear edge paths in Γ with all but one coordinate stationary. Such a path exists by our
assumption that Γ is connected and 𝑚(Γ) > 0 (in particular, Conf𝑘 (Γ) is connected).

Remark 5.1. By construction, the image of the embedding 𝜑𝜆 lies in Conf𝑘 (Γ)𝑣 for every essential
vertex v. The same holds for the path 𝛼𝜆. Our notation will not distinguish among the various resulting
paths, even though they have different codomains.

With these desiderata in hand, we are ready to define the toric homomorphism associated to 𝜆. The
reader is cautioned that this homomorphism depends on many choices, none of which are reflected in
our notation. Most of these choices affect the definition only up to conjugation in 𝑃𝑘 (Γ).

Definition 5.2. Let 𝜆 be a binary W-partition of {1, . . . , 𝑘}. The homomorphism 𝜏𝜆 is the composite

Z𝑊 � 𝜋1 (𝑆
1, 1)𝑊

(𝜑𝜆)∗
−−−−→ 𝜋1 (Conf𝑘 (Γ), 𝜑𝜆 (1))

𝛼̂𝜆
−−→ 𝑃𝑘 (Γ).

The target of the detection homomorphism 𝛿𝜆 will be the product of free groups 𝐺𝑊 :=∏
𝑣 ∈𝑊 𝜋1 (Θ𝑑 (𝑣) , 𝑣∞)). To define 𝛿𝜆, we note that our description of the quotient map q given in Sec-

tion 4 in fact describes a map 𝑞𝑣 : Conf2 (Γ)𝑣 → Θ𝑑 (𝑣) for any essential vertex v in Γ. Note that we use
our subdivision assumption as well as our chosen ordering of the edges at v.

In the following definition, 𝜋 denotes coordinate projection.

Definition 5.3. Let 𝜆 be a binary W-partition of {1, . . . , 𝑘}. The homomorphism 𝛿𝜆 : 𝑃𝑘 (Γ) → 𝐺𝑊 is
the homomorphism with vth component the composite

𝑃𝑘 (Γ)
( 𝜄𝑣 )

−1
∗

−−−−−→ 𝜋1 (Conf𝑘 (Γ)𝑣 , 𝑥0)
(𝜋𝜆(𝑣 ) )∗
−−−−−−→ 𝜋1 (Conf2 (Γ)𝑣 , 𝜋𝜆(𝑣) (𝑥0))

(𝑞𝑣 )∗
−−−−→ 𝜋1 (Θ𝑑 (𝑣) , 𝑣∞).

Note that since each coordinate of our basepoint 𝑥0 is a bivalent vertex, the composite in question
does send 𝑥0 to 𝑣∞. We emphasise that although the target of 𝛿𝜆 depends only on W, the homomorphism
itself depends on 𝜆.
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6. Proof of Proposition 3.4

In this section, we consider the interaction between the toric and detection homomorphisms defined
above. At various points, we will employ an unnamed map of the form Conf2(S3) → Conf𝑘 (Γ)𝑤 , which
is obtained by restricting the map Conf2 (S3)

𝑊 → Conf𝑘 (Γ)𝑤 determined by a binary W-partition along
the section of the projection onto the wth factor determined by respective basepoints.

The key result is the following.

Lemma 6.1. Let 𝜆 and 𝜇 be binary W-partitions of {1, . . . , 𝑘}. For 𝑣, 𝑤 ∈ 𝑊 , the composite homomor-
phism

Z
𝑣 ∈𝑊 �� Z𝑊

𝜏𝜆 �� 𝑃𝑘 (Γ)
𝛿𝜇

�� 𝐺𝑊
𝑤 ∈𝑊 �� 𝜋1 (Θ𝑑 (𝑤) , 𝑣∞)

is trivial unless 𝑣 = 𝑤 and 𝜆(𝑣) = 𝜇(𝑣).

Proof. After defining the paths 𝛽 = 𝜋𝜇 (𝑤) ◦ 𝛼𝜆 and 𝛾 = 𝑞𝑤 ◦ 𝛽, we have the commutative diagram of
homomorphisms

𝜋1 (𝑆
1, 1) 𝑣 ∈𝑊 ��

𝜖∗

��

𝜋1 (𝑆
1, 1)𝑊

(𝜑𝜆)∗

��

𝜋1 (Conf2(S3), (𝑣1, 𝑣2))

�����������
�� 𝜋1 (Conf𝑘 (Γ), 𝜑𝜆(1))

( 𝜄𝑤 )−1
∗

��

𝛼̂𝜆 �� 𝜋1 (Conf𝑘 (Γ), 𝑥0)

( 𝜄𝑤 )−1
∗

��

𝜋1 (Conf𝑘 (Γ)𝑤 , 𝜑𝜆 (1))

(𝜋𝜇 (𝑤 ) )∗

��

𝛼̂𝜆 �� 𝜋1 (Conf𝑘 (Γ)𝑤 , 𝑥0)

(𝜋𝜇 (𝑤 ) )∗

��

𝜋1 (Conf2(Γ)𝑤 , 𝜋𝜇 (𝑤) (𝜑𝜆 (1)))

(𝑞𝑤 )∗

��

𝛽
�� 𝜋1 (Conf2 (Γ)𝑤 , 𝜋𝜇 (𝑤) (𝑥0))

(𝑞𝑤 )∗

��

𝜋1 (Θ𝑑 (𝑤) , 𝑣∞)
𝛾̂

�� 𝜋1 (Θ𝑑 (𝑤) , 𝑣∞)),

where the dashed filler arises from Remark 5.1. The claim is that the total composite is trivial unless
𝑣 = 𝑤 and 𝜆(𝑣) = 𝜇(𝑣). If 𝑣 ≠ 𝑤, then the composite map

Conf2(S3) → Conf𝑘 (Γ)𝑤
𝜋𝜇 (𝑤 )

−−−−−→ Conf2 (Γ)𝑤
𝑞𝑤
−−→ Θ𝑑 (𝑤)

is the constant map to the basepoint; indeed, the image of the embedding 𝑓𝑣 : S3 → Γ is disjoint from
the open star of w, since it is contained in the closed star of v. Here we use the assumption that 𝑣 ≠ 𝑤
as well as our assumption on the subdivision of Γ.

Without loss of generality, then, we may take 𝑣 = 𝑤. If 𝜆(𝑣) ∩ 𝜇(𝑣) = ∅, then the composite map

Conf2(S3) → Conf𝑘 (Γ)𝑣
𝜋𝜇 (𝑣 )
−−−−→ Conf2(Γ)𝑣

is constant with value 𝜋𝜇 (𝑣) (𝜑𝜆(1)), and the claim follows as before; thus, we may assume that 𝜆(𝑣) ∩
𝜇(𝑣) = {1}. In this case, the loop

𝑆1 𝜖
−→ Conf2(S3) → Conf𝑘 (Γ)𝑣

𝜋𝜇 (𝑣 )
−−−−→ Conf2(Γ)𝑣

𝑞𝑣
−−→ Θ𝑑 (𝑣)

https://doi.org/10.1017/fms.2022.83 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.83


Forum of Mathematics, Sigma 7

is the sixfold concatenation 𝑣∞ ★ 𝛾12 ★ 𝑣∞ ★ 𝛾23 ★ 𝑣∞ ★ 𝛾31, and we calculate that

[𝑣∞ ★ 𝛾12 ★ 𝑣∞ ★ 𝛾23 ★ 𝑣∞ ★ 𝛾31] = [𝛾12 ★ 𝛾23 ★ 𝛾31]

= [𝛾12 ★ 𝛾23 ★ 𝛾32 ★ 𝛾21]

= [𝛾12 ★ 𝛾23 ★ 𝛾̄23 ★ 𝛾̄12]

= [𝛾12] [𝛾23] [𝛾23]
−1 [𝛾12]

−1

= 1.

Since the composite in question annihilates a generator, it is trivial. �

The desired result is now within easy reach.

Proof of Proposition 3.4. Lemma 6.1 implies that the composite 𝛿𝜆 ◦ 𝜏𝜆 splits as a product of homo-
morphisms indexed by W, so the first claim is equivalent to the injectivity of each of these component
homomorphisms. The injectivity of the component indexed by 𝑣 ∈ 𝑊 is equivalent to the injectivity of
the total composite in the commutative diagram

𝜋1 (𝑆
1, 1) 𝑣 ∈𝑊 ��

𝜖∗

��

𝜋1 (𝑆
1, 1)𝑊

(𝜑𝜆)∗

��

𝜋1 (Conf2 (S3), (𝑣1, 𝑣2))

( 𝜄𝑣0 )
−1
∗

��

�� 𝜋1 (Conf𝑘 (Γ), 𝜑𝜆 (1))

( 𝜄𝑣 )
−1
∗

��

𝛼̂𝜆 �� 𝜋1 (Conf𝑘 (Γ), 𝑥0)

( 𝜄𝑣 )
−1
∗

��

𝜋1 (Conf2(S3)𝑣0 , (𝑣1, 𝑣2)) �� 𝜋1 (Conf𝑘 (Γ)𝑣 , 𝜑𝜆 (1))

(𝜋𝜆(𝑣 ) )∗

��

𝛼̂𝜆 �� 𝜋1 (Conf𝑘 (Γ)𝑣 , 𝑥0)

(𝜋𝜆(𝑣 ) )∗

��

𝜋1 (Conf2(S3)𝑣0 , (𝑣1, 𝑣2))

𝑞∗

��

�� 𝜋1 (Conf2(Γ)𝑣 , 𝜋𝜆(𝑣) (𝜑𝜆 (1)))

(𝑞𝑣 )∗
��

𝛽
�� 𝜋1 (Conf2(Γ)𝑣 , 𝜋𝜆(𝑣) (𝑥0))

(𝑞𝑣 )∗
��

𝜋1 (Θ3, 𝑣∞) �� 𝜋1 (Θ𝑑 (𝑣) , 𝑣∞)
𝛾̂

�� 𝜋1 (Θ𝑑 (𝑣) , 𝑣∞)),

where the homomorphism in the bottom left is induced by the inclusion {1, 2, 3} ⊆ {1, . . . , 𝑑 (𝑣)}. In
terms of systems of free generators, this homomorphism is induced by the inclusion {[𝛾12], [𝛾23]} ⊆

{[𝛾12], [𝛾23], . . . , [𝛾𝑑 (𝑣)−1,𝑑 (𝑣) ]}; in particular, it is injective. Since 𝛾̂ is an isomorphism, the claim
follows from Lemma 4.3, which implies that the composite in the left-hand vertical column is injective.

For the second claim, suppose that 𝜆 ⊥ 𝜇. Since 𝛿𝜇 ◦ 𝜏𝜆 is a homomorphism out of a direct sum and
into a product, it suffices to establish the triviality of the composite homomorphisms

Z
𝑣 ∈𝑊 �� Z𝑊

𝜏𝜆 �� 𝑃𝑘 (Γ)
𝛿𝜇

�� 𝐺𝑊
𝑤 ∈𝑊 �� 𝜋1 (Θ𝑑 (𝑤) , 𝑣∞)

for every (𝑣, 𝑤) ∈ 𝑊 × 𝑊 . By assumption, we have 𝜆(𝑣) ≠ 𝜇(𝑤) for every such pair, so the claim
follows from Lemma 6.1. �
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