NOTES ON NUMBER THEORY 1
On the product of the primes not exceeding n.
Leo Moser
(received March 2, 1959)

One of the most elegant results of the elementary theory
of the distribution of primes is that

(1) Rin) = | |.

P(np<4n'

where the product runs over primes. A very simple proof of

(1) has recently been given by Erd8s and Kalmar [1], [2]. A
form of the prime number theorem [2] states that

(2) Q(n) =log R{n)~n .
This implies that for every € >0 and n > ng(€)
(3) R(n) < (e + &),

and that in (3) Euler's constant e = 2,718 .., cannot be replaced
by any smaller number.

If however, we are interested in improvements of (1)

valid for all n, then the best available result is the following
estimate due to Rosser [3]:

(4) R(n) < 2.83n

Rosser's proof of (4) is definitely not elementary and moreover
involves much computation. The object of the present note is to
give an elementary proof of '

(5) R(n) < c™,
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where c is the positive number defined by
(6) c5=2433 (c <3.37)

Our proof depends on an analysis of the number
(7) A, = (bm+ 1)! / m! (2m)!(3m)!

We note first that A is 6m + 1l times a multinomial coefficient
and hence is an integer. Next we prove

LEMMA 1.
A = @433 TTm(1 - 1722352) < 5™ (m3 1).

Proof. The equality follows by a straightiorward induc-

tion on m and the inequality is then an immediate consequence
of (6).

We will further require

LEMMA 2. For primep, m< p <6m+ 1, pdivides A .

Proof. Consider separately cases where p lies in the

ranges:
(i) 3m < p & 6m +1,
(i) 2m < p g 3m,
(iii) 3m/2 < p < 2m,
(iv) m < p € 3m/2.

In range (i) p divides the numerator of A (see (7)) but not the
denominator. In range (ii) p2 divides the numerator while p,

but not pz, divides the denominator. In range (iii) p3 divides

the numerator while the highest power of p dividing the denomina-
tor is pz. Finally, in range (iv), p%4 divides the numerator while
p3 is the highest power of p which divides the denominator.

We now proceed to the proof of (5) by complete induction
over n. The result is trivially true for 2 and 3 and by the induc-
tion hypothesis will be assumed true up to n. In proving it at
n + 1 we may assume that n+ 1 is a prime for otherwise R(n) =
R(n + 1), Further, for n > 3 all primes have the form ém + 1.
Hence we need only consider the cases (i) n = 6m + 1 and (ii)
n=6m -1,
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In case (i) the lemmas and the induction hypothesis yield

(8) R(6m + 1) = R(m) | [,

6m+ 1
m<pgbmtl P S Ay < ¢ .

For case (ii) we first note that for m < p € 6m, p divides
A, / (ém+1) and the latter is an integer less than cdm-1, Hence

(9) R(ém - 1) = R(m) l ! m<p<bm-1P < c™MA . /(6m+ 1) cbm-1
and the proof is complete.
It would be nice to have an equally elementary proof that
R(n) < 31, In conclusion we remark that it does not seem entirely
hopeless to seek by elementary methods the smallest constant
k for which R(n) < kB for all n.
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