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SK2 AND K3 OF DIHEDRAL GROUPS 

REINHARD C. LAUBENBACHER AND BRUCE A. MAGURN 

ABSTRACT. New computations of birelative K^ groups and recent results on K3 
of rings of algebraic integers are combined in generalized Mayer-Vietoris sequences 
for algebraic AT-theory. Upper and lower bounds for SK2CIG) and lower bounds for 
KiÇLG) are deduced for G a dihedral group of square-free order, and for some other 
closely related groups G. 

0. Introduction. Shortly after J. Milnor introduced the definition of K2 of a ring 
in 1968-69, J. B. Wagoner discovered that pseudo-isotopy obstructions can be found in 
A^(Z G), where G is the fundamental group of a smooth manifold (see [28]). Since then 
there have been several attempts to compute K2CZ G), but this has proven difficult, even 
for the smallest groups G. 

To date, the only complete calculations of K2CLG) have been those of M. Dunwoody 
[5], when G has order 2 or 3, and M. Stein [26], when G is cyclic of order 4 or 5, or 
dihedral of order 6 or 10. Beyond these computations, only lower bounds for the order of 
K2ÇIG) have been found. In 1976, K. Dennis, M Keating and M. Stein published lower 
bounds for the order of K2CZG) when G is an elementary abelian /?-group, p a prime 
(see [4]). These were based on surjectivity of K2 of the map reducing Z G modulo/?, and 
grow exponentially with the rank of G. These results were complemented by S. Chaladus 
in 1979 (see [2], [3]) who produced lower bounds when G is a cyclic p-group by using 
iterated Mayer-Vietoris sequences to establish surjectivity of K2 of the inclusion of Z G 
into its integral closure in Q G. 

Inthemid-1980's(see [20], [21]), as part of his conquest of SK\(ZG), R. Oliver gen­
eralized the bounds of Dennis-Keating-Stein to arbitrary finite/?-groups, replacing reduc­
tion mod/7 by completion at /?, and conjectured lower bounds for these same /^-groups 
involving the cyclic homology of Z G. In addition, Oliver generalized and improved the 
bounds obtained by Chaladus, obtaining lower bounds for the case of finite cyclic groups 
of arbitrary order. 

In this paper we focus on the kernel, SA^(Z G), of K2 of the inclusion of Z G into Q G. 
This kernel has trivial intersection with the part of A^(ZG) detected by Chaladus. We 
obtain lower and upper bounds for SK2(ZG) when G is cyclic or dihedral of square-free 
even order. Our upper bounds show that Oliver's bounds in the cyclic case detect more 
than just SK2ÇLGY the precise relationship of SK2 to those bounds is unclear. Our lower 
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bounds for both classes of groups include bounds on the minimum number of generators 
of S#2(ZG), not merely on its order. Our bounds for square-free order dihedral groups, 
and for certain of their extensions including dicyclic groups (see Theorem 9.10), are the 
first ever obtained for A^(Z [—]) of these groups. 

Our approach continues a line of work begun by M. Stein in [26], using Mayer-
Vietoris sequences which incorporate a measure of the failure of excision for relative 
K2. That measure is the birelative K2 introduced by D. Guin-Walery and J.-L. Loday in 
[71 and by F. Keune in [10]. In [13] and [14], the first author of our paper constructed 
long exact generalized Mayer-Vietoris sequences for the K-theory Z G, which exist for a 
large class of finite groups G, including those of square-free order. The underlying idea 
is that, if G has square-free order, then Z G is a subdirect product of a hereditary order 
in Q G. The inclusion map from Z G into the hereditary order induces the long exact 
Mayer-Vietoris sequence. The third term in the sequence involves K3-groups of various 
semisimple quotients of the hereditary order, as well as birelative ^-groups associated 
to all the fiber squares occurring in the description of Z G as a subdirect product. 

To use this sequence to get a complete computation of A^(ZG), one needs to know 
the K2 of rings of integers in certain number fields. This is a very hard problem, but there 
has been substantial progress toward its solution (e.g., see [11]). However, to compute 
SK2ÇL G) from the sequence requires only the determination of birelative ^2-groups, the 
K3-groups of the hereditary order and semisimple quotients, and the boundary map in 
the sequence from dimension 3 to dimension 2. 

In Sections 1-3 we construct a filtration of SK2(ZG) with one filtration quotient as­
sociated to each prime factor of the order of G. Sections 4-6 contain the birelative K2 
computations. Section 7 is devoted to the determination of ^3 of the hereditary order, 
using M. Keating's work on tiled orders to reduce to the determination of K3 of rings 
of integers, the latter having been independently completed by M. Levine in [15], and 
A. Merkurjev with A. Suslin in [18]. Finally, Section 9 contains the upper and lower 
bounds for SK2(Z G), and lower bounds for K3(ZG). We anticipate that a better under­
standing of the K3-level maps in the sequence will eventually close the gap between our 
upper and lower bounds. 

Before we begin, a few remarks about notation are in order. If R is the ring of integers 
in a number field F, and A is an R-ordev in a finite dimensional semisimple F-algebra 
E, then for n > 0, SKn(A) denotes the kernel of Kn of the inclusion map from A into X. 
Second, we use 0 to denote the direct (cartesian) product of rings, as well as the direct 
sum of abelian groups. Third, the term "fiber square" refers to any commutative square 
of ring homomorphisms: 

R > S 

I I 
T > U 

for which the induced map 

R-+S&T 
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is injective, and for which any pair of elements in S and T with the same image in U have 
a common pre-image in R. This is also called a "cartesian square" or a "pullback" in the 
category of rings. 

1. Filtrations of SKn{TG). If A\,... ,Am are rings, it is a property of algebraic K-
functors Kn(n > 0) that projections to each coordinate induce a natural isomorphism: 

m m 

i = 1 i = 1 

This property is useful in calculating Kn(QG) for a finite group G, since Q G is a direct 
product of its simple components. But the topological invariants which provide major 
applications of ^f-groups take their values in Kn(ZG) or in closely related groups, and 
ZG does not decompose, having no central idempotents aside from 0 and 1 (see [27], 
Corollary 8.1). 

To take advantage of the decomposition: 

m 

QG = 0 Z , 

of Q G into its simple components X„ consider Z -orders defined as follows: If r Ç 
{ 1, . . . , m} let A(T) denote the image of the projection: 

ZG — ©Z,-. 

If p = { n , . . . , 77} is a partition of { 1, . . . , m} : 

T I U • • • U r r = { l , . . . , m } , T/HTJ: = 0 if/ ^y . 

then 

*(p) = 0A(ry) 

is a Z -order in Q G containing Z G. If f/ is a refinement of p, then ^?(p) Ç R(j/). 
If, in passing from a partition p to a refined partition f/, a part 7) = r is divided into 

two parts r' U T", there is a fiber square of ring homomorphisms: 

A(r) — A(rO 

I I 
A ( T / 7 ) y S 

where the top and left sides are projections. (This is described more fully below.) Under 
some conditions there are Mayer-Vietoris sequences in AT-theory which can be used to 
study Kn of the inclusion: 

A ( T ) ^ A ( T ' ) 0 A ( T " ) . 
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Beginning with { 1, . . . , m}, define a sequence of partitions, each refining its prede­
cessor by dividing each part into at most two parts. Denote the associated orders by: 

m 

ZG = R0CRl Ç - - - Ç * * = 0 A ( i ) . 

Then Kn of each inclusion /?,-_i —-> /?,- is the direct product of maps: 

^ ( A ( r ) ) — / ^ ( A ( T ' ) ) 0 * „ ( A ( T " ) ) 

for each r that is divided, and identity maps on KJA(T)) for each r that is left alone. 
For 0 < i < k, let F denote the kernel of Kn(ZG -» /?,-). The inclusion ZG —> QG 

factors through the inclusion Z G —* Rf, so each F is a subgroup of SKn(Z G). Thus there 
is a filtration: 

0 = ^ Ç F 1 Ç - . . Ç ^ Ç SKn(ZG). 

The last layer SKn(ZG)/ Fk is isomorphic to the image of SKn(Z G) under Kn(ZG—>Rk), 
which is contained in SK^R^). When each A(/), and hence also R^, is hereditary, and rc 
is even, 

SKn(Rk) = SGn(Rk) = 0 

by [12], Theorem 1.1. This happens, in particular, when all Sylow subgroups of G are 
cyclic. 

To compute the other layers, we use the following rephrased version of [14], Propo­
sition 2.3, presented here with a corrected proof: 

PROPOSITION 1.1. Suppose Ro Ç ••• C Rk are Z-orders in a Q-algebra and 
q\,..., qjc are pairwise relatively prime positive integers with qiRi Ç Rt_\ for 1 < i < k. 
Then for 0 < i < j < k and n > 0, 

where the arrows are inclusions. 

PROOF. Taking A = RQ, B = Rt and C = Rj, it is sufficient to prove that if 

are inclusions of Z -orders in a Q -algebra, and pC Ç B, qB Ç A for relatively prime 
positive integers p and q, then the image of Kn(f) contains the kernel of Kn(g) for all 
n > 0. For then the map Kn(f) induces an isomorphism: 

ker£„(£f) 
ker Kn(f) 

as required. 
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Let K(-) = BQP(-) be the ^-theory space functor, so that 

Consider the commutative square of homotopy fiber sequences: 

X > K(A) > K{B) 

\ I \ | \ 
7 J Xf —> K(A[l/p]) —> K(B[l/p]) 

(1-2) i I 

Y — [-^K(A) — I —> K(C) J 
\ \ \ 

r — ^(A[i /p« — ^(C[i/pi) 

where the maps between ^T-theory spaces are induced by inclusions, and the spaces X, 
X\ F, Y are appropriate homotopy fibers. 

Let S denote {pn : n > 0} . Since qB Ç A and pZ + qZ = Z, the inclusion A C S 
induces an isomorphism: A/ M = # / s£ for each s G 5. In other words, the inclusion 
of A into B is an analytic isomorphism along S. By a theorem of M. Karoubi (see [8], 
Appendix 5, and [30], Theorem 1.1), B <S>A (—) is a natural equivalence of categories 
Hl

s(A) —• Hl
s(B), where, for any ring R, Hl

s(R) is the category of finitely generated S-
torsion /^-modules of projective dimension < 1. Let a\Z—*Z! denote the induced map 
between homotopy fibers of the vertical maps in the square: 

K(A) — K(B) 

I 1 
K(A[l/p]) —> K(B[l/p]) 

which is part of diagram (1.2). Combining the above category equivalence with the lo­
calization theorem for projective modules (see [6], Example 1), one obtains a as a com­
posite of weak homotopy equivalences: 

Z ~ BQHl
s(A) ~ BQH\{B) ~ t . 

Further, putting in all homotopy fibers, one obtains a commutative diagram: 

X" y Z -^ Z> 

1 
X 

1 
— K(A) 

i 
—-> K(B) 

"1 
X! 

I 
— K(A[l/p]) 

1 
— K(B[l/p]) 

with every row and column a homotopy fiber sequence. Since a is a weak homotopy 
equivalence, X" is weakly contractible: so 7r„(/3) is an isomorphism for all n > 0. 

https://doi.org/10.4153/CJM-1992-037-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-037-x


596 R. C. LAUBENBACHER AND B. A. MAGURN 

Since pC Ç B, the front vertical maps in (1.2) are identity maps. So for every n > 0, 
the map 7rn(7) is split injective (follow the left side of (1.2)). From a chase through the 
commutative ladder of homotopy exact sequences obtained from the back of (1.2), one 
sees that kev(Kn{B) —• Kn(Cf) is contained in image(7Tn(A) —•> Kn(B)), for all n > 0. • 

Returning to the discussion prior to Proposition 1.1, each inclusion Rt-\ —> /?/ in the 
filtration described there is the direct product of identity maps and inclusions: 

A ( T ) - > A ( T ' ) © A ( T " ) 

in which A(r) projects onto each direct factor, A(r') and A(r"). For notational conve­
nience we write A, A', A" for A(r ), A(r'), A(r") respectively. If 7 is the kernel of A —-> A' 
and 7 is the kernel of A —> A", then in J = { 0} ; so there is a fiber square of canonical 
ring homomorphisms: 

A —> A / / ^ A ' 

I I 
A " ^ A / 7 —> A/(7 + 7), 

in which A/ (7 + 7) is a finite ring (being a quotient of Z G whose tensor with Q must 
vanish because Q ® (—) of the above square is still a surjective pullback). In fact 7 + 7 
is the conductor from A' 0 A" into A, and the characteristic of A/ (7 + 7) generates the 
ideal (7 + 7) H Z of Z. 

By [ 13], Theorem 2.1, if that characteristic is a prime p and, for all n > 0, Kn (A/ (7 + 
is a torsion group with no /^-torsion, then there is a long exact Mayer-Vietoris se­

quence: 

v Kn+l(A') 0 / W A " ) — Kn+l(A/(I + J)) 0 Kn(A;I,J) 

— K„(A) — Kn(A
f) 0 Kn(A") — • • • 

where A^(A; 7,7) are the birelative AT-groups (see [7]) associated to the fiber square. The 
kernel of Kn(Ri^\ —> Rf) is the direct product of the kernels of the maps: 

Kn(A) — Kn(A' 0 A") ~ Kn(A') 0 Kn(A") 

in these Mayer-Vietoris sequences, as A ranges over the direct factors which are split up 
as we pass from /?/_i to Rt. 

To provide such sequences for each A —• A' 0 A!' from Rt-\ to /?,, we shall require 
that each qi is a prime/?/. To avoid /^/-torsion in Kn {A/ (7+7)) it is sufficient that A/ (7+7) 
be semisimple, hence a product of matrix rings over finite fields of characteristic /?,; for 
D. Quillen's formula (see [22]) for Kn of such a field yields a cyclic group of order rela­
tively prime to pt. These constraints lead us to consider decompositions of QG derived 
from square-free order cyclic normal subgroups of G, with index relatively prime to their 
order. 

J)) 
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2. Filtrations based on cyclic normal subgroups. For the rest of this paper, as­
sume G is a finite group with a cyclic normal subgroup H generated by an element a of 
order m, and b\,...,bsisa. full list of coset representatives for G/// , with b\ — 1. The 
group algebra QG is a (left and right) free Q [a] (= Q//)-module with basis b\,...,bs. 
Its multiplication is determined by relations: 

bid = an(i)bh btbj = a£(iJ)bk 

where n(i), I (ij) G Z and n(i) is relatively prime to m. 
If d is a positive divisor of m, let £/ denote the primitive d-th root of unity e2lxld. 

Replacing a by Q defines a surjective ring homomorphism, 

tl>d:QG->I,(d)9 

where Z(d) is a Q-algebra with the above description, but with Q substituted for a. As 
in [16], Section 7, there is a Q-algebra isomorphism: 

QG^QZid) 
d\m 

which is \j)d in each ^/-component. 
If D is a set of positive divisors of m, let 0(CD) denote the image of the projection: 

ZG— ©Z(d ) . 

Let a = a ^ denote the image (Cd)de(D °^a m O(CD). Then 0(D) has the same description 
as QG, but with Q replaced by Z and a replaced by a: 0(D) is a (left and right) free 
Z [a]-module with basis b\,...,bs', its multiplication is determined by the relations: 

bta = an(%, btbj = aE(iJ)bk. 

Note that the minimal polynomial of a<p over Q is: 

7©W = II ®d(x) 
de<D 

where Oj(x) is the minimal polynomial of Q over Q. Since each O^(JC) is monic with 
integer coefficients, so is 7 £>(*). So Z [a] has Z-basis 1, a, a 2 , . . . , a6~l, where 

del) 

is the degree of 1<D(X). 

Now suppose/? is a prime factor of m and/? does not divide any element of CD. Then 
there is a fiber square of surjective ring homomorphisms: 

O(CDUp'D) -^ 0(p<D) 

(2.1) „ 4 | 
0(D) —> 0(CD)/pO(CD) 

mod/? 
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where 7T£>, it <p are projections and the right vertical map may be defined by commuta-
tivity of the square. To justify this, note that there is a surjective fiber square beginning 
with these projections, and by [16], sections 8-9, the bottom map in such a square has 
kernel/? 0(2)). 

Note that the left vertical map -Kqy in the square (2.1) is a split surjective ring homo-
morphism. To see this, note that for each d G 2), Z [Q] Ç Z [ ^ ] ; and by compatibility 
of the multiplicative relations, £(d) is a subring of Z(pd), and then 0(2)) is a subring of 
0(p(D). The splitting of 7T£> is the ring homomorphism taking x to (JC, 6 (x)), where 

0:O(2))->O(/?2)) 

is the g-power map on a® followed by inclusion, where q is the inverse of p under 
multiplication modulo r = lcm(2)). 

To produce Mayer-Vietoris sequences for all such squares, we need to assume m (= 
order of a) and s (= index of ( a) ) are relatively prime, so that/? never divides s: 

LEMMA 2.2. If (D is a set of positive divisors of m with least common multiple ry and 
p is a prime not dividing rs, then the ring 0(fD)j pO(fD) is semisimple. 

PROOF. The map ZG —> 0(2)) (a »—• a®) factors through ZGr, where Gr = 
G/ ( flr). So there is a surjective homomorphism: 

FpGr^O(<D)/pOCD). 

Since Gr has order rs, ¥pGr is semisimple artinian by Maschke's Theorem. • 
If m is square-free, we obtain a filtration: 

lG = R0ÇRxÇ--.CRt = @ 0(d) 
d\m 

as follows. Say m — p\pi' • -pt for distinct primes;?/. Let 2); denote the set of all positive 
divisors of mj (p\ • • -pi). Define 

Rt= ® o(<mo. 

Note that if d\p\ • • •/?,-_ i, then d2Vi = d2),U dpi(Dt, and the setsd2),and d/7/2),do not 
overlap, and are in bijective correspondence via multiplication by pt. 

The inclusion /?/_i —• R[ is just the direct product of inclusions: 

0(rf©/_i) -+ 0(^2),) 0 0(dPi<Di). 

Considering the squares (2.1) above, we see that ptRi Ç /?,_j for each /. 
Let #n(2),/?2)) denote the birelative Kn-group associated to the square (2.1). With the 

Ri just defined and with 
F = kertf^Z G—>/?,-) 

as in Section 1, we have machinery in place to analyze SKn(ZG): 
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COROLLARY 2.3. Suppose m is the product of distinct primes p\ • • -pt and is rela­
tively prime to s. There is a filtration: 

0 = f < ) Ç F 1 Ç . . . Ç F r Ç SKn(lG) 

in which SKn(T G)/ F is isomorphic to a subgroup of®d\m SKn[0(d)\ and F / F~l is 
the direct product over all divisors d ofp\ • • -pt-\ of the cokernels of the maps: 

Kn+l(0(Pid^i))^Kn+l(0(dCDl)/piO(d^i))^Bn(d^ 

in the Mayer-Vietoris sequences of squares (2.1) withp — pt and (D = d(Di. 

PROOF. From Proposition 1.1 we know that F/ F~] is the direct product of the 
kernels of the separation maps: 

#n(0(</2}_,)) -^ Kn(0(d<Di)) ®Kn{0(pid'Dd) 

in the specified Mayer-Vietoris sequences. Now use the exactness of those sequences 
and the split surjectivity of 0(d(Di^\) —• 0(d(Di). m 

Note that for each ordering of the prime factors of ra, one obtains a different filtration 
of SKn(ZG). The easiest layer to compute is F/F~l, since in this case d(Dt = d, and 
the S(d*Dt) = H(d) are closest to simple components of Q G. However, the Z(d) need not 
be simple, and this impedes the computations. 

3. The filtration for square-free G. The filtration of SKn(ZG) described in Sec­
tion 2 does not reach all the way to the direct product of images of Z G in the simple 
components of Q G, unless G = H is cyclic. But in the special case where \G\ = ms 
is square-free and Gj H is abelian, we can extend this filtration to have a step for each 
prime factor of ms, and thereby reach the simple components. 

Since m and s are relatively prime, we can choose b\,... bs to be an abelian subgroup 
B of G. If B acts faithfully on Z [Q], then E(d) is a crossed product Q(£/) o #, which is 
simple. 

On the other hand, if the kernel of B —> Aut(Z [Q]) has an element b of prime order /?, 
then in Gd = Gj (ad), the element ab generates a cyclic normal subgroup of order dp. 
Thus, replacing G by Gd and a by ab, the previous Z(J) and 0(d) become H(d,pd) (= 
Z({ d,pd} )) and 0(d,pd) (= 0({ d,pd} )). Now we can form Rt+\ by replacing 0(d,pd) 
by 0(d)0 0(pd) for each d for which/? divides the order of the kernel of B —> Aut(Z [Q]). 
Then pRt+\ Ç Rt, and we obtain a new subquotient F+l / F of SAT„(Z G), isomorphic to 
the direct product of the kernels of separation maps in the mayer-Vietoris sequences of 
squares: 

0(d,pd) —y 0(pd) 

I I 
0(d) —• 0(d)/p 0(d) 

Iterating this process for each prime factor of s, we eventually reach the decomposition 
of Q G into simple components. 
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EXAMPLE. Suppose G is the dihedral group of order 70, with generating rotation a 
of order 35, and with b\ = 1, b2 — b, where b2 = 1 and ba — a~xb. Take p\ = 5 and 
p2 = 7. Then 

# o = Z G = 0(1,5,7,35), 

Ri = 0 (1 ,7)0 0(5,35), 

/?2 = 0(1) 0 0(7) 0 0(5) 0 0(35). 

Under conjugation, { 1, b} acts faithfully on Z [Q] for d = 5,7, and 35. But the kernel 
of { l,b} —> Aut(Z) is of order p = 2. Replacing G by Gi = {1,/?} and a G G by 
ab = b eGu the previous 0(1) = Z[{ 1,/?}] becomes 0(1,2), where 0(1) = Z and 
0(2) - Z. And then 

R3 = Z 0 Z 0 0(7) 0 0(5) 0 0(35), 

corresponding to the decomposition: 

Q G = Q 0 Q 01(7) 0 1(5) 0 1(35) 

of Q G into its simple components. 
The squares produced in this process all have the same form as (2.1). In the next 

section we compute the birelative A^-groups of the squares of type (2.1). 

4. Birelative Â  computation. In this section we put no restrictions on the positive 
integers m and s in the description of the group G in Section 2. If R is a ring with ideals 
/ and J, where / Pi J = { 0} , the birelative AVgroup Kj(R\ I, J) has been determined (in 
[7] and [10]) to be 

l/l2®Rej/j\ 

where Re is additively the same as R<g>j R, and its multiplication is extended Z -bilinearly 
from 

(n <8> s\)(r2 0 s2) = r\r2<S> s2s\ 

for all r/, 57 G R. Here / is a right /?e-module with: 

m • (r(& s) = smr 

for m G /, r, s G /?; and 7 is a left Re-module with 

(r<g) s) - m = rms 

for m G 7, r, s G /?. So / (8)^ 7 is an abelian group. Since IJ Ç ID J = 0, this group is 
equal toi/12 (g>Re Jj J2. 
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Putting in the kernels, the square (2.1) of Section 2 above is part of the commutative 
diagram: 

0 0 

i i 

I I 
0(<DUp<D) —y 0(p<D) > 0 

I I 
0(2)) y 0(<D)/pOCD) y 0 

I I 
0 0 

with exact rows and columns. Every object in this diagram is a Z G-bimodule, where Z G 
acts through the maps from ZG to 0(2) U p*D), 0(2)) and 0(p(D); and every map in 
the diagram is Z G-linear on each side, and multiplicative. So the projections irp<D, ir® 
induce Z G-linear multiplicative isomorphisms: 

I/I2^I'/I'\ J/J2*///2, 

respectively. 
As shown in [16], Section 7, if 2) Ç £ are sets of positive divisors of m, the kernel 

of the projection n®: 0(27) —> 0(2)) is: 

IvfrtiOCE) = OCE)72)(a£), 

where 

del) 

as in Section 2, and a<£ is the image of a. 

To see concretely why 7 £>(«£) generates the same ideal on the left or right, note that 
since every d G 2) is relatively prime to each n(i) (from bid = an{l)b), 

<w (°) = n **(*) 
e\n(i) 

because these have the same roots and degree, and the left side is separable. So 

(4.2) brtq){a<E) = 7#(a£) U ]\ Ode(ax)bi. 
de(D e\n(i) 

e>\ 

A similar expression for sliding b[ to the left is obtained by replacing n(i) with its multi­
plicative inverse modra. 

(4.1) 

V-
f 
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LEMMA 4.3. Right multiplication by lq)(otpq)) induces a left TG-linear isomor­
phism: 

0(prD)/l,^I,/l,\ 

Right multiplication by 1P<D(CX<D) induces a left Z G-linear isomorphism: 

0(<D)/f^f/f2. 

PROOF. Let O denote 0(/?2>) (resp. 0(2))) and 7 denote 7 £>(<*/?£>) (resp. 7 ^ ( 0 ^ ) ) . 
Since each projection is an isomorphism on kernels, /' (resp. / ) = Ol — 7 O. So / 
(resp. / ) = 07 2. Right multiplication by 7 induces a left Z G-linear surjection: 

0 / O T - ^ O 7 / O 7 2 . 

Since p does not divide any d G 2), 7 is nonzero in every Z [£ ]-coordinate, hence is not 
a zero-divisor in O. Therefore the above surjection is also injective. • 

Since 0(2)) has the Z -basis 

{albj : 0 < i < «, 1 <y < 4 , 

where 

deT> 

cosets of these elements form an Fp-basis of 0(2))//?0(2)). We have established left 
Z G-linear isomorphisms: 

0 ( p 2 ) ) / / , ^ / / / / / 2 ^ / / / 2 

0(<D)/pO(<D) 

0(Œ))/J'^f/f2^J/J2 

which are additive, hence F^-linear. So 1/12 has F^-basis: 

{~âJb~ï^(â) : 0 < i < 6,l<j<s}, 

and J/ J2 has Fp-basis: 

{a^jlp^ia) : 0 < i < 6,1 <y <5>, 

where a = otq\jpq). Therefore we have proved: 

PROPOSITION 4.4. If I and J are the kernels of the projections in the square (2.1), 
then 1 /12 ®z J/ J2 is an ¥p-vector space with basis: 

{aibk'l<D(a)®aibi - 7 ^ ( a ) : 0 < ij < 6,1 < k, £ < s} . • 
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NOTE. Since 7#(<z) annihilates both / / 1 2 and J/ J2, if r is the least common multiple 

lcm(D), the actions of Z G on / / 72 and J/ J2 factor through Z Gr, where Gr = G/{ ar) 

has the same descriptions as G, except with m replaced by r. So in the tensors which form 

the basis of 1/12 0 z J/ J2, we may assume that a has order r. The range 0 < ij < 6 is 

unaffected, since 

de*D d\r 

The birelative A^ of the fiber squares we are considering is 

l/l2®Rej/j2, 

where we may take R to be either 0(2)U/?2)) or Z G (which acts through its projection to 

0((D U /?£>)), or, in view of the preceding note, Z Gr. To compute this birelative group, 

which we denote B2(cD,pcD), we need only reduce the F^-vector space 1/12 0 z J/ J2 

modulo the subspace generated by the additional relators: 

((x-z)®y)-(x®(z-y)) 

where z G Z Ge
r. This expression is additive in z, so we can generate all additional relators 

by using those with z = g®h (for g, h G Gr). If z is a product, such a relator is a sum of 

relators in which one factor at a time is moved across 0 ; so we only need those relators 

with z — a 0 1, bi 0 1, 1 0 a or 1 0 bi(l < i < s). The relators are also additive in x 

and y, so we only need those relators where x and y come from the F^-bases of / / 1 2 and 

J/ y2, respectively. This reduces us to a finite list of relators: 

(albk • l^a) • a 0 ^ • 7 p # ( a ) ) - (a'fc* • 7©(a ) 0 ^'+1 ̂  • 7P<D(U0) 

(ai+lbk • 7^)(a) 0 o 7 ^ • 1P<D(OC)) - (albk • 7 ^ ( a ) 0 tf7^ • W o ) • A) 
(4.5) \ . " ' V . . \ 

[albk • lq)(a) • bu 0 dbt • 7 ^ ( a ) ) - (albk • 7©(a ) 0 M ^ * • 7^©(a)) 

(^a1"^ • 7#(ar) 0 a 7 ^ • 7,0(0? )) - (a% • 7<D(a) 0 a 7 ^ • lp(D(a) • fcu) 

where 0 < ij < 6 and 1 < k,£,u < s. One need only express these relations as F,-

linear combinations of the basis of 1/12 0 z J/ J2, using relations such as (4.2), and then 

mechanically determine the quotient Bii^D.p^D). 

Notice that the relators (4.5) generate all relators of the same form, but with / and j 

unrestricted integers; for this larger set of relators is zero in B2((D,p(D). Since we may 

take a G Gr, the exponents / and j can be understood as elements of Z / r~L, where 

r = lcm(£>). 

When (D consists of a single divisor d of m, the situation simplifies somewhat: 

Ivix) = <bd(x), lp<r>{x) = <$>pd(x), 

a£> = 0> ap<D — Cpd-

The computation of B2((D,p(D) can always be reduced to this case: 
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PROPOSITION 4.6. If the prime p does not divide any member of (D, the birelative 
K2-group B2((D,prD) of the square (2.1) satisfies: 

B2(<D,p<D) *i 0 B2(d,pd). 
d£<D 

PROOF. Let S denote Z — pZ. By localizing the diagram (4.1) at p, we obtain the 
surjective fiber square: 

S-xO<S>Up<D) —y S'1 (Dip®) 

S"10(2)) —> S-l(0(<D)/pOCDJ) 

with birelative K2-group 

BF2{<D,p<D) = S-\l/l2)®s-i(X<ixjP0y S~\J/J2) 

= (S-\I/I2)®ZS-1(J/J2))/R, 

where R is the subgroup generated by the elements: 

(xc ®y) — (x® cy) 

for c G S~~x 0(*D U p*D)e. Since multiplication by an element of S is bijective on / / 1 2 

and JI J2, localizations of these at/7 are S~XZ -linear isomorphisms, inducing a group 
isomorphism: 

/ / / 2 0 z JI J1 = S-\l/I2)®z S'\J/J2). 

Under this map, the extra relations for B2((D,p(D) are mapped onto R, so 

B2((D,p<D) ^ Bs
2(<D,p(D). 

Since p does not divide any d G (D, the square (4.7) is isomorphic to the square: 

S-X(H{(D^p(D) —> S-x9{(p<D) 

I I 
S~x9f(<D) —> S-x(rteD)/p?{(<D)) 

where 
# ( £ ) = © 0(d); 

de<E 

this follows from the fact that rfH(<E) Ç 0(E) if r = lcm(£), and [16], Section 9. Since 
all maps in the latter square operate coordinatewise, its birelative K2-group is 

0 B2(d,pd). 
de<D 

If Proposition 4.6 is used to determine B2((D,p(D), one may obtain a complicated 
description of its generators. In the computations to follow, where G is dihedral or cyclic 
a more direct determination of B2CD,p*D) is expedient. 
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5. Birelative K2 for dihedral groups of order 2m, m odd. To express the relators 
(4.5) in terms of the Fp-basis given in Proposition 4.4, one must move each bt past lq)(oc) 
and lpq)(a). This can be done with the aid of (4.2), but the extra factor from Z [a] that 
is produced as a by-product is rather complicated. A simpler formula is available when 
G is dihedral of order 2m. Of course if G is cyclic of order m, matters are even easier, 
since the only bt is b\ = 1. In this section we study the dihedral case. Having done that, 
we describe in the next section the parallel but simplified arguments which derive the 
birelative K2 for cyclic groups. 

For the rest of this section, assume G is dihedral, with presentation: 

(a,b:am = l,b2 = l9ba = a~lb), 

and take b\ — 1 and bi — b. Then for any set £ of positive divisors of m, 

bn<E{a) = l<E(a-
{)b, l<z(a)b = b~f<E(a-

1). 

To rewrite 7<£(<2_1), we use the symmetry of cyclotomic polynomials: In Z [x,x~l ], 

' x-v^dix), \id> 1, 
®d(X ] ' -x-*W&d(x), ifd=l. 

This is easily verified by induction on the number of prime factors of d, using the standard 
cyclotomic identities: 

%d(x) 
\&d(xP), ifp|d, 
\&d(xP)/Qd(x), lipid. 

for every prime p. 
So if 2) is a nonempty set of positive divisors of m, p is a prime not dividing r 

lcm(D), and S = £^€£> (£(d), then 

and 

bar8 • l<p(a\ if 1 £ ©, 
\ -bar6 • 7#(a) , if 1 G ©, 

7 ^ ( a ) ^ = Z7«-^ - 1 ) . 7^ ( a ) , 

sicne 1 $ p(D. 
Now we simplify notation by writing (g, h) for 

g'lq)(oc)®h'lptD{a) 

in //I2 C*Dz / / */2, where g and /* come from Z Gr. The birelative ^2-group B2(
(D,prD) of 

the square (2.1) in the dihedral case is generated by all {albk, alb1) with 0 < ij < r and 
0 < k, I < 1. (Replacing r by 6, we get an F^-basis of / / 1 2 ®z J'/ J2.) 
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The relations (4.5) become: 

(i) (a ,"+1 ,o /) = (£i , ' ,a^1) 

(ii) (ct-xb,ci) = (a%ctx) 

(iii) (ai+x,a!b) = (a\a>+lb) 

(iv) (ai-lb,a!b) = (a%a>+xb) 

(v) (a!+x,a>) = (ai,d+x) 

(vi) (ai+xb,d) = (cJb,a/+x) 

(vii) (ai+x,ajb) = (a\af-xb) 

(viii) (ai+xb,a!b) = {a%ai~xb) 

(5.1) 

(ix) ±(aMb,a!) = (a\aTjb) 

(x) ±(ai-6,a!) = (aibia-jb) 

(xi) ±(aMb,ajb) = (a\aTj) 

(xii) ±(ai~8,db) = (alb,a'j) 

(xiii) (aT%a>) = (a^d^-^b) 

(xiv) (fl_/, a7') = (fl'fc, d^-^b) 

(xv) (<r%db) = (aV'"*^" 0 ) 

(xvi) (cT\c/b) = (a,'fc,aM0,-1)) 
where the ± sign means + if 1 ^ 2 ) , and — if 1 G 2). Among those generators with 
0 < ' J < £, these are a full set of defining relations for #2(2),/?2)). And among the 
generators with 0 < ij < r (which means for any ij G Z since ar = 1 in Gr), the 
equations (5.1) are true for all integers / and/ 

From the relations (5.1), we deduce: 

(ai,a!) = (l,a!+j) (by (i)) 

(a\aib) = (l,ai+jb) (by (Hi)) 

= (UûT'ft) (by (vii)) 

(a^a7") = (l,a1+>h5(/7~% (by (vi), (xiii)) 

{a%db) = (l,a/",'~*(p"1)) (by (viii), (xv)). 

By proper choices of / and j , the integers / +7 and / —j can be made into any two integers 
congruent modulo 2. So #2(2), p2)) is generated by the elements ( 1, b), ( 1, ab) and ( 1, a1), 
for 0 < i < r. 

For the rest of this section, assume the order m of the rotation subgroup is odd, so that 
r — lcm(2)) is odd, and the prime p is also odd. Then 

(l,ab) = (\,ax+rb) = (l,fc). 
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So for all integers /, 
(fl,>) = (l,ft). 

By linearity of (g) in the first variable, 

0 = (7D(fl),*)=72)(l)(l,*). 

If 1 ^ 2 ) , then by Diederichsen's formula (see [16], Lemma 9.3), 7^(1) is relatively 
prime to p. Since p(l,b) — 0, it follows that (1,6) = 0. On the other hand, if 1 G (D, 
then by (5.1) (ix), 

0 = (aMb9J) + (a\a~jb) 

= 2(1,*), 

since 
(alb,au) = (a\aub) = (1,6) 

for all r, w G Z. Since /? is odd and p( 1, b) — 0, it follows that ( 1, b) — 0 in this case too. 

THEOREM 5.2. Suppose G is dihedral of order 2m, m is odd, B2(fD,prD) is the birel-
ative K2 of the square (2.1), a — a<j), and b = £</<E£> ^(^O- There is a surjective additive 
homomorphism 

f:Fp[a]^B2(<D,p<D) 

taking a1 to (I, a1) for all i G Z, and the kernel off is the subgroup %^ generated by the 
elements: 

( a ' - a ^ - ' , ifl&D, 
[ai + a-tp-t, if I el). 

So B2(*D,p(D) = ¥p[a]/ %, is an elementary abelianp-group of rank: 

6/2, ifl&<D, 
( (5-1) /2 , i / l € © . 

PROOF. Among the generators (l,a')» 0 < 1 < r, of B2((D9p(D), relations (5.1) (x), 
(xv) imply 

(l9a
i) = (bb,ai) 

(5.3) = ±(l9a-i-s'S(p-l)) 

= ±(i,cr6p-i) 

where + applies if 1 $ (D and — applies if 1 G (D. Since 7 D ( « ) annihilates J/ J2, we are 
led to another set of relations: If, for t G Z, 

then 
EQ«(1^") = ( l ^ c W ) = (1,0) = 0. 

u 
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So the homomorphism of additive groups: 

Z[x]^B2((D9p<D), 

takingx1 to (I, a1) for each /, has 7 £>(x)Z [*]+/? Z [x] in its kernel, so induces a (surjective) 
homomorphism 

f:Fp[a]-^B2mP<D) 

taking a1 to (I,a1) for all integers / (recall ar = 1 where r — lcm(2))). And by the 
relations (5.3), f(%J = 0; so we have an induced homomorphism, 

f:Fp[a]/!l-^B2mp<D). 

Next we construct an inverse to / . Define V to be the F^-linear span of the elements 
( l , f l f ) f o r 0 < i < 8 i n / / / 2 ® z J/ J2. Define 

FMI/I2®ZJ/J2-+ V 

to be the Fp-linear map taking: 

(a1',^')—>(l,a,'+-/) 

(a% a1) —• 0 
(5.4) . . 

{a\db)-^0 
(alb,ajb)-^(\,aj-i-5(p-l)) 

for those / and j with 0 < ij < 6. The images lie in V because each power of a is a 
Z-linear combination of I,a,... ,cfi~x modulo lq)(a). 

Since Z [a ] (Ç 0( *D)) has Z -basis \,a,... ,as~l, the quotient 

Fp[a]= l[a]/pZ[a] 

has an F^-basis consisting of the cosets of these elements. So there is an Fp-linear iso­
morphism, 

F2:V —F p [a] 

taking (1, a1) to a1 for 0 < / < 6. 
Let 

F3:Fp[a]-^Fp[a]/^ 

be the canonical map. Then define 

F:l/l2®zJ/J2-> Fp[a]/0L 

to be the composite F^F2F\. 
Since 7©(a) annihilates both 7/ /2 and 7 / / 2 , the effects (5.4) of F\ are true for all 

integers / and/ (The fourth effect in the list is verified by using the involution a —» a ~] 

on Z [a].) Thus F\ has the same image when applied to both sides of each of the relations 
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(5.1) except for the relations (x) and (xi); and F3F2F1 has the same image when applied 
to both sides of (x) and (xi). Therefore F induces an F^-linear map 

F:B2(<D,p<D)^Fp[a]/lL 

inverse to / . 
For the assertion about rank, note that complex conjugation in each ^-coordinate de­

fines the ring automorphism of Z [a] taking a to a - 1 , and induces an automorphism 9 
of the ring Fp[a]. The maps 

V-: ¥p[a] —> ¥p[a], x-*x + 0(JC), 

T-:¥p[a]-^¥p[al x^x-Q{x), 

are F^-linear, and using the fact that/7 is odd, so 2 is a unit in ¥p, it is straight-forward to 
show that: 

kernel (T*) — image (7"), and 

kernel (T~) = image (7*). 

By the linearity of these maps, image(7~) is spanned by the elements a1 — a~l for i > 1, 
and image(7^") is spanned by 2 and the a1 + a~l for / > 1. Since ar + a~~r = 2, we can 
drop the initial 2 from the spanning set of image(I+). 

By [16], Proposition 9.1, since p/r = lcm(2)), the inclusion: 

Z [ a ] ^ 0 Z [ O ] 
de® 

induces an isomorphism of rings: 

¥p[a]^ 0Z[C/]//>Z[Cd. 
de<D 

And 7^ respects this decomposition, so has image: 

©Z[C/ + Cr1]//>ZK/ + CT1]. 
d£(D 

thus the Fp-rank of image(7H") 

| l + £ i < ^ ^ W ) / 2 = = ( £ + l ) / 2 , if l e © , 

and the F^-rank of ¥p[a] is 5. So if 1 £ £>, 

F / , [ a ] / ( a , " - a - , " : / > l ) ^ F / / 2 ; 

and if 1 G 2), 
Fp[a] / (a' ' + a"1' : / > ! ) = F / " 1 ) / 2 . 
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Recall that a £, = 1, so the exponents of a can be taken from Z / rZ. Let t denote the 
multiplicative inverse of 2 in Z / rZ. Multiplication of the ring ¥p[a] by the unit a~bpt 

is an invertible F^-linear map taking the above denominators to %;, so 

F / / 2 , if l £ 2 ) , 

F / ~ 1 ) / 2 , if I E 2). 

NOTE. In the filtration of Section 2, derived when m is square-free, each 2) has the 
form q\ • • • g/2);, where q\,...,qt, qi+\ , . . . , g„ are distinct primes and 2)/ is the set of all 
positive divisors of qi+\ • • • qn. In this case, 

* = Z) <P(rf) = (<7i - 1) • " t o ~ l)?i+i ' ' -qn. 
deT> 

Also, multiplication by a~6pt in the above argument is unnecessary exactly when 
a-èpt _ ^ ^ ^ ^ w n e n r|£ Since 

de(D d\r 

this adjustment is unnecessary if and only if 2) consists of all positive divisors of r = 
lcm(2)); and this is equivalent to 0(2)) = Z Gn where Gr = G/ ( </). For such squares: 

ZGr/7 — ZGrpI (topia*)) 

i I 
ZGr —• FpGr, 

we obtainB2(2),/72)) ^ Fp
(r~1)/2. 

6. Birelative Â  for finite cyclic groups. Suppose G is cyclic, generated by an 
element a of order ra. Then the birelative A^-group #2(2),/?2)) of square (2.1) can be 
computed just as in Section 5; but the details are simpler. 

THEOREM 6.1. If G is cyclic of finite order m generated by a, then: 

B2(<D,p<D)^Fp
5, S = £*>(</). 

del) 

with ¥p-basis: 
{l<D((X) <g) a1 • 7pvioc) : 0 < i < £ } , 

where a = oiqxjpq). 

PROOF. AS in the proof of Theorem 5.2, #2(2),/?2)) is generated by all elements 
(a\cè) for 1 < / J < r, and these satisfy: 

(a\a!) = (l,ai+j), and 

Y^ctu(l,a
u) — 0, whenever JC Î̂ CJC) = ^2ctux

u with c/w G Z. 
u u 

¥p[a]/^ 
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So alp —* (1, #') induces an F^-linear map 

f:¥p[a<D[^B2{<D,p<D). 

To define an inverse to / , we proceed as in the proof of Theorem 5.2 to define: 

B2VD,p'D)^V*lTp[aq)] 

{a\c/)->(h(j+j)--Kxl+J 

7. A3 of some orders. To see how much of each birelative K2 survives in SK2( Z G), 
one must examine the preceding groups ^ ( 0 ( 2 ) ) ) and #3(0(/?2))) in the 
Mayer-Vietoris sequences for squares such as (2.1). Direct computations of these are 
not yet accessible unless *D contains only one element d. 

We begin with no assumptions except the following: Suppose d > 1 and Q is a primi­
tive d-th root of unity. Suppose B is a subgroup of Aut( Q (£*)) of order s, relatively prime 
to d. Define A^ to be the twisted group ring Z [Q] o B with trivial factor set, Fj to be the 
fixed field Q(Q)B, and Rj to be alg. int. (Fj). Where convenient, we drop the subscript 
d. 

Any basis of both Q (£ ) over F and Z [£ ] over R yields a matrix representation: 

Q(()°B^MS(F) 

taking A into MS(R). (The Q (£ )o#-module defining this representation is 0 (£ ), on which 
B acts by evaluation.) Since d and s are relatively prime, and the only primes ramified in 
Z [£ ] are those dividing d, while their ramification index from R to Z [£ ] divides s, the 
Z -order A is a tamely ramified twisted group ring. By a theorem of M. Rosen (see [23], 
Theorem 40.13), A is therefore a hereditary order. 

Thus A falls within the class of "tiled orders" for which M. K. Keating has computed 
the ^-theory in terms of the AT-groups of their center and of residue rings of their com­
pletions at primes of the center. The center of A is R. 

Using the matrix description of hereditary orders over a complete discrete valuation 
ring (see [23], Theorem 39.14), we find that, for each maximal ideal /i of/?, if J = radA^, 
then A^ / J is a direct product of r matrix rings over Rj \i, where 

/ •ZK] = / iZK] 

(see [23], Corollary 39.18). If /x / J , then r = 1, for as in [16] (proof of Proposition 10.2), 

and by the matrix description referred to above, 

/iAf,(^) CAM; 

so, since 1 G dR + /JL, MS(R^) — A^. On the other hand, if /x|d, so that \i /s, then, as in 
[17] (p. 182), 
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where P i , . . . , Pg are the primes of Z [£ ] over fi. Then 

jrz[a = (Pi--pgyna = ^[Ç] 
if and only if r — e — the ramification index of \i in Z [( ]. 

Using this determination of r in Keating's theorem ([9], Theorem 2), we get: 

(7.1) Kn(A)*ÉKn(M)® 0 (e(n)-l)Kn(R/n) 
fi(EmaxR 

for all n > 0, where M is a maximal P-order containing A, and e{\i) is the ramification 
index of /x in Z [£ ]• By [23], Corollary 21.7, M is Morita equivalent to R; so ^(Af) = 
Kn(R). 

Now consider ^3 (A). In independent work, M. Levine [15], and A. S. Merkurjev with 
A. A. Suslin [18], have established formula 

r 2 ^ J ( Z / 2 Z r - 1 0 Z / 2 w 2 ( f ) Z , n > 0 
K3(R)-^ - Ï Z / W 2 ( J F ) Z 5 r i = 0 > 

where F is a number field with r\ real embeddings and 2r2 imaginary embeddings, and 
R = alg. int. (F). The number W2(F), which figures in the Birch-Tate conjecture, is the 
order of the etale cohomology group 

fl»(F,Q/Z(2)). 

For each prime t, the I -primary part of this group is 

limH°(F,fien <g> /^„) = lim(/i*„ <g> /i^)A u t ( P / j p ) , 

where F5 is the separable closure of F and / i ^ is the group of I "-roots of unity in Fs 

(see [25], Section III). Here the action of Q — Aut(Fs/ F) is diagonal, so there is a 
(/-isomorphism 

where £7 acts on the latter by g • £ = g2(C)- An element £ of /i£« is fixed by that action 
if and only if Aut (F(0 /^ ) n a s exponent at most 2 (see [18], Section 4.19.1). So the 
I -primary factor of w2(F) is £n, where n is the largest integer for which Aut(F(£ )/ F) 
has exponent at most 2. 

In the two examples of direct relevance to the present analysis, a straight-forward 
computation shows: 

w2(Q(0)) = w2(Q(0 + CT1)) 

= lcm(24,2d). 

Assembling these facts, we have: 

(1.2.) K3UIQ\)- | Z ^ ) / 2 e Z / , c m ( 2 4 ; 2 d ) Z ) ifd>2. 
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Further, if G is dihedral with rotation subgroup H = (a), then for odd d greater than 
1, 0(d) is the tamely ramified twisted group ring Ad = Z[Q]oB described above, with 
Fd= Q(Q+Cd-

llRd= Z[Q+(d-
l]ands= \B\ = \{l,b}\ = 2. By [16], pp. 408-409, 

if this odd d is divisible by two distinct odd primes, then all the ramification indices e(\i) 
are 1 ; so 

But if, instead, d — pr for an odd primep and r > 1, then/? is the only prime ramified in 
Z [Q], and there, it ramifies totally. So there is only one prime \i of Z [Q + Ç~l] ramified 
in Z [£/], and its ramification index is the degree s — 2 of Q (Q) over Q (Q + Q_1). Also 

Z[Q + CT1]/LI^FP. 

So 
Kn(0(d)) * Kn(l [Q + Q-1]) 0 ^ (F , ) . 

This proves: 

PROPOSITION 7.3. For oddd > 1 and G dihedral with rotation subgroup H — (a), 

K3(0(d)) *é 

f (Z/2Z) ( ^ ) /2) - i0Z/21cm(24,2J)Z 0 Z / ( / ? 2 - l ) Z , if d = p* forp an odd 
\ prime, t > 0. 
[ (Z / 2Z ̂ W / 2 ) - 1 0 Z / 2 lcm(24,2J)Z, otherwise. 

m 

8. Â 3 of the semisimple corner. To complete our inventory of the pieces of 
the Mayer-Vietoris sequence of a square of the type (2.1), we now consider 
K^O^D)/pO(fD))- Since/? does not divide any member of *D, 

(8. i) om/pom * e o{d)/Po(d\ 
de(D 

by [16], Proposition 10.1. 
For now, fix a choice of d > 2, and take G to dihedral, with rotation subgroup H = 

(a). By [16], Proposition 10.2, 

O(d)/pO(d)^M2(Z[Ci + Crl]/pZ[0 + Cd-
]]). 

Since p/d, p is unramified in the Galois extension Q(<^ + <^_1) over Q. So there are 
positive integers/ and g for which fg = (f(d)/ 2, pï [Q + Ç~l ] is a product of g distinct 
maximal ideals: Pi -Pg, and for each /, 

ZtCz + C T ' l / ^ F / 

So, by the Chinese Remainder Theorem, 

0(d)/pO(d)^M2(F*). 
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As in [24], p. 23, the residue degree/ is the order of the Frobenius substitution: 

^GAut(Q(C/ + C/_1)/Q)-

By [29], p. 14, the Frobenius substitution âp in Aut(Q(^/)/ Q) takes Q to (Jj. So the 
restriction of âp to Q {Q + (J"1 ) satisfies the property that defines ap. Thus the restriction 
map: 

A u ^ Q C C / ^ A u ^ Q C O + CT1)) 
takes âp to op, it is also surjective, with kernel of order 2, generated by complex conju­
gation. The order of âp is the order of p in (Z / JZ )*. So the order of op is 

|<p)|, i f^T£</>), 
i | ( p ) | , i f - l G ( p ) . 

Thus this order/ is the smallest positive integer with 

pf = ±\(modd). 

So we have: 

PROPOSITION 8.2. Suppose G is dihedral of order 2m with rotation subgroup H — 
(a), andp and (D are chosen as in (2.1). Then 

K3(0(<D)/pO(<D)) * © K3(0(d)/pO(d)) 
de<D 

and for each d > 2 in (D, 
K3((X.d)/pO(d)) <* [Kiif^Y^lV 

where f is the least positive integer withpf = ±1 (mod d), while: 

K3(0(2)/pO(2)) * K3(0(l)/pO(l)) 

lK3(¥pefp)=[Z/{p2-l)Z]\ if pis odd, 
| ^ 3 ( F 2 [ Z / 2 Z ] ) ^ Z /2Z 0 Z / 6 Z , ifp = 2. 

The last isomorphism: 

K3(F2[Z/2Z]) ^ Z /2Z 0 Z / 6 Z 

may be found in [1], Theorem 9.16, p. 175. 
Suppose, on the other hand, that G — (a) is a cyclic of any finite order m, and p and 

(D are chosen as in (2.1). Since /?/lcm(2)), 

0(<D)/pO(<D)^ 0 Z[Q]/pZ[Q}. 
d<E<D 

Since/?/J, p is unramified in Z [Q]. So there are positive integers/ and g with/g = ip(J), 
pZ [Q] = P\ - -Pg for distinct maximal ideals Pt, and for each /, 

Z[C/]/^/ = Fpr. 

This/ is the multiplicative order of p (mod d). Thus: 

https://doi.org/10.4153/CJM-1992-037-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-037-x


SK2 AND K3 OF DIHEDRAL GROUPS 615 

PROPOSITION 8.3. Suppose G is cyclic of order m generated by a, and p and (D are 
chosen as in (2.1). Then 

K3(0(<D)/pO(<D)) ~ © K3(Z[Q]/pZ[Q]), 
de<D 

and for each d G (D, 

*3(Z[C/]/pZ[C/]) * [K3(¥^)Y{d)lf 

^[Z/(p2f-\)ZYid)lf 

where f is the least positive integer withpf = l(modd). • 

9. The bounds on SK2(Z G) and K3(Z G). When the computations of Sections 4-8 
are assembled as in Sections 1-3, we obtain lower and upper bounds for SK2(Z G) and 
lower bounds for K3(ZG). As in Corollary 2.3, for each ordering of the prime factors 
P\,... ,pt of m, there is a filtration: 

O ^ ^ O - ' Ç ^ ÇSK2(ZG); 

and, for each /, F/ F~l is the direct product, over all positive divisors d of p\ • • -/?/_i, 
of the cokernels of maps: 

(9.1) K3(0(Pid<Di))^K3(0(d<Di)/p) ®B1(d
tDuPid^i) 

from Mayer-Vietoris sequences of the square (2.1). Recall that 2)/ consists of all positive 
divisors e of/?/+i — -pt. As we saw in Sections 2 and 4, the codomains of these maps are 
finite abelian groups; so their quotient F j F~x is too. By Proposition 4.4, B2(d<Di,pid'Di) 
is an elementary abelian /?;-group, and by Lemma 2.2 and Quillen's formula for Kn of a 
finite filed, K3(0(dŒ>ï)/pi) has no /7,-torsion. 

So the /?/-primary part of F j F - 1 comes exclusively from the birelative groups; it is 
a direct product, over all positive divisors d oip\ • • -pi-\, of the cokernels of the maps: 

K^Oipidfy)) -*B2(d<DuPid<Di). 

The domain of this map is presently intractible if / < t (so that £>; has two or more 
elements). But the /vprimary part of F/ F~l is the direct product, over all positive 
divisors d of m/pt, of the cokernels of maps: 

K3(0{ptd))-+B2(d9ptd), 

and these cokernels can be estimated by using the computations of the domain and 
codomain, exemplified in Sections 5, 6 and 7. 

On the other hand, if/? is a prime and/7 ^ pt, the /^-primary part of the layer F j F~l 

has no contribution from the birelative groups; it is the direct product of the /7-primary 
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parts of the cokernels of K3 of the top maps in commutative squares of ring homomor-
phisms: 

oiptdVd —• omypi 
(9.2) m II? 

®e\PM...Pt Oipide) > ®e\PM...Pt 0{de)/pi 

as d ranges over the positive divisors of p\ • • -pt-\. A lower bound for these cokernels is 
obtained by using an upper bound for their images, and for these we may use the images 
of K3 of the bottom maps in (9.2). So for p ^ pt, the /7-primary part of F j F~x maps 
onto the direct product of the /7-primary parts of the cokernels of the maps: 

(9.3) K3(0(Picj)^K3(CKc)/pi) 

as c (= de) ranges over all positive divisors of m/pt. 
The direct product of the /7-primary parts of the codomains of the maps (9.3) is an 

upper bound, mapping onto the /7-primary part of F / F~x, for the product of the p-
primary parts of these codomains is the /7-primary part of 

(9.4) ®[K3{0(c)/Pl)®B2(c,Pic)\9 

and this (finite) group is isomorphic, by Proposition 4.6 and equation (8.1), to the direct 
product of the codomains in (9.1), which map onto F / F~x. 

We organize these estimates of/7-primary torsion as follows: If p divides m, order the 
prime factors of m so that p — pt is last. In the resulting filtration, estimate the rank 
of the /7-primary part of F j F"x using birelative computations. Then obtain upper and 
lower bounds for the /7-primary part of F j F~l for / < t by using the codomains and 
cokernels of the maps (9.3). Note that these bounds are independent of the order chosen 
for the prime factors of mj p. 

For those primes p not dividing m, there is no birelative contribution to /7-primary 
torsion in F. The /7-primary part of each F j F~x (1 < / < t) is between those of the 
codomains and cokernels of maps (9.3), and these bounds are independent of the order 
chosen for the prime factors of m. 

Before assembling our final theorems, we record one more way in which cyclic and 
dihedral groups are cooperative: 

PROPOSITION 9.5. Suppose a group G is a cyclic of s qua re-free order m, or dihedral 
of square-free order 2m. Suppose 

0 = F® Ç • • •CF f QSK2{TG) 

is the filtration from Corollary 2.3 associated with the prime factors p\,.. .pt ofm. Then 
F = SK2(ZG). 

PROOF. In the cyclic case, F is the kernel of a homomorphism: 

Stf2(ZG) —0Stf2(Z[C/]), 
d\m 
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and by localization sequences, the groups SK2(Z [Q]) vanish. 
If G is dihedral of square-free order 2m, we can extend the filtration of Section 2: 

(9.6) ZG = R0 Ç Rx Ç • • • Ç Rt = 0 0(d) 
d\m 

by one step: Rt Ç Rt+l as in Section 3. In this last step Z [Z/2Z] is split into Z ® Z, 
with conductor 2. 

Then SK2(ZG)/ F+l is isomorphic to subgroup of SK2(Rt+\ ), which vanishes by [12], 
Theorem 1.1, because Rt+\ is hereditary. And ft+1 / F is (by Proposition 1.1) the kernel 
of the map/ in the Mayer-Vietoris sequence: 

K3(I)eK3a)^K3(¥2)®B2(h2)^K2(l[Z/21])-^K2a)®K2(l)^K2(F2y 

By computations of Dunwoody [5] and Silvester [19], Section 10, the domain and co-
domain off are both Z / 2Z 0 Z / 2Z ; since K2(¥2) vanishes,/ is an isomorphism. • 

NOTE. The last argument is a proof that the corkernel of K3(Z —> Z /2Z) and 
SK2(Z [Z / 2Z ]) both vanish. But these facts have been known for a long time (see [26]). 

For finite cyclic groups there is a great gap between those upper and lower bounds for 
SK2(Z G) which we can produce without a better understanding of the maps in the Mayer-
Vietoris sequences. The reader can use as upper bounds, the groups in (9.4), computed 
in Theorem 6.1 and Proposition 8.3. The difficulty in obtaining lower bounds is due to 
the substantial free part of K3(Z [(^D- However, birelative groups provide the following 
lower bound: 

THEOREM 9.7. Suppose m is an even square-free integer greater than 2. If G is a 
cyclic group of order m, then SK2(ZG) has a quotient which is an elementary abelian 
2-group t/rank at least: 

(m/2) + l _ 2t_x 

2 

where t is the number of prime factors ofm. 

PROOF. Apply Corollary 2.3 with s = 1 and pt = 2. Then by Proposition 9.5, 
SK2(ZG) = F1; and F1 /F~x has 2-primary part which is the direct product, over all 
positive divisors d of mj 2, of the cokernels of the maps: 

*3(Zfêw]) —*2(d,2d). 

By Theorem 6.1, 

B2(d,2d)^(Z/2Zy(d\ 

If d = 1, the cokernel in question vanishes (see the end of the proof of Proposi­
tion 9.5). On the other hand, since d is odd, if d > 1, formula (7.2) shows that K3(Z [C^dY) 
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is generated by (p(d)/2 + 1 elements. So the 2-primary part of Fi / F1 l is elementary 

abelian of rank at least: 

d>\ d>\ 

= ( m / 2 ) - l „ , _ , 

2 

_ ( m / 2 ) + l _ ,_! 

" 2 

To describe the bounds for SK2ÇLG) when G is a square-free order dihedral group, 

we introduce some simplifying notation. If p is prime, c > 2, and /?/c, there is a least 

positive integer/ w i t h / / = ± 1 (mod c). Define 

o{p,c) = (p2f -\y{c)i2f. 

The exponent, 
g(p,c)=<p(c)/2f 

is the number of primes in Z [£. + Çr 1 ] lying over /?. By Proposition 8.2, <j(p, c) is the 

order of K3 of a certain finite ring. 

Suppose/?i, • • • ,Pt are distinct odd primes with product m. For each prime /?, let /i(p) 
denote the largest integer /x for which /?^ divides 

ri n °<PUC), 
c>\ 

and let v(p) denote the largest integer v for which pv divides 

n(p/-i). 

THEOREM 9.8. Suppose G is a dihedral group of square-free order 2m, and p is a 

prime factor of m. Then SK2ÇI-G) has a quotient SK2ÇIG)/ F which is an elementary 

abelian p-group of rank at least: 

(m/p) + \ 
v - i 

2 ' 

where t is the number of prime factors ofm. The group F has p-primary part of order pu, 

where 

li(p) + 2i/(p) >u> fi(p) + v(p) - w # 1 j ' ( f - l ) 2 ' - 2 , ifp±% 
Xt-l)2'-\ ifp=3. 

If q is a prime not dividing m, then SK2ÇL G) has q-primary part of order qv, where 

li(q) + 2v(q)> v 

0, 1 / ^ ^ 2 , 3 

> fi(q) + i/(q) t2l~\ ifq = 3 
( E U E C | S 8{q,c)) +f(3(2 f ~ , )+ l ) , i / ? = 2. 

0 1 
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NOTE. The happy coincidence of the formulas for birelative contributions in Theo­
rems 9.7 and 9.8 appears to be just a coincidence. The expression: 

n+ 1 , 

where n is the product of k distinct odd primes, has nonnegative value and is zero only 
for n = 3. 

PROOF. Apply Corollary 2.3 with s = 2and/?, = p. By Proposition 9.5, SK2(1G) = 
F\ and P j F~l has /7-primary part which is the direct product, over all positive divisors 
d of m/ p, of the cokernels of: 

K3(0(pd))^B2(d,pd). 

By Theorem 5.2, 

I 0, if d = 1. 

By Proposition 7.3, K3(0(pd)^ has only cyclic /7-torsion. So the /7-primary part of 
p J pi-i is elementary abelian of rank at least: 

J>1 

_ (m/p)+l _ _! 
" 2 

Take F to be the kernel of the composite ofF^F1/ F*~l followed by projection to 
the /7-primary part; so the /7-primary parts of F and f*-1 are the same. For upper and lower 
bounds of the /7-primary parts of each Fi j F~l, where / < t, we use the direct products 
of the/7-primary parts of the codomains and cokernels, respectively, of the maps (9.3), 
as c runs through the positive divisors of m/ pt. 

Sincep\m, p ^ 2. There is nothing about the groups K3(0(ptc)) and K3(0(c)/pt), 
computed in Propositions 7.3 and 8.2, that would prevent the maps (9.3) from being 
injective on /7-primary parts. So for our lower bounds, we must assume this injectivity. 
Suppose pn is the largest power of p dividing pj — 1. If/7 ^ 3, the/7-part of the order of 
K3(0(pic)) is: 

f l , i f c ^ 1 and/7/c, 

1/7", i f c = l , 

and the number of divisors c of m/ pt which are divisible by p is the number of positive 
divisors of mj pip, namely 2'~2. On the other hand, for p = 3, the /7-part of the order of 
K3{0(piC)) is: 

3, i f c ^ l , 
31+n, if c = 1, 
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and the number of positive divisors c of mj pt is 2r x. So the upper and lower bounds for 
the /7-part of the order of F / F*-1 differ by a factor of/? raised to the power: 

' n + 2'~2, if/7 ± 3, 
,n + 2 H , i f / 7 - 3 . 

Multiplying these factors over all / with 1 < / < t, we obtain the asserted bounds for the 
/7-part of the order of F. 

Now assume q is a prime not dividing m.lfq / 2, the bounds on the g-part of the 
order of SK2ÇIG) are obtained just as they were for the order of F above, except that we 
multiply over all / with 1 < i <t. 

But if q = 2, it is not appropriate to assume injectivity on ^-primary torsion of the 
maps (9.3). By Proposition 7.3, if 2n is the largest power of 2 dividing p\ — 1, the 2-
primary part of #3 (0(p/c)) is: 

(9 g) f ( Z / 2 Z ) ( ^ c V 2 ) - i e Z / 1 6 Z ? i f c ^ 1, 
{ ' } i ( Z / 2 Z ) ( ^ ' c ) / 2 ) - i 0 Z / 1 6 Z 0 Z / 2 " Z , ifc = 1. 

And by Proposition 8.2, if f(c) denotes the least positive integer / with pi = 
±1 (mod c), then the 2-primary part of K3 ( 0(c)//?/) is that of: 

[z/(pf(c)-i)zr^/2^\ ifc^i, 
[ Z / ^ _ i ) Z ] 2 , i f c = l . 

If c ^ 1, the image (in K^(0(c)/ p^j) of the first term in (9.9) is contained in, and may 
be as large as: 

[Z /2ZF ( c ) / 2 / ( c ) = [ Z / 2 Z ] ^ ' C ) , 

which contains all elements of order 2 in KT,(0(C)/ pt\. The image of the second term in 
(9.9) is cyclic of order at most the minimum of 16 and the 2-part of/?/ — 1 (the latter 
is a multiple of 8, and is divisible by 16 if and only if either/?/ = ±l(mod 8) or/(c) is 
even). So for c ^ 1, the image of (9.3) has 2-primary part of order at most 2 raised to 
the power: 

£(/?;, C)+ 4 - 1 . 

If c = 1, the image of the first term in (9.9) is at most: 

0, if Pi = 3, 
Z/2Z, if Pi = 5, 
Z / 2 Z 0 Z /2Z, if Pi > 7 . 

The image of the second term is cyclic of order at most the minimum of 16 and the 
2-part of/?2 — 1 (which is a multiple of 8, and divisible by 16 if and only if/?/ = ±1 
(mod 8)). The image of the third term is cyclic of order at most the 2-part of p\— 1. Taking 
intersections of these images into account, the image of (9.3) for c — 1 has 2-primary 
part of order at most 2 raised to the power: 

2 + 4 + rc — 2 = 4 + rc 
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where 2n is the 2-part of pf — 1. 
Summing these exponents over all positive divisors c of mj pu and again over all / for 

1 < / < t, we obtain: 

È E s ( A ^ ) + f(3(2'-1)+l) + K2), 

as an upper bound for the power to which 2 divides the direct product of the images in 
the maps (9.3). The direct product of the codomains of those maps has 2-primary part of 
order 2 raised to the power /i (2) + 2i/(2). • 

NOTE. AS a perusal of the above proof shows, the lower bound for 2-primary torsion 
in SK2(ZG), for G dihedral of square-free order 2m, may be sharpened for some ra, by 
considering the primes pi dividing m for which pt < 7 or 

16 ftp?c) - 1). 
If G —• G' is a split surjective homomorphism of finite groups, then for all n > 0, 

SKn(Z Gr) is a quotient ofSKn(Z G). In case G' is dihedral of square-free order and n — 2, 
we obtain similar results even if G —• Gr is not quite split: 

THEOREM 9.10. Suppose Dm is a dihedral group of square-free order 2m and G 
is a finite group with a normal subgroup N of order relatively prime to m, for which 
G/N^ Dm. Then SK2(lDm) is a subquotient of SK2(1G). 

PROOF. By Proposition 9.5, in the filtration 

Z Dm = R0 Ç R, Ç • • • Ç Rt = 0 0(d) 
d\m 

of Section 2, 
SK2(lDm) = kernel K2(R0 -•/?,). 

Now 
Q G = (1 -éOQGQeQG 

where e is the central idempotent 

e=w\l?N
n-

By means of the isomorphism Gj N = Dm, we can identify eZG with Z Dm. Let A denote 
(l-e)ZG. Then 

Z G ç j i ® / ? 0 ç j ï ® / ? 1 ç . . . ç j ï © / e , 

is a filtration with conductors | N|, p\,... ,pt satisfying the hypotheses of Proposition 1.1. 
Hence 

SK2(ZDm) = ktvK2(R0^Rt) 

^ kerK2(A®R0^A®Rt) 

„ kerK2(Z G - > ^ 0 / ? r ) 

~ k e r ^ 2 ( Z G ^ ^ ® / ? 0 ) 
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which is a subquotient of SK2(Z G). • 

EXAMPLE. If Qm is the dicyclic group of order Am (presented by generators a, b 
subject to relations am = b2,b4 — 1, ba — a~xb), and if m is odd and square-free, then 
SK2(ZDm) is a subquotient of SK2(ZQm). 

If p is an odd prime, the Mayer-Vietoris sequence of the square (2.1) for G — Dp, 
with (D — { 1}, reduces to a sequence: 

K3(ZDP) -L>K3(0(pj) ^K3(0(l)/p) ^SK2(ZDP) -^ 1 

which is exact except at /£3(0(p)), where we only know that ker(g) Ç image(/). The 
vanishing of the groups SK2 (0(/?)) and SAT2(0(1)) have been discussed above in the 
proof of Proposition 9.5. 

For primes p dividing the odd square-free integer m, the unknown size of the image 
of g accounts for the contribution v(p) to the gap between upper and lower bounds in 
Theorem 9.8. This gap could be narrowed if we know the actual size of SK2(ZDP) for 
each prime p dividing m. 

On the other hand, since the kernel of g is contained in the image of/, we can use this 
kernel to determine some lower bounds for K3(ZDP). By Proposition 7.3, 

K3(0(p))~ (Z/2Z) ( / ,~3 )/2® Z/21cm(24,2/?)Z 0 Z / ( / ? 2 - l)Z 

and by Proposition 8.2, 

K3(0(\)/p)^[Z/(p2-l)Z]2. 

So the kernel of g has /^-primary part Z /pZ, and has 2-primary part containing a copy 
of 

( Z / 2 Z ) ^ 3 ) / 2 . 

Since there are split surjective homomorphisms: ZDm —> ZDP for every prime factor p 
of the odd square-free integer m, we obtain: 

THEOREM 9.11. If G is a dihedral group of square-free order 2m, then K3(ZG) maps 
onto Z / mZ, and onto (Z / 2Z )(/?"3)/2/or every prime factor p of m. m 
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