CONSTRUCTING HERMAN RINGS BY TWISTING ANNULUS HOMEOMORPHISMS

XIUMEI WANG and GAOFEI ZHANG[™]

(Received 23 December 2006; accepted 25 March 2007)

Communicated by P. C. Fenton

Abstract

Let F(z) be a rational map with degree at least three. Suppose that there exists an annulus $H \subset \widehat{\mathbb{C}}$ such that (1) H separates two critical points of F, and (2) $F: H \to F(H)$ is a homeomorphism. Our goal in this paper is to show how to construct a rational map G by twisting F on H such that G has the same degree as F and, moreover, G has a Herman ring with any given Diophantine type rotation number.

2000 *Mathematics subject classification*: primary 30D05; secondary 37F10, 37F45, 32H50. *Keywords and phrases*: Herman rings.

1. Introduction

Let f be a rational map with degree not less than two. Let H be an invariant Fatou component of f. We say that H is a Herman ring if $f:H\to H$ is holomorphically conjugate to an irrational rotation of some annulus. There are two known methods to construct a Herman ring. The original method, which is due to Herman, is based on certain Blaschke products and Arnold's linearization theorem on real-analytic circle homeomorphisms. A more general construction was proposed by Shishikura. The idea of Shishikura can be sketched as follows. One starts with two rational maps with Siegel disks of rotation number θ and $-\theta$. In order to fabricate a Herman ring, one needs to cut and paste together the two Siegel disks to get a topological model map. Then by using the Morrey-Ahlfors-Bers Measurable Riemann Mapping theorem, one can conjugate the resulted topological picture to an actual rational map. For more details about these two constructions, the reader may refer to [1, Ch. VI].

In this paper, we extend Herman's idea and provide an another way to construct Herman rings by twisting a rational map on some annulus. Here the word twisting means, for any given Diophantine type irrational number $0 < \theta < 1$, we

The second author is partially supported by NJU-0203005116. © 2009 Australian Mathematical Society 1446-7887/2009 \$16.00

can postcompose the rational map by a certain homeomorphism such that the resulting model map, when restricted to some topological annulus, is quasiconformally conjugate to the rigid rotation $z \to e^{2\pi i\theta}z$. This idea comes from [4] where a Siegel disk is constructed by twisting a linearizable domain centered at an attracting fixed point. Compared with the constructions given by Herman and Shishikura, the new feature of our construction is that the starting point is just a rational map which satisfies a fairly general topological condition. Before we state the Main Theorem, let us first introduce a definition.

DEFINITION 1.1. Let F and G be two rational maps. We say that F and G are topologically equivalent to each other if there exist homeomorphisms ϕ , $\psi:\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ such that $F\circ\phi=\psi\circ G$.

Recall that an irrational number $0 < \theta < 1$ is called a Diophantine number if there exist $\beta \ge 2$ and C > 0 such that for all positive integers p and q, $|\theta - p/q| > C/q^{\beta}$. We prove the following result.

MAIN THEOREM. Let $0 < \theta < 1$ be a Diophantine number and F(z) be a rational map with degree at least three. Suppose that there exists an annulus $H \subset \widehat{\mathbb{C}}$ such that (1) H separates two critical points of F, and (2) $F: H \to F(H)$ is a homeomorphism. Then there exists a rational map G which has a Herman ring with rotation number θ such that F and G are topologically equivalent to each other.

REMARK 1.2. The Main Theorem applies for a slightly larger class of rotation numbers which are called Herman numbers. This is because the arithmetic condition of θ is only needed to apply the following Herman–Yoccoz Theorem and this theorem is actually true for all such rotation numbers (the reader may refer to [3, p. 131] for the definition of Herman numbers).

Let R_{θ} denote the rigid rotation given by $z \to e^{2\pi i \theta} z$.

THEOREM (HERMAN–YOCCOZ) [3]. Let $0 < \theta < 1$ be a Diophantine number. Let $f: S^1 \to S^1$ be a real-analytic circle diffeomorphism of rotation number θ . Then f is real-analytically conjugate to the rigid rotation $R_\theta: S^1 \to S^1$.

REMARK 1.3. The condition that the degree of F is not less than three is forced by the topological restriction: for a quadratic rational map F, there is no annulus which separates the two critical points, and on which F is a homeomorphism.

2. Proof of the Main Theorem

Let F and H be the rational map and the annulus which satisfy the conditions in the Main Theorem. Without loss of generality, we may assume that the two critical points separated by H are 0 and ∞ .

2.1. The Riemann isomorphisms g_{ξ} and h_{λ} By considering a sub-annulus of H, we may assume that both boundaries of H are real-analytic curves which do not pass any critical point of F. Let γ and η denote the outer and the inner boundary component of H, respectively. It follows that the curves $F(\gamma)$ and $F(\eta)$, which are the two boundary components of F(H), are also real-analytic curves.

Let U and V denote the two components of $\widehat{\mathbb{C}} - \overline{H}$ such that $\partial U = \gamma$ and $\partial V = \eta$. By the assumption, we obtain $\infty \in U$ and $0 \in V$. Let X and Y denote the two components of $\widehat{\mathbb{C}} - \overline{F(H)}$ such that $\partial X = F(\gamma)$ and $\partial Y = F(\eta)$. Take $x \in X$, $y \in Y$, $a \in \partial X$, and $b \in \partial Y$.

For each $\xi \in \gamma$, there is a unique holomorphic isomorphism $g_{\xi}: X \to U$ such that $g_{\xi}(a) = \xi$ and $g_{\xi}(x) = \infty$. The maps $g_{\xi} \circ F | \gamma : \gamma \to \gamma$, $\xi \in \gamma$, consist of a monotone family of topological circle homeomorphisms. By [2, Proposition 11.1.9], it follows that there is a unique $\xi' \in \gamma$ such that the rotation number of $g_{\xi'} \circ F | \gamma : \gamma \to \gamma$ is θ .

Similarly, for each $\lambda \in \eta$, there is a unique holomorphic isomorphism $h_{\lambda}: Y \to V$ such that $h_{\lambda}(b) = \lambda$ and $h_{\lambda}(y) = 0$. The maps $h_{\lambda} \circ F: \eta \to \eta$, where $\lambda \in \eta$, consist of a monotone family of topological circle homeomorphisms. Again by [2, Proposition 11.1.9], it follows that there is a unique $\lambda' \in \eta$ such that the rotation number of $h_{\lambda'} \circ F | \eta: \eta \to \eta$ is θ .

- **2.2. Passing to an Euclidean annulus** Take 0 < r < R. Let Δ_R and Δ_r denote the two Euclidean disks which are centered at the origin, and which have radius R and r, respectively. Let $\mathbb{T}_R = \partial \Delta_R$ and $\mathbb{T}_r = \partial \Delta_r$. Let $\phi: \widehat{\mathbb{C}} \overline{\Delta_R} \to U$ be the Riemann isomorphism such that $\phi(\infty) = \infty$ and $\phi'(\infty) > 0$. Similarly, let $\psi: \Delta_r \to V$ be the Riemann isomorphism such that $\psi(0) = 0$ and $\psi'(0) > 0$. Since ξ and η are both real-analytic curves, it follows that ϕ and ψ can be homeomorphically extended to \mathbb{T}_R and \mathbb{T}_r , respectively. By the Schwarz Reflection Lemma, one easily obtains the following result.
- **LEMMA 2.1.** Both the maps $\phi^{-1} \circ g_{\xi'} \circ F \circ \phi : \mathbb{T}_R \to \mathbb{T}_R$ and $\psi^{-1} \circ h_{\lambda'} \circ F \circ \psi : \mathbb{T}_r \to \mathbb{T}_r$ are real-analytic circle diffeomorphisms of rotation number θ .

Now applying the Herman-Yoccoz Theorem (see Section 1), we obtain the following result.

LEMMA 2.2. There exist two analytic circle homeomorphisms $h_1: \mathbb{T}_R \to \mathbb{T}_R$ and $h_2: \mathbb{T}_r \to \mathbb{T}_r$ such that $\phi^{-1} \circ g_{\xi'} \circ F \circ \phi(z) = h_1^{-1} \circ R_\theta \circ h_1(z)$ for all $z \in \mathbb{T}_R$, and $\psi^{-1} \circ h_{\lambda'} \circ F \circ \psi(z) = h_2^{-1} \circ R_\theta \circ h_2(z)$ for all $z \in \mathbb{T}_r$.

Let *A* denote the annulus $\{z \mid r < |z| < R\}$. Since $h_1 : \mathbb{T}_R \to \mathbb{T}_R$ and $h_2 : \mathbb{T}_r \to \mathbb{T}_r$ are both real-analytic homeomorphisms, it is not difficult to obtain the following result.

LEMMA 2.3. There exists a quasiconformal homeomorphism $\sigma: A \to A$ such that $\sigma | \mathbb{T}_R = h_1$ and $\sigma | \mathbb{T}_r = h_2$.

Since γ and η are real-analytic curves, one can easily obtain the following result.

LEMMA 2.4. There is a quasiconformal homeomorphism $\tau: A \to H$ such that $\tau | \mathbb{T}_R = \phi$ and $\tau | \mathbb{T}_r = \psi$.

2.3. The quasiconformal model map Since $F: H \to F(H)$ is a homeomorphism, there is an inverse branch of F defined on F(H), say $\chi: F(H) \to H$ such that $\chi \circ F = \mathrm{id}$ on H. Since both η and ξ are analytic curves and are therefore quasiconformally erasable, we can define a quasi-conformal homeomorphism $L: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ by

$$L(z) = \begin{cases} g_{\xi'}(z) & \text{for all } z \in X, \\ \tau \circ \sigma^{-1} \circ R_{\theta} \circ \sigma \circ \tau^{-1} \circ \chi(z) & \text{for all } z \in F(\overline{H}), \\ h_{\lambda'}(z) & \text{for all } z \in Y. \end{cases}$$
 (2.1)

Now define the quasiconformal model map $\widetilde{F}: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ by $\widetilde{F}(z) = L \circ F(z)$. Note that, by construction, $\widetilde{F}(z)$ is holomorphic on the outside of $\widetilde{F}^{-1}(\overline{H})$.

2.4. Realize the quasiconformal map \widetilde{F} by a rational map By the construction of \widetilde{F} , it follows that when restricted on H, \widetilde{F} is quasiconformally conjugate to the irrational rotation $R_{\theta}: A \to A$. Therefore, \widetilde{F} has an invariant complex structure μ defined in H. Since \widetilde{F} is holomorphic on the outside of $\widetilde{F}^{-1}(\overline{H})$, one can pull back μ by the iteration of \widetilde{F} and finally obtain a \widetilde{F} -invariant complex structure ν on the whole Riemann sphere. Now applying the Morrey-Ahlfors-Bers Measurable Riemann Mapping Theorem, one has a quasiconformal homeomorphism ω of the sphere which fixes 0, 1, and ∞ , and which solves the Beltrami equation given by ν . Note that when restricted to H, $\nu = \mu$. This implies that the map $G(z) = \omega \circ \widetilde{F} \circ \omega^{-1}(z)$ is a rational map which, when restricted to $\omega(H)$, is holomorphically conjugated to the irrational rotation $R_{\theta}: A \to A$. Let W be the Fatou component of G which contains $\omega(H)$. It follows that W is either a Siegel disk or a Herman ring. Since $\omega(H)$ separates 0 and ∞ which are critical points of G, by construction, it follows that W cannot be simply connected. This implies that W is a Herman ring of G which has rotation number θ . By the construction, it is clear that G is topologically equivalent to F. The proof of the Main Theorem is complete.

REMARK 2.5. There are many ways to construct a rational map F which satisfies the conditions in the Main Theorem. For instance, let $F(z) = z + \epsilon(z^m + 1/z^n)$ where $m, n \ge 2$ are integers. It is not difficult to see that when $|\epsilon| > 0$ is small, there is an annulus H which separates the two critical points 0 and ∞ and on which F is a homeomorphism.

Acknowledgement

We would like to thank the referee for their many important suggestions which greatly improved the paper.

References

- [1] L. Carleson and T. W. Gamelin, Complex Dynamics (Springer, New York, 1993).
- [2] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54 (Cambridge University Press, New York, 1995).
- [3] S. Marmi and J.-C. Yoccoz (eds.), *Dynamical Systems and Small Divisors*, Lecture Notes in Mathematics, 1784 (Springer, Berlin, 2002).
- [4] G. Zhang, 'On the dynamics of $e^{2\pi i\theta} \sin(z)$ ', *Illinois J. Math.* **49**(4) (2005), 1171–1179.

XIUMEI WANG, Department of Computer Science and Information Technology, JiangSu Teachers University of Technology, Changzhou, 213001, PR China e-mail: wxmei@jstu.edu.cn

GAOFEI ZHANG, Department of Mathematics, Nanjing University, Nanjing, 210093, PR China

e-mail: zhanggf@hotmail.com