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FINITE-TO-ONE OPEN MAPPINGS
EDWIN DUDA AND W. HUGH HAYNSWORTH

1. Introduction. The class of finite-to-one open mappings on manifolds
contains some important subclasses. Any non-constant analytic function from
a bounded region in its domain of definition is finite-to-one. Church [2] showed
that any light strongly open C” map f: R* — R" is discrete. A number of papers
concerning discrete open mappings on manifolds have been published; see
[1-6; 8-9; 11-14].

A result of Cernavskii [1] (see also [13]) shows that for any discrete strongly
open mapping f: M* — N” of an n#-manifold into an #-manifold, the branch
set of f has dimension less than # — 1. If f is also a closed map, then N( f) is
finite and the set of points x for which N(x, f) = N(f) is an open dense con-
nected subset of M". In the following, if M™ and N" are n-manifolds without
boundary, if R is a region in M" such that R = d(R), and if f: R — N" is a
discrete open and closed mapping such that f(R) is open in N*, we prove that
the set of points x in R, for which N(x,f) = N(f), contains a dense open
subset of dR.

All references to cohomology theory may be found in [10]. The shift of
dimension and use of reduced cohomology should be noted [10, p. 64], i.e., for
a pair of spaces (X, 4), 4 closed in X, the (p + 1)st cohomology group
HP+1(X, A) corresponds to the group H?(X, 4) in other developments.

The definition and necessary properties of the topological index of a point y
with respect to a mapping f and a domain D, u(y, f, D), and of the local degree
of a point x with respect to a mapping f, ¢ (x, f), appear in [13]. For a detailed
development of the topological index, see [10].

2. Notation and terminology. All topological spaces considered are
assumed to be Hausdorff and all mappings on topological spaces are assumed to
be continuous. For a space X and subsets 4 and B with 4 C B C X, we
denote the boundary of A relative to B by dzA4 and simplify dxA4 to 94.
Denote the complement of 4 with respect to B by Cz4 and simplify Cx4 to
CA. A mapping f: X — Y is discrete (light) if each point inverse is discrete
(totally disconnected) in the relative topology. The map f is open if the image
of each open set of X is open in f(X) and is strongly open if the image of each
open set is open in Y. The branch set of f, By, is the set of points at which f
fails to be a local homeomorphism. The multiplicity of f at x, N(x, f), is the
number of points in f~f(x) if it is finite, and 40 otherwise. The multiplicity
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of f on X, N(f), is the supremum of N(x,f), x € X. Let R* represent a
Euclidean n-space.

3. Preliminary results. For a finite-to-one open mapping f and a positive
integer 7, let K;( f) be the union of all points x in X for which N(x, f) < 1.
For open mappings, N( , f) is lower semi-continuous, so that K;(f) is closed
for each positive integer.

3.1. LEMMA. Let f: X — YV be a discrete open mapping, where X and Y are
locally compact spaces and F is a locally compact subset of X. Then for any open
set U in X for which UM F # @, there exists an open subset V of X such that
VCU FNV#0, and fIFNV is a homeomorphism of FMV onto
F(FN V). Furthermore, F M V is an inverse set of f|V.

Proof. We can assume that U is compact so that f|U is finite-to-one and
hence f|U is finite-to-one. Write

UNF= U K,(flU)N F
i=1

and apply Baire’s theorem to obtain an integer # for which the interior, 17,
of K,(f|U) M F relative to UM F is not empty. Choose an open subset W’
of U such that W/ M F = T’. Choose x; € 7’ such that

N (%1, fIW') = max N (x, f|W’).
zeT
Then N(xi, flW’') = n; thus suppose that N(x;, fl[W’) = B and that

(fIW)(fIW") (x1) = {%1,...,xx}. Choose pairwise disjoint open sets M,
of the x, with M, & W', j=1,...,k. For

V=M (fIW)Y(fM)NFM)N .. .Nf(M)) and T = VNF,
it follows that N(x, f|V) = 1for all x € T and f|7 is a homeomorphism.

3.2. LEMMA. Let f: (4, Ao) — (B, Bo) be a mapping of compact pairs such
thatf(CAo) C CBo,f(aAo) C aBo, and

(fICA,)?: H?(CB,, 8By) — H?(CA,, d4,)

is an tsomorphism. Then for 40 # @ or p # 1, f?: H?(B, By) — H?(4, Ay) is
an isomorphism and if ( f|CAo)? is onto, then so is f.

Proof. Consider the following diagram, where 4, and 4y? are induced by

inclusion.
i L
H*(B, By) —— H?(CB,, 0B,)
l i J (f[CAo)?
iy

H?(4,4,) —— H?(CA,, 94,)
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For p # 1 or 04, # 0, by strong excision [10, p. 86], 7;” and %:* are onto iso-
morphisms and the diagram is commutative so that f?is an isomorphism and
if (f|C4,)? is onto, then so is f.

3.3. LEmMA. Let f: (4, Ao) — (B, Bo) be an onto mapping of compact pairs
with f(Ao) = Bo. If for every x € CAo, N(x,f) = 1, then if 840 = @ or p 5= 1,
f?: H?(B, By) — H?(A4, Ao) is an onto isomorphism.

Proof. By hypothesis, f(C4,) = CBo and f|C4, is a homeomorphism of
CA, onto CB, so that f(84¢) = dB,. Thus the mapping

(fICAy): (CAq, 340) — (CBy, 8B,)

induces a homomorphism ( f|CA¢)?: H?(CBo, dB,) — H?(CA, 4,) which is
an onto isomorphism. Thus, by 3.2, f?is an onto isomorphism.

3.4. THEOREM. Let U and V be bounded domains in R such that 0U = 9(U),
and let f: U— V be a mapping with f(0U) = dV and f(U) = V. Let A be a
proper closed subset of QU such that CopA is an inverse set of f and N (x,f) = 1
for each x in CoyA. Then

frt H(V, 9V) — H(U, aU)
is an onto isomorphism.

Proof. For n > 1, the mapping f|oU: (dU, 4) — (aV, f(4)) satisfies the
hypothesis of 3.3 and for » = 1, 4 is either empty or a single point. Hence,
(floU)": H*(aV,f(4)) = H*(dU, A) is an onto isomorphism. Consider the
following diagram:

61 )
H"(0U,4) —— H"(U,9U)—— H"(U, 4)

[ (flou) [
3
H"(3V, f(4)) —— H*(V, 3V)

where the top row is obtained from the exact sequence of the triple (U, aU, A4)
and the bottom row is obtained from the exact sequence of the triple (V, a7,
f(4)). Since U — 4 is non-empty, connected, and not open in K", it follows
that H+(U, A) = 0, and consequently §; is onto by exactness in the top row.
Thus 8, ( f|dU)" is onto so that f*+!is necessarily onto. Since both H**1 (U, dU)
and H**1(V, V) are isomorphic to the additive group of integers, it follows
that f*+!is an onto isomorphism.

3.5. THEOREM. Let U be an open subset of R*, with U compact, dU = 4 (U),
and A a closed non-empty subset of dU with intayA = A. Then there is no mapping
f: U — R* such that

(1) f es discrete,
(i) f|U is strongly open,
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(i) N(x,f) = L forallx € A, and
(iV) (irltauA) ﬂ Bf # ﬂ.

Proof. Suppose that there exists a mapping f with properties (i)-(iv).
The mapping f|(U — f~f(8U)) is an open and closed mapping so that com-
ponents of U — f~'f(dU) map onto components of f(U) — (f(U) N f(aU)).
Let T be a component of R* — f~1f(dU — A) which contains points of
A M By. Such a T exists since [A — QU — A)]N\ B,# B and N(x, f) =1
for all x in A. The set T is open and TN\ U # @ so that TN\ U # 0. It
follows that components of U — f~1f(dU) which meet T are necessarily in
rNU.

If the mapping f|T M U is one-to-one, then f|7° M U is one-to-one since
T N dU C A and, furthermore, f|T" M U is also a strongly open mapping into
f(0). This implies that B, N (T' N U) = @ which is contrary to the choice of
T. Hence N(fIT N\ U) > 1.

Assuming that f is one-to-one on each component of 7"/ U implies that
there are at least two components K; and K of 7N U with f(K;) N f(K,) #= @.
Since K; and K, are also components of U — f~!f(dU), it follows that
f(Ky) = f(Kq). For ¢ =1, 2, 0,:K; C fffQ@U) N\ T C A and since
f(K)) = f(Ky) and N(x, f) =1 for x € 4, 3K, = 9;K,. The mapping
g = (fIK:\V 37:K:)"1(fIK:1\U 87K,1) is one-to-one from K;\U 8,K; onto
K; U 87K, Being the composition of homeomorphisms, g is a homeomorphism
which is the identity function on d,K;. By [13, 5.2], K; U K, U 0,K, = T}
hence we have T, open in R*, such that 77C U and T'N dU # @, which is
contradictory.

It now follows that there must be a component K of TN\ U with N( f|[K) > 1
and, as before, @ % 9K N T C A. Theset K is a componentof U — f~f(aU);
thus 0K C ff(aU), and hence f(K) M f(3K) = @. Furthermore, f(K) is
open and f(K)\U f(dK) = f(K) = f(K) U 9f(K) so that f(0K) = af(K).
Applying 3.4, one obtains |u(y, f, K)| = 1, for every y € f(K). By [13, 5.4],
dim Bjjg £ n — 2; therefore K — B,k is open and connected and thus
i(x, f) is constant on K — B, x. However,

w@, LK) = 2 i,f) for every y € [f(K) — f(Bsx)]-

zer-ty Nk
We then have N(x, f|[K) = 1for every x € [K — f~f(B,x)] and

dim f~f(Bnx) = n — 2,

and so f is one-to-one on an open dense set in K. Since f|K is open, it follows
that f is one-to-one on K. This is contrary to the choice of K so that the theorem
is valid.

4. Main theorems. In this section we will use the following.

Definition. Let X and Y be n-manifolds without boundary, 4 a subset of X,
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and let f beamap f: 4 — V. If D is open in X with D C 4, then let yp r =
{x € D| f(x) ¢ inty f(D)}.

4.1. THEOREM. Let X and Y be n-manifolds without boundary, D a domain in X
such that dD = d(D), and let f: D — Y be a discrete open mapping. Then
CB,; M 8D is a dense open subset of the closure of 0D — (yp,r (M 8D).

Proof. Clearly, from Brouwer’s Theorem on Invariance of Domain
[7, pp. 95-97], vp,r © By, and hence yp,; & By, since B, is closed; thus
CB;, N\ 3D & D — (yp,,M D). If the theorem is false, then there is
an open set UC X such that @ UM 3D € 0D — (¥p,,M 0D) and
UN oD C By. Further, we can assume that UM ¥p,; = 0. Applying 3.1,
we can pick an open connected conditionally compact set V' & U such that
VN aD # @ and for each x € VN aD, N(x, flV N D) = 1. Further, V
may be chosen arbitrarily small, so that ¥ and f(V N D) lie in domains in
X and Y, respectively, which are homeomorphic to R*. Then f|V N D may
be considered to be a mapping from V M\ D into R*, with V "\ D C R".

LetA = VN 8D. Then 4 is a closed subset of d(V M D) and inta7pd =
V M D is dense in 4. Further:

(i) f|V N D is discrete,
(i) flint(V N\ D) is a strongly open map since int(V N\ D) & D — vp 4,

(iv) Bpvap 2 4.

But by 3.5, no such mapping can exist. Hence, the theorem follows.
As an immediate consequence of 4.1, we have the following.

4.2. COROLLARY. Guwen f: D — Y as above, if f(D) is open in ¥, then CB ;M 9D
is a dense open set in 9D.

Given the hypothesis of 4.1, if D and f(D) are n-manifolds with boundary,
then it follows that D — (¥p,, M\ 9D) is dense in dD. Hence, CB; M 9D is
dense in 9D and dim B, oD = n — 2.

4.3. THEOREM. Let X and Y be n-manifolds without boundary, D a domain in
X such that 3D = (D), and f: D — YV an open, closed, discrete mapping such
that f(D) is open in Y. Then dD — (f~Yf(B;) M dD) is a dense open set in dD.

Proof. By 4.2, CB;M dD is dense in dD. Hence, f(dD) C df(D), and so
Y (By) M oD = f~f(8D M By). Also, D is an inverse set of f; hence by
[13, 5.5], N(f|[D) < oo and since f is open, N(f) = N(f|D).

Assume that there is an open set W in D such that @ = (WM aD) C f-'f(B,).
Then there is a point x; € WM 9D such that

N(xy, f) = m%x N(x,f) =k <0 and F ) = (w1, ..., %)
TEW N D

Now there are pairwise disjoint open neighbourhoods, W, of the x;, ¢ =
1,..., &k with f(W)) = ... = f(W;) and W, C W. For some j,1 <j < &k,

x; € By, (8D N W;). But we can choose W, small enough that W; and
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f(W;) are contained in domains of X and Y, respectively, which are homeo-
morphic to R* and f|W; induces a map with the properties in 3.5, which is a
contradiction.

4.4 MAXIMUM MULTIPLICITY THEOREM. Let X and Y be n-manifolds without
boundary, D a domain in X such that oD = 0(D), and f: D — Y an open,
closed, discrete mapping such that f(D) is open in Y. Then N(f) = N(f|oD)
and N(x, floD) = N(f|dD) for every x € D N (D — f~f(B,)), which is a
dense open set of dD.

Proof. As in the proof of 4.3, f(0D) N f(D) = B, and so f|D is closed. By
(13, 5.5], N(x, flID) = N(f|D) < «© for all x € D — (f~Yf (B, N D) and
dim( ff(B;) YD) = n — 2. Hence, D — (f~Yf(B;) N\ D) is connected;
hence D — f~'f(B,) is connected. Since f is closed, N( , f) is upper semi-
continuous on D — f~f(B,). But N(, f) is lower semi-continuous on D,
since f is open, and hence N( , f) is constant on D — f~if(B,;) and N(f) =
N(x, f), for every x € D — f~f(B,). By 4.3, 6D N\ (D — f-f(B,)) is dense
in dD and since f(D) N f(dD) = @, N(f|oD) = N(x, floD) = N(x, f) =
N(f) =2 N(f|oD) for every x € 6D N\ (D — f~Y(B,)). Hence, the theorem
follows.

As an immediate consequence of 4.4, we have the following corollary.

4.5. COROLLARY. Gwen f: D — Y as in (4.4), if there exists a non-empty
open subset, T, of D such that N(x, f) = 1 for each x € T, then f is a homeo-
morphism.

As a final remark, it should be noted that Cernavskii’s results and a simple
construction can be used to obtain some of the results of this paper in the
special case when X and Y are n-manifolds with non-empty boundary and
fi (X,0X)— (¥,0Y) is a discrete open and closed mapping such that
f@nt X) Cint Y. To this end, let X’ be the #-manifold without boundary
obtained by identifying two copies of X along dX, let ¥’ be the corresponding
n-manifold without boundary obtained by identifying two copies of ¥ along
dY, and let g be the natural extension of f to a discrete open and closed map of
X’ into Y. By Cernavskil's result, dim(B, N dX) <% — 2, so that
dim(B,; N dX) = n — 2.
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