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STOCHASTIC MODELING OF DENSITY-DEPENDENT
DIPLOID POPULATIONS AND THE EXTINCTION VORTEX

CAMILLE CORON,∗ École Polytechnique

Abstract

We model and study the genetic evolution and conservation of a population of diploid
hermaphroditic organisms, evolving continuously in time and subject to resource
competition. In the absence of mutations, the population follows a three-type, nonlinear
birth-and-death process, in which birth rates are designed to integrate Mendelian
reproduction. We are interested in the long-term genetic behavior of the population
(adaptive dynamics), and in particular we compute the fixation probability of a slightly
nonneutral allele in the absence of mutations, which involves finding the unique
subpolynomial solution of a nonlinear three-dimensional recurrence relationship. This
equation is simplified to a one-dimensional relationship which is proved to admit exactly
one bounded solution. Adding rare mutations and rescaling time, we study the successive
mutation fixations in the population, which are given by the jumps of a limiting Markov
process on the genotypes space. At this time scale, we prove that the fixation rate of
deleterious mutations increases with the number of already fixed mutations, which creates
a vicious circle called the extinction vortex.
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1. Introduction

Our goal is to model a finite population with diploid reproduction and competition. We
especially want to understand the role of diploidy and Mendelian reproduction on mutation
fixation probabilities and on the genetic evolution of a population. We are interested in studying
the progressive accumulation of small deleterious mutations which generates an extinction
vortex in small populations (see [7], [13], and [19] for more biological context and analyses).

The population follows a birth-and-death process in which each individual has a natural
death rate that depends on its genotype (Section 2). Birth rates are designed to model the
Mendelian reproduction, and individuals are competing against each other. First, in the absence
of mutation, we focus on one gene and compute the fixation probability of an allele a competing
against a resident allele A (Sections 3 and 4), as done in [2] for the simpler haploid case. We
first consider the neutral case, where individuals all have the same birth, natural death, and
competition death rates (i.e. alleles A and a are exchangeable). Here a martingale argument
proves that the fixation probability of allele a is simply equal to the initial proportion of this allele
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in the population. We then consider the case where allele a is slightly nonneutral, i.e. natural
death rates slightly deviate from the neutral case. Here we prove that the fixation probability of
allele a is differentiable in the parameters of deviation from the neutral case and that its partial
derivatives are the unique subpolynomial solutions of Dirichlet problems. These equations
consist of three-dimensional nonlinear double recurrence relationships which we manage to
simplify to a one-dimensional double recurrence admitting a unique bounded solution. In
Section 5 we add rare mutations and rescale time in order to observe mutation apparitions. At
this time scale, mutations get fixed or disappear instantaneously, and the successive fixations
of mutations are given by the jumps of a Markov process S on the genotypes space, called
the ‘trait substitution sequence’, introduced in [14] and notably studied in [1], and in [6] for
the diploid case. Here the population size remains finite, and we do not use any deterministic
approximation. Finally, we examine the successive jump rates of S in the particular case of
deleterious mutations (Section 5.3). We prove that, when every mutation is deleterious and
if the birth rate is small enough, the Markov process S jumps more and more rapidly. This
means that the fixation rate of a deleterious mutation increases with the number of already fixed
mutations, which creates a vicious circle called the extinction vortex (see [7] for biological
interpretations and numerical results).

2. Presentation of the model

We consider a population of diploid hermaphroditic self-incompatible organisms, charac-
terized by their genotypes. Building on the works of [1], [4], and [6], we consider a birth-
and-death process with mutation, selection, and competition under different time scales and we
add diploidy. Each individual is characterized by its genotype x ∈ G := {{A, C, G, T }G}2,
where G is the genome size, and A, C, G, and T are the four nucleotides that comprise DNA.
Genotype x = (x1, x2) is in fact composed of two DNA strands, x1 and x2, in {A, C, G, T }G.
In Sections 2 to 4 we consider the case without mutation and assume that the population is
initially composed of individuals that only differ from each other on one gene. For this gene,
there are two possible alleles, denoted by A and a in {A, C, G, T }G′

, where G′ ≤ G. The
genotypes of individuals are thus denoted by AA, Aa, and aa, and we represent the population
dynamics by the Markov process

Z : t �→ Zt = (kt , mt , nt ),

which gives the respective numbers of individuals with genotype AA, Aa, and aa at time t . For
further simplicity, we will also refer to these genotypes as types 1, 2, and 3. We assume that the
process Z is a birth-and-death process with competition on (Z+)3, and we now detail the birth
and death rates of the individuals of each genotype. The population has maximum fecundity
rate r . More precisely, if the population contains N individuals, rN is the rate at which two
distinct individuals of the population encounter one another, and the maximum total birth rate.
These two individuals are chosen uniformly randomly in the population, and their encounter
gives rise to a birth with a probability pij (pij = pji) that depends on their two genotypes i

and j . The probability pij can be defined biologically as the selective value associated with the
genotypes i and j , and represents both the degree of adaptation with respect to reproduction of
types i and j and their compatibility. Finally, the new born individual results from a segregation
(genetic melting between the genotypes of its parents), satisfying Mendel’s laws of heredity.
Then in the population Z = (k, m, n) such that k + m + n ≥ 2, if we define bij := rpij , the
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rate bi(Z) at which an individual of type i ∈ {1, 2, 3} arises is

b1(Z) = b11
k(k − 1)

N − 1
+ b12

km

N − 1
+ b22

m(m − 1)

4(N − 1)
, (2.1a)

b2(Z) = b12
km

N − 1
+ b22

m(m − 1)

2(N − 1)
+ b23

mn

N − 1
+ b13

2kn

N − 1
, (2.1b)

b3(Z) = b33
n(n − 1)

N − 1
+ b23

mn

N − 1
+ b22

m(m − 1)

4(N − 1)
. (2.1c)

Note that if the population Z has size N ,

b1(Z) + b2(Z) + b3(Z) ≤ rN. (2.2)

We assume self-incompatibility, which implies that, when the population size reaches 1, no
further birth can occur and the population can be considered as extinct. Now individuals can
die either naturally or due to competition with others. We denote by di the natural death rate
of individuals with type i and by cij the competition rate of i against j , i.e. the rate at which a
fixed individual of type i makes a fixed individual of type j die. We assume that

cij > 0 for all i, j ∈ {1, 2, 3}, i.e. c = inf
i,j∈{1,2,3}cij > 0, (2.3)

and that, when the population size reaches 2, no death can occur; hence, the population cannot
become extinct. We then denote the state space of Z by N

3∗∗ = (Z+)3\{(0, 0, 0), (1, 0, 0), (0, 1,

0), (0, 0, 1)}. In the population Z = (k, m, n) such that k + m + n ≥ 3, the rate d(i)(Z) at
which the population loses any individual of type i is then

d(1)(Z) = (d1 + c11(k − 1) + c21m + c31n)k, (2.4a)

d(2)(Z) = (d2 + c12k + c22(m − 1) + c32n)m, (2.4b)

d(3)(Z) = (d3 + c13k + c23m + c33(n − 1))n, (2.4c)

and, if k + m + n = 2,
d(1)(Z) = d(2)(Z) = d(3)(Z) = 0. (2.5)

From (2.2), (2.3), and Theorem 2.7.1 of [15], the process Z does not explode. Then Zt is
defined for all t > 0, and we denote by P(k,m,n) the law of Z starting from state (k, m, n), by
E(k,m,n) the associated expectation, by (Zl )l∈Z+ the embedded Markov chain, and by (Fl )l∈Z+
the filtration generated by Z.

Notation. For every other process X, P
X
X0

is the law of X starting from X0, and E
X
X0

is
the associated expectation. If X is a continuous-time (respectively discrete-time) process, we
denote by T X

x (respectively T X
x ) the reaching time of x by X.

In the following, the population size process will play a main role; we define N : t �→ Nt =
(kt +mt +nt ), where Zt = (kt , mt , nt ) for every time t > 0, and (Nl )l∈Z+ to be the embedded
Markov chain. N is stochastically dominated by the logistic birth-and-death process Y with
transition rates

aij =

⎧⎪⎨
⎪⎩

rj if j = i + 1,

cj (j − 1) if j = i − 1 and i 	= 2,

0 otherwise.

(2.6)

We define Y to be the embedded Markov chain.
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Proposition 2.1. For all N ∈ N \ {1}, there exists ρ > 0 such that EN((1 + ρ)T
Y

2 ) < ∞.

Proof. Let N0 be such that b < (d + c(N0 − 1)). We assume that N > N0, without loss of

generality since EN ′((1 + ρ)T
Y

2 ) < EN((1 + ρ)T
Y

2 ) if N ′ < N . Note that it suffices to prove
that, for every integer n ∈ [3, N ], there exists ρn > 0 such that

En((1 + ρn)
T

Y
n−1) < ∞. (2.7)

Indeed, by the strong Markov property, EN((1 + ρ)T
Y

2 ) =∏N
j=3 Ej ((1 + ρ)

T
Y
j−1 < ∞ if ρ ≤

inf i≤N ρi . Now, from [18, p. 428], (2.7) holds for n = N , since N > N0. Now, following the
proof of Lemma 5.11 of [5], let us prove by induction that if (2.7) holds for n + 1 then it also
holds for n. We assume that (2.7) holds for n + 1 and that Y0 = n, and we define M to be the
random number of returns in n before going to n − 1. Here M follows a geometrical law with
parameter p = b/(b + d + c(n − 1)). Then

T
Y

n−1 = M + 1 +
M∑
i=1

Tn,i ,

where the Tn,i are independent and distributed as T
Y

n for all i. Then by the strong Markov
property of the stopping times Tn,i we obtain

En((1 + ρ)T
Y

n−1) ≤
∞∑

m=0

(En+1((1 + ρ)T
Y

n +2))m(1 − p)pm.

Finally, since (2.7) holds for n + 1, from the dominated convergence theorem, En+1((1 +
ρ)T

Y
n +2) goes to 1 when ρ goes to 0; hence, there exists ρn−1 such that En+1((1+ρn−1)

T
Y

n +2) <

1/p, which gives the result.

Proposition 2.2. For all p ≥ 1, if E(N
p
0 ) < ∞ then supt≥0 E(N

p
t ) < ∞.

Proof. We set Y0 = N0. It suffices to prove that supt E(Y
p
t ) < ∞. The process (Yt )t>0 is a

recurrent, irreducible, and ergodic Markov process on N \ {1}, with stationary law l (see (5.1)
below for a more general case), and we can easily check that Ep :=∑∞

j=2l(j)jp < ∞ for all p.
Now let us define the Markov process (Yt , Zt )t≥0 such that Y and Z have the same transition
rates, are independent, and Z0 has law l. We define (Yn, Zn)n∈Z+ to be the associated Markov
chain, and T = inf{n | Yn = Zn}. Following the proof of Theorem 6.6.4 of [10, p. 308], we
have

|E(Y
p
n ) − Ep| = |E(Y

p
n ) − E(Z

p
n )|

≤
∑
z≥2

zp|P(Yn = z) − P(Zn = z)|

≤
∑
z≥2

zp(P(Yn = z, T > n) + P(Zn = z, T > n))

= E((Y
p
n + Z

p
n )1{T >n})

≤ 2E(Y
p
n 1{T >n}1{Y0>Z0}) + 2E(Z

p
n 1{T >n}1{Z0>Y0})

≤ 2E(Y
p
n 1{T Y

2 >n}) + 2E(Z
p
n 1{T Z

2 >n}).
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Now

E(Y
p
n 1{T Y

2 >n}) ≤
∑
z≥2

(z + n)pP(T
Y

2 > n, Y0 = z)

≤ 2p
∑
z≥n

zp
P(Y0 = z) + 2p

∑
2≤z<n

np
P(T

Y
2 ≥ n, Y0 = z)

≤ 2p
∑
z≥n

zp
P(Y0 = z) + 2pnp

P(T
Y

2 ≥ n).

From Proposition 2.1, and since E(Y
p
0 ) < ∞, np

P(T Y
2 ≥ n) and

∑
z≥n zp

P(Y0 = z) converge
to 0. Then E(Y

p
n ) converges to Ep when n goes to ∞. Since Y does not explode and E(Y

p
0 ) <

∞, we have supt E(Y
p
t ) < ∞.

3. Fixation probabilities

3.1. Absorbing states

The birth-and-death process Z admits the following absorbing state sets.

• �a = {(0, 0, n), n ≥ 2} is the set of states for which allele a is fixed and allele A has
disappeared.

• �A = {(k, 0, 0), k ≥ 2} is the set of states for which allele A is fixed and allele a has
disappeared.

• � := �a ∪ �A.

We are interested in computing the probability that allele a goes to fixation (i.e. Z reaches �a),
when Z starts from any state (k, m, n). We now define T� to be the (discrete) reaching time of
set � by Z for all � ⊂ N

3∗∗. The following result is an adaptation of Proposition 6.1 of [2] to
the diploid case.

Proposition 3.1. There exists a constant C such that, for any initial state (k, m, n) in N
3∗∗,

E(k,m,n)(T�) ≤ C(k + m + n) and E(k,m,n)(T
2

� ) ≤ C(k + m + n)2.

Proof. Let T{2} be the first time the Markov chain N reaches 2 (or returns to 2 if N0 = 2),
and define

T {2}→� := sup
(k,m,n) | k+m+n=2

E(k,m,n)(T�).

Then E(k,m,n)(T�) ≤ E(k,m,n)(T{2}) + T {2}→�, and T {2}→� is independent of (k, m, n).
We prove first that T {2}→� < ∞ and then prove that there exists a constant C1 such that
E(k,m,n)(T{2}) < C1(k + m + n) for all (k, m, n) in N

3∗∗. Now,

T {2}→� = sup
(k,m,n) | k+m+n=2

E(k,m,n)(T�1{T{2}≥T�} + T�1{T{2}<T�})

≤ sup
(k,m,n) | k+m+n=2

E(k,m,n)(T{2}) + sup
(k,m,n) | k+m+n=2

E(k,m,n)((T� − T{2})1{T{2}<T�})

≤ sup
(k,m,n) | k+m+n=2

E(k,m,n)(T{2})
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+ sup
(k,m,n) | k+m+n=2

∑
(k′,m′,n′) | k′+m′+n′=2

E(k,m,n)((T� − T{2})1{T{2}<T�}

× 1ZT{2}=(k′,m′,n′))

≤ sup
(k,m,n) | k+m+n=2

E(k,m,n)(T{2}) + T {2}→� sup
(k,m,n) | k+m+n=2

P(k,m,n)({T{2} < T�}),
(3.1)

where the last inequality is obtained using the strong Markov property in T{2}. Defining

p = sup
(k,m,n) | k+m+n=2

P(k,m,n)(T{2} < T�)

and T {2}→{2} = sup
(k,m,n) | k+m+n=2

E(k,m,n)(T{2}),

we have p < 1, since, for every (k, m, n) such that k + m + n = 2, there exists a path for Z

starting from (k, m, n) and reaching � before reaching the set {N = 2}. Besides, T {2}→{2} is
bounded by the expectation of the mean time for the embedded Markov chain Y defined by
(2.6) to return to the set {N = 2}. So T {2}→{2} < ∞, from Theorem 3.3.3 of [15]. Finally,
from (3.1), (1 − p)T {2}→� ≤ T {2}→{2}. Then T {2}→� < ∞. Now, let us consider the Markov
chain (Yn)n∈Z+ on N \ {1}, associated with Y . Since N is stochastically dominated by Y, if
N = k + m + n, E(k,m,n)(T{2}) ≤ E

Y
N(inf{n | Yn = 2}). Define SN,i = E

Y
N(inf{n | Yn = i}),

and let N0 ≥ 2 be a natural integer such that b/(b + cN0) ≤ 1
3 . If N ≥ N0 then SN,2 =

SN,N0 + SN0,2. Moreover, since b/(b + cN) ≤ 1
3 for all N ≥ N0, SN,N0 ≤ E(UN,N0), where

UN,i is the first reaching time of i for the discrete-time random walk on Z that starts from
N and has probability 1

3 of jumping one step to the right and probability 2
3 of jumping one

step to the left for every state. We know that E(UN,N0) = 3(N − N0) [15, pp. 21–22]. So,
if N ≥ N0, SN,2 ≤ SN0,2 + 3(N − N0) and SN0,2 < ∞ from Proposition 2.1. Then there
exists a constant C1 > 0 such that SN,2 < C1N for all N ≥ 2. Similarly, as E(U2

N,N0
) =

3(N − N0)(3(N − N0) + 8) [15, pp. 21–22], we prove that E(k,m,n)(T�) ≤ C(k + m + n)2.

We now consider the fixation probabilities of allele a as a function of the initial state of
the population. Let Fa = {(Zt )t>0 reaches �a}, and define u(Z) = EZ(1Fa ) to be the fixation
probability of allele a, knowing that the population starts from state Z; u also depends on the
demographic parameters of the population, and this dependence will be explicitly written down
when necessary. Note that (u(Zt ))t>0 is a martingale since

u(Zt ) = u(kt , mt , nt ) = EZt (1Fa ) = E(1Fa | Ft ). (3.2)

In the neutral case (Section 3.2), a martingale argument gives the value of u; in the nonneutral
case with small mutation assumption (Section 3.3), we prove that u admits a Taylor expansion
in the parameters of deviation from the neutral case.

3.2. Neutral case

We now consider the neutral case when ecological parameters do not depend on genotypes,
i.e. when bij = b, cij = c, and di = d for all i and j in {1, 2, 3}. We first prove the following
result.

Proposition 3.2. In the neutral case, for all (k, m, n) in N
3∗∗ and all ecological parameters b,

d, and c,

u(k, m, n) = m + 2n

2(k + m + n)
.

https://doi.org/10.1239/aap/1401369702 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1401369702


452 C. CORON

Proof. Let us define the function p : (k, m, n) �→ (m + 2n)/2(k + m + n) and denote by
Tl the lth jump time of the population (i.e. the time at which the lth event, a birth or death,
occurs). The Markov chain (p(Zl ))l∈Z+ gives the successive proportions of allele a in the
population. We now prove that (p(Zl ))l∈Z+ is an Fl-bounded martingale. To this end, we
distinguish two types of state: one in which the population size is greater than or equal to three
and another in which it is equal to two. For Zl = (kl, ml, nl) such that Nl ≥ 3, we can compute
E(p(Zl+1) | Zl ) by decomposing it according to the nature of the (l + 1)th event:

E(p(Zl+1) | Zl ) = 2Nlp(Zl ) − 2

2Nl − 2
P(death of aa) + 2Nlp(Zl ) − 1

2Nl − 2
P(death of Aa)

+ 2Nlp(Zl )

2Nl − 2
P(death of AA) + 2Nlp(Zl ) + 2

2Nl + 2
P(birth of aa)

+ 2Nlp(Zl ) + 1

2Nl + 2
P(birth of Aa) + 2Nlp(Zl )

2Nl + 2
P(birth of AA)

= p(Zl ).

The same result can be easily proved for Nl = 2. From Doob’s stopping time theorem applied
to the bounded martingale (p(Zl ))l and to the stopping time T� (almost surely finite, from
Proposition 3.1), we obtain

Ek,m,n(p(ZT� )) = 2n + m

2(k + m + n)
.

Now
Ek,m,n(p(ZT� )) = Ek,m,n(p(ZT� )1{T�a <T�A

}) + Ek,m,n(p(ZT� )1{T�a >T�A
})

= Pk,m,n(T�a < T�A
)

= u(k, m, n)

since Ek,m,n(p(ZT� ) | T�a < T�A
) = 1 and Ek,m,n(p(ZT� ) | T�a > T�A

) = 0.

When the mutation is not neutral, we do not obtain any closed formula for p(Z) as previously.
We instead consider the Dirichlet problem satisfied by u.

3.3. Deviation from the neutral case

3.3.1. A Dirichlet problem. We now arbitrarily assume that allele a is slightly deleterious, i.e.
the demographic parameters (bij )i,j , (cij )i,j , and (di)i are less advantageous for genotypes Aa

and aa than for genotype AA, and slightly deviate from the neutral case. This latter assumption
(small mutation sizes) is justified in biology papers, such as [16] and [17], by showing that
species evolution is partly due to the fixation of a large number of small mutations. Besides,
we assume that carrying allele a only influences the natural death rate of individuals. More
precisely, we set

bij = b for all i, j, cij = c for all i, j,

whereas d1 = d, d2 = d + δ, and d3 = d + δ′, (3.3)

where δ and δ′ are close to 0. Note that if δ′ is positive and δ is equal to 0, then allele a is
deleterious. The effect of δ is more intricate because it affects heterozygous individuals, with
the same apparent effect on both alleles. It simply represents a more or less important adaptation
of heterozygotes compared to AA homozygotes and, as we will see later (Subsection 3.3.2), its
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role in the deleterious or positive effect of allele a depends on the initial genetic repartition of
the population. We denote by Lδ,δ′

the infinitesimal generator of Z that satisfies the conditions
in (3.3), and by u((k, m, n), δ, δ′) the fixation probability of allele a, knowing that Z starts
from (k, m, n) for all (k, m, n) in N

3∗∗. We then have, for all real bounded functions f on N
3∗∗,

(Lδ,δ′
f )(k, m, n) = b1(Z)f (k + 1, m, n) + b2(Z)f (k, m + 1, n) + b3(Z)f (k, m, n + 1)

+ d(1)(Z)f (k − 1, m, n) + d(2)(Z)f (k, m − 1, n)

+ d(3)(Z)f (k, m, n − 1)

− (bN + (d + c(N − 1))N + δm + δ′n)f (k, m, n).

From (2.1), (2.4), and (2.5), we define the infinitesimal generator

(Lv)(k, m, n) = (L0,0v)(k, m, n)

= b

N − 1

[(
k(k − 1) + km + m(m − 1)

4

)
v(k + 1, m, n)

+
(

km + m(m − 1)

2
+ mn + 2kn

)
v(k, m + 1, n)

+
(

n(n − 1) + mn + m(m − 1)

4

)
v(k, m, n + 1)

]
+ (d + c(N − 1))[kv(k − 1, m, n) + mv(k, m − 1, n) + nv(k, m, n − 1)]
− (bN + dN + cN(N − 1))v(k, m, n) if k + m + n ≥ 3, (3.4a)

(Lv)(k, m, n) = b

N − 1

[(
k(k − 1) + km + m(m − 1)

4

)
v(k + 1, m, n)

+
(

km + m(m − 1)

2
+ mn + 2kn

)
v(k, m + 1, n)

+
(

n(n − 1) + mn + m(m − 1)

4

)
v(k, m, n + 1)

]
− bNv(k, m, n) if k + m + n = 2. (3.4b)

Using the fact that (u(Zt , δ, δ
′))t≤0 is a bounded martingale if Z has infinitesimal generator

Lδ,δ′
(3.2), we obtain the following result.

Proposition 3.3. u(·, δ, δ′) satisfies

(Lδ,δ′
u(·, δ, δ′))(k, m, n) = 0 for all (k, m, n) | N = k + m + n ≥ 2, (3.5a)

u((0, 0, n), δ, δ′) = 1 for all n ≥ 2, (3.5b)

u((k, 0, 0), δ, δ′) = 0 for all k ≥ 2. (3.5c)

Our main result in this section is the following theorem, which details the deviation of u

from the neutral case.

Theorem 3.1. For all (k, m, n) in N
3∗∗, the function (δ, δ′) �→ u((k, m, n), δ, δ′) is an analytic

function of (δ, δ′) in the neighborhood of (0, 0). Moreover, if we set Y = 2k + m,

u((k, m, n), δ, δ′) = p(k, m, n) − δv(k, m, n) − δ′v′(k, m, n) + o(|δ| + |δ′|),
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where

v(k, m, n) = (k − n)

[
m

N
xN + N2 − (k − n)2

N2 yN

]
, (3.6)

v′(k, m, n) = nY

N
xN + mx′

N + Y (2N − Y )

(
y′
N

N
− Y

2N2 yN

)
. (3.7)

The sequences xN , yN , x′
N , and y′

N are defined as the unique bounded solutions of second-order
recurrence equations (Propositions 3.5 and 3.6).

The proof of this theorem is decomposed into several parts: the existence and formula of the
two partial derivatives are obtained in Sections 3.3.2 and 3.3.3 and the analyticity of u is given
in Section 4.5. In the following two subsections, we separately consider the cases in which
δ = 0 and δ′ = 0.

3.3.2. The dependence of u in δ. To simplify the notation, we define u((k, m, n), δ) = u((k, m,

n), δ, 0). We will show that the derivative of u at δ = 0 is the unique subpolynomial (i.e. lower
than a polynomial function in N = k + m + n) solution of a nonlinear recurrence equation in
(k, m, n). Such a result has been obtained in [2] for the haploid case. Here the nonlinearity due
to both the competition and diploid segregation terms generates new mathematical difficulties.
We will use some arguments developed in [2], focusing on the difficulties caused by diploidy. We
say that a function f on (Z+)3 is sublinear if there exists a constant C such that |f (k, m, n)| ≤
C(k + m + n) for every (k, m, n).

Proposition 3.4. For all (k, m, n) in N
3∗∗, u((k, m, n), ·) is differentiable at 0. Its derivative

v(k, m, n) is the unique sublinear solution of the system of equations

(Lv)(k, m, n) = m(n − k)

2N(N − 1)
for all (k, m, n) | k + m + n ≥ 3, (3.8a)

(Lv)(k, m, n) = 0 for all (k, m, n) | k + m + n = 2, (3.8b)

v(2, 0, 0) = v(0, 0, 2) = 0. (3.8c)

Proof. The differentiability is implied by the analyticity of u, claimed in Theorem 3.1 and
proved in Subsection 4.5. For the sublinearity of the derivative, as in the simplest case of haploid
populations, we introduce paths of Z, i.e. the sequence of states visited by this process. Indeed
the fixation probability of the mutant allele a if the population Z starts from state (k, m, n) can
be written as the sum of the probabilities of every path starting from (k, m, n) and reaching a
state (0, 0, n′) with n′ ≥ 2. We then denote by S(k,m,n)→� the set of paths linking (k, m, n) /∈ �

to � without reaching � before �, and by (i1, i2, . . . , il) a path, where ij is the j th state of the
path. We finally denote by πδ

ij ij+1
the transition probability from state ij to state ij+1 for Z.

Then
u((k, m, n), δ) =

∑
(i1,...,il )∈S(k,m,n)→�a

πδ
i1i2

· · · πδ
il−1il

.

Now πδ
ij ij+1

is a differentiable function of δ and the absolute value of its derivative at δ = 0 is
bounded independently of (k, m, n) by a constant denoted by C1. To prove this latter assertion,
we separately consider the different possible transitions for the population in state (k, m, n).
For instance, the transition probability from state (k, m, n) to state (k + 1, m, n) is

πδ
(k,m,n)(k+1,m,n) = b(k(k − 1) + km + m(m − 1)/4)

(N − 1)(bN + dN + δm + cN(N − 1))
.
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Then πδ
(k,m,n)(k+1,m,n) is differentiable with respect to δ at 0, and

∣∣∣∣∂πδ
(k,m,n)(k+1,m,n)

∂δ

∣∣∣∣
δ=0

∣∣∣∣ = mb(k(k − 1) + km + m(m − 1)/4)

(N − 1)(bN + dN + cN(N − 1))2

≤ m

bN + dN + cN(N − 1)

≤ 2

b + d + 2c
.

Similar computations are made for other possible transitions. Then uδ
(k,m,n) is differentiable

with respect to δ at δ = 0 (Theorem 3.1) and∣∣∣∣∂u((k, m, n), δ)

∂δ

∣∣∣∣
δ=0

∣∣∣∣
=

∑
(i1,...,il )∈S(k,m,n)→�a

l−1∑
l′=1

π0
i1i2

· · · π0
il′−1i

′
l

∂πδ
il′ il′+1

∂δ

∣∣∣∣
δ=0

π0
i1′+1il′+2

· · · π0
il−1il

≤ C1

∑
l′≥1

∑
(k′,m′,n′)∈N3∗∗\�

∑
(i1,...,il′ )∈S(k,m,n)→(k′,m′,n′)

π0
i1i2

· · · π0
il′−1i

′
l

×
∑

ε∈Z3, ‖ε‖=1

∑
l′′≥0,(j1,...,jl′′ )∈S(k′,m′,n′)+ε→�a

π0
j1j2

· · · π0
jl′′−1jl′′ .

Then

|v(k, m, n)| ≤ C1

∑
l′≥1

∑
(k′,m′,n′)∈N3∗∗\�

∑
(i1,...,il′ )∈S(k,m,n)→(k′,m′,n′)

π0
i1i2

· · · π0
il′−1i

′
l

×
∑

ε∈Z3, ‖ε‖=1

P(k′,m′,n′)+ε(T�a < T�A
)

≤ 6C1

∑
l′≥1

P(k,m,n)(T� > l′) (the latter sum being lower than 6)

= 6C1E(k,m,n)(T� − 1).

From Proposition 3.1, E(k,m,n)(T�) < C2(k + m + n) for a constant C2, from which it follows
that u((k, m, n), ·) is differentiable with respect to δ and that its derivative at 0, v(k, m, n), is
sublinear. Now, identifying the first-order terms in δ in (3.5), we see that v satisfies, for all
(k, m, n) ∈ N

3∗∗,

(Lv)(k, m, n) = m(n − k)

2N(N − 1)
for all (k, m, n) | k + m + n ≥ 3,

(Lv)(k, m, n) = 0 for all (k, m, n) | k + m + n = 2,

v(2, 0, 0) = v(0, 0, 2) = 0.

It remains to prove that the system of equations (3.8) admits a unique subpolynomial solution.
Let h be a subpolynomial solution of the equation Lh = 0 such that h(2, 0, 0) = h(0, 0, 2) = 0.
Then (h(Zl ))l∈Z+ is an Fl-martingale if Z is the neutral Markov chain associated to the birth-
and-death process with generator L. On �A, the equation Lh(k, m, n) = 0 gives, for all
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k ≥ 3,

bk(h(k + 1, 0, 0) − h(k, 0, 0)) = (dk + ck(k − 1))(h(k, 0, 0) − h(k − 1, 0, 0)),

i.e. αk+1 = dk + ck(k − 1)

bk
αk

if αk = h(k, 0, 0)−h(k − 1, 0, 0) for all k ≥ 3. Since h is subpolynomial, necessarily α3 = 0,
and, therefore, since h(2, 0, 0) = 0, h ≡ 0 on �A. Similarly, h ≡ 0 on �a . Besides, there
exists a positive integer q such that

sup
t

Ek,m,n(|h(Zt )|2) ≤ sup
t

Ek,m,n(C|kt + mt + nt |2q).

Moreover, from Proposition 2.2, supt Ek,m,n(|kt + mt + nt |2q) < +∞ for all (k, m, n) in N
3∗∗.

Then the martingale (h(Zl ))l∈Z+ is uniformly integrable. From Doob’s stopping time theorem
applied to the stopping time T� , we then have 0 = Ek,m,n(h(ZT� )) = h(k, m, n).

Let us now state the following proposition whose proof is given in Section 4.

Proposition 3.5. For all (k, m, n) such that k + m + n ≥ 2,

v(k, m, n) = (k − n)

[
m

N
xN + N2 − (k − n)2

N2 yN

]
, (3.9)

where the sequence of vectors

(zN)N≥3 =
(

xN

yN

)
N≥3

is the unique subpolynomial solution of the system of equations

BNzN+1 = CNzN + DNzN−1 + fN for all N ≥ 4, (3.10)

B3z4 = C̃3z3 + f3, (3.11)

with

BN := b

2(N − 1)(N + 1)

⎛
⎜⎜⎝

1
2N2 + 4N − 3

N + 1

2N2 − 3
−3

N + 1

⎞
⎟⎟⎠ ,

CN := (b + d + c(N − 1))

⎛
⎝0

1

N

1 0

⎞
⎠ ,

C̃3 :=
⎛
⎜⎝ 0

b + d + 2c

3

b + d + 2c

3
−(d + 2c)

⎞
⎟⎠ = C3 −

(
0 0

2

3
(d + 2c) (d + 2c)

)
,

DN := −d + c(N − 1)

N − 1

⎛
⎜⎜⎝

0
N − 3

N − 1

N − 2
3

N − 1

⎞
⎟⎟⎠ ,

fN :=
⎛
⎝ 0

−1

2N(N − 1)

⎞
⎠ .
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Note that here v(k, m, n) = −v(n, m, k) and that the comparison between the proportions
of genotypes AA and aa play a particular role in the value and sign of v.

3.3.3. The dependence of u in δ′. In this section we set δ = 0, i.e. a is a recessive allele, and
deleterious when δ′ > 0. As in the previous section (Proposition 3.4), u

0,·
k,m,n : δ′ �→ u0,δ′

is
differentiable and v′ is the unique sublinear solution of the system

Lv′(k, m, n) = nY

2N(N − 1)
for all (k, m, n) | k + m + n ≥ 3, (3.12a)

Lv′(k, m, n) = 0 for all (k, m, n) | k + m + n = 2, (3.12b)

v′(2, 0, 0) = v′(0, 0, 2) = 0, (3.12c)

where Y = 2k + m is the number of A alleles in the population (k, m, n).
The following proposition (proved in Subsection 4.4) gives a formula for v′(k, m, n).

Proposition 3.6. It holds that

v′(k, m, n) := nY

N
xN + mx′

N + Y (2N − Y )

(
y′
N

N
− Y

2N2 yN

)
, (3.13)

where xN and yN are defined in Proposition 3.5, and the sequence of vectors

z′
N =
(

x′
N

y′
N

)

is the unique subpolynomial solution of the system of equations

B ′
Nz′

N+1 = C′
Nz′

N + D′
Nz′

N−1 + f ′
N for all N ≥ 3, (3.14)

B̃ ′
2z

′
3 = C̃′

2z
′
2 + f̃ ′

2, (3.15)

with

B ′
N := b

N − 1

⎛
⎜⎜⎝

2N2 − 2N − 1
−1

N + 1
1

2

N2 + N − 3/2

N + 1

⎞
⎟⎟⎠ ,

B̃ ′
2 :=
⎛
⎝1 3

3
13

3

⎞
⎠ ,

C′
N := (bN + dN + cN(N − 1))

⎛
⎝2 0

0
1

N

⎞
⎠ ,

C̃′
2 :=
(

0 2
2 3

)
,

D′
N := −(d + c(N − 1))

⎛
⎜⎜⎝

2N − 2
2

N − 1

0
N − 2

N − 1

⎞
⎟⎟⎠ ,
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f ′
N :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b

N − 1
(2N − 1)

yN+1

2(N + 1)2 − (d + c(N − 1))(4N + 2)
yN−1

2(N − 1)2

b

N − 1

(
2N3 + 3N2 − 4N − 3

2

)
yN+1

2(N + 1)2

− (bN + dN + cN(N − 1))(2N − 1)
yN

2N2

+ (d + c(N − 1))(2N2 − 7N + 8)
yN−1

2(N − 1)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

f̃ ′
2 :=
⎛
⎜⎝x2 − y2 − x3 + 3

2
y3

19

6
y3 − 9

4
y2

⎞
⎟⎠ .

We now prove Propositions 3.5 and 3.6. In both cases, the proof is divided into two parts:
we first prove the result when the fecundity b is small enough compared to the competition
parameter c, and then we generalize the result to all possible demographic parameters b, d,
and c.

4. Proofs of Propositions 3.5 and 3.6

4.1. Proof of Proposition 3.5 for small b

To begin with, calculations give the following lemma.

Lemma 4.1. (i) If (3.6) holds then v satisfies (3.8) if and only if (zN)N≥3 satisfies (3.10), (3.11),
and x2 + 3

2y2 = 4
3x3 + 2y3.

(ii) (v(k, m, n))(k,m,n)∈N3∗∗ is sublinear if and only if (zN)N≥3 is bounded.

Proof. Part (ii) is easy to see from (3.6). For part (i), if v satisfies (3.6) then from the second
equation of (3.8) we easily obtain x2 + 3

2y2 = 4
3x3 + 2y3. Now to derive (3.10) from the first

equation of (3.8), we have to write the birth and death rates given in (2.1) and (2.4) as functions
of the variables m, k − n, and N . Then we separate terms with xN , yN , xN+1, yN+1, xN−1,
and yN−1. Each of these terms is multiplied by the sum of two polynomial functions: one
of the form m(k − n)P (N) and the other of the form (k − n)(N2 − (k − n)2)Q(N), where
P and Q are polynomial functions. The total term that multiplies the polynomial function
(k − n)(N2 − (k − n)2) must be equal to 0, while the term that multiplies the polynomial
function m(k − n) must be equal to −1/2N(N − 1) from (3.8). We deduce from this that
(3.10) is in fact true for all N ≥ 3. Finally, the initial condition (3.11) is obtained by combining
(3.10) for all N = 3 and the relation x2 + 3

2y2 = 4
3x3 + 2y3. Conversely, if (zN)N≥3 satisfies

(3.10), (3.11), and x2 + 3
2y2 = 4

3x3 + 2y3 + 1
4b

, then v defined by (3.6) satisfies (3.8).

Note that the equations of Proposition 3.5 are not enough to characterize the vector z2; the
only equation relating x2 and y2 is v(1, 1, 0) = −v(0, 1, 1) = 1

2x2 + 3
4y2. We then only have to

prove that there exists a bounded solution (zN)N≥3 to the system of equations (3.10) and (3.11).
Note that if z3 is fixed then, for all N , zN is fixed, recursively. Finding a bounded solution of
this system of equations is then equivalent to finding an initial condition z (necessarily unique
by Proposition 3.4) such that if z3 = z then (zN)N≥3 is bounded.
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4.1.1. The one-order recurrence relationship satisfied by (zN)N . We change the two-order
recurrence system of (3.10) and (3.11) into a one-order recurrence relationship, so that we
can easily express zN as a function of z3, and vice versa. We easily find that zN satisfies the
recurrence relationship

BNzN+1 = (CN + KN)zN +
N∑

k=3

(−1)N−kE(k, N)fk for all N ≥ 3. (4.1)

More precisely, (4.1) is satisfied for N = 3 if K3 = C̃3 − C3 and E(3, 3) = I2. Moreover, if it
is true for a given N ≥ 3 then it is true for N + 1 as long as KN+1 = DN+1(CN + KN)−1BN ,
E(N+1, N+1) = I2, and E(k, N+1) = DN+1(CN +KN)−1E(k, N) for all k ∈ [3, N ]. Then
recurrence relationship (4.1) is satisfied for every N as soon as we can define two sequences
of matrices (KN)N≥3 and (E(k, N))N≥3,2≤k≤N such that

KN = DN(CN−1 + KN−1)
−1BN−1 for all N ≥ 4,

K3 = C̃3 − C3,

E(k, N) = DN(CN−1 + KN−1)
−1E(k, N − 1) for all k ∈ [3, N − 1],

E(k, k) = I2 for all k ≥ 3.

We then have to recursively prove that FN := KN + CN is invertible for all N ≥ 3. We first
prove this when c is large enough compared to b.

4.1.2. Proof of the invertibility of KN + CN . Let us define

VN :=
⎛
⎝0

1

N

1 0

⎞
⎠ .

Then FN = (b + d + c(N − 1))VN + KN. We now define the matrix GN := VN + KN/b.
Then

FN = (d + c(N − 1))VN + bGN = (d + c(N − 1))VN

(
I2 + b

d + c(N − 1)
V −1

N GN

)
.

Using the matricial norm ‖M‖ = supi∈{1,2}(|Mi,1| + |Mi,2|), note that ‖V −1
N ‖ = N .

Lemma 4.2. If b ≤ c/24, then FN is invertible and ‖GN‖ ≤ 9 for all N ≥ 4.

This result will be generalized in Subsection 4.2 to all possible parameters b, d, and c.

Proof of Lemma 4.2. We prove it recursively. For N = 4, we can compute the norm of G4.
Indeed, we have

G4 = V4 + 1

b
D4C̃

−1
4 B3,

which gives

G4 =
(

g11 g12
g21 g22

)
,
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where

g11 = − d + 3c

48(b + d + 2c)
,

g12 = 1

4
− 9(d + 3c)

64(b + d + 2c)
,

g21 = 1 − d + 3c

16(b + d + 2c)
− 10(d + 3c)

16(b + (d + 2c)/3)
− (d + 2c)(d + 3c)

8(b + d + 2c)(b + (d + 2c)/3)
,

g22 = −27

64

(d + 3c)(b + 2(d + 2c) + (d + 2c)/3)

(b + d + 2c)(b + (d + 2c)/3)
+ d + 3c

32(b + (d + 2c)/3)
.

So

‖G4‖ ≤ sup

{
d + 3c

d + 2c

(
1

48
+ 1

4
+ 9

64

)
,
d + 3c

d + 2c

(
1 + 1

16
+ 30

16
+ 3

8
+ 1

64

)}

= d + 3c

d + 2c

212

64

≤ 212

64

3

2
≤ 9.

For all N , the invertibility of the matrix FN is a consequence of ‖GN‖ ≤ 9. Indeed, if ‖GN‖ ≤ 9
then, as long as b < c/12, ∥∥∥∥ bV −1

N GN

d + c(N − 1)

∥∥∥∥ ≤ 9bN

d + c(N − 1)
< 1.

In this case, I2 + bV −1
N GN/(d + c(N − 1)) is invertible, and so is FN . Now let us assume that

‖GN‖ ≤ 9 for a given N ≥ 4 and let us prove that ‖GN+1‖ ≤ 9. If ‖GN‖ ≤ 9 then FN is
invertible and we can write GN+1 = VN+1 + (1/b)DN+1F

−1
N BN. Hence,

GN+1 = VN+1 + DN+1

(
I2 + bV −1

N GN

d + c(N − 1)

)−1 V −1
N

d + c(N − 1)

BN

b
.

Moreover, as long as b ≤ c/24,∥∥∥∥
(

I2 + bV −1
N GN

d + c(N − 1)

)−1∥∥∥∥ ≤ 1

1 − ‖bV −1
N GN/(d + c(N − 1))‖

≤ 1

1 − 9bN/(d + c(N − 1))

≤ 2.

Finally, for all N ≥ 4, ‖DN+1‖ ≤ d + cN and ‖V −1
N BN‖ ≤ 3b, which implies that

‖GN+1‖ ≤ 1 + 6

(
1 + c

d + 3c

)
≤ 9.

This completes the proof.

As long as b ≤ c/24, (4.1) is satisfied, which allows us to easily express zN as a function of
z3 for all N ≥ 3. We now prove that there exists a real number z such that if z3 = z then (zN)

is bounded.
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4.1.3. Boundedness of z. Let us assume here that b < c/24, so that we can use the previous
results. Setting

MN := B−1
N (CN + KN) and gN :=

N∑
k=3

(−1)N−kB−1
N E(k, N)fk,

we obtain

zN+1 = MNMN−1 · · · M3

(
z3 +

N∑
l=3

M−1
3 · · · M−1

l gl

)
= PN

(
z3 +

N∑
l=3

P −1
l gl

)
(4.2)

if PN = MNMN−1 · · · M3. To obtain the behavior of (zN), we then study PN and gN .

Lemma 4.3. It holds that ‖M−1
N ‖ ≤ 2b/cN if N is large enough.

Proof. We previously proved (Lemma 4.2) that, for all N ≥ 3, ‖GN‖ ≤ 9, with GN =
VN + KN/b. Then, for all N ≥ 3, ‖KN‖ ≤ 10b. So, if b < c/24, we have

‖KN‖ < 1
2c (4.3)

for all N ≥ 3. Besides, the equation KN+1 = DN+1(CN + KN)−1BN can be detailed, and
using (4.3), we obtain (see Appendix B)

KN+1 = −b

⎛
⎜⎜⎝

1

2N2 + O

(
1

N3

)
1

N
+ O

(
1

N3

)

1 + O

(
1

N2

)
3

N2 + O

(
1

N3

)
⎞
⎟⎟⎠ . (4.4)

Next,

D−1
N+1 = N2

(d + cN)(N − 2)(N − 1)

⎛
⎝ 3

N
−N − 2

N

−(N − 1) 0

⎞
⎠ .

We deduce from this that

M−1
N = D−1

N+1KN+1 = b

c

⎛
⎜⎜⎝

1

N
+ O

(
1

N2

)
O

(
1

N3

)
1

2N2 + O

(
1

N3

)
1

N
+ O

(
1

N2

)
⎞
⎟⎟⎠ . (4.5)

This completes the proof.

Note that, if N is large enough,

‖M−1
N M−1

N+1‖ ≤ 4b2

c2N2 . (4.6)

Besides, we have the following lemma for (gN)N .

Lemma 4.4. g satisfies

gN = C + C′

N
+ o

(
1

N

)
. (4.7)

https://doi.org/10.1239/aap/1401369702 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1401369702


462 C. CORON

Proof. From gN :=∑N
k=3(−1)N−kB−1

N E(k, N)fk we deduce that

gN+1 = −B−1
N+1KN+1gN + B−1

N+1fN+1. (4.8)

Moreover,

B−1
N+1 = 1

b

2N(N + 2)2

3 + (2N2 + 8N + 3)(2N2 + 4N − 1)

⎛
⎝ 3

N + 2

2N2 + 8N + 3

N + 2
2N2 + 4N − 1 −1

⎞
⎠
(4.9)

and (4.4) yields

−B−1
N KN =

⎛
⎜⎜⎝

1 + O

(
1

N2

)
3

N2 + O

(
1

N3

)

O

(
1

N2

)
1 + O

(
1

N2

)
⎞
⎟⎟⎠ . (4.10)

Equations (4.8), (4.9), and (4.10) yield the result.

Finally, we consider
∑

P −1
l gl . Let us recall that Pl = MlMl−1 · · · M3. We have

N∑
l=3

‖P −1
l gl‖ ≤

N∑
l=3

‖P −1
l ‖‖gl‖.

From (4.7) and Lemma 4.3, (gl)l≥3 is bounded and there exists a constant C2 such that ‖M−1
N ‖ ≤

C2/N when N is large enough. Then
∑N

l=3 P −1
l gl converges and we define its limit

z =
∞∑
l=3

P −1
l gl . (4.11)

The quantity z is the initial condition we need to obtain a bounded solution to (3.10) and (3.11).

Lemma 4.5. The sequence (zN)N≥3 satisfying (3.10) and (3.11), and such that z3 = −z (where
z is as defined in (4.11)), is bounded.

Proof. From (4.2),

zN+1 = −PN

( ∞∑
l=N+1

P −1
l gl

)

= −
∞∑

l=N+1

M−1
N+1M

−1
N+2 · · · M−1

l gl

= −M−1
N+1gN+1 − M−1

N+1M
−1
N+2

∞∑
l=N+2

(M−1
N+3 · · · M−1

l−2)(M
−1
l−1M

−1
l )gl . (4.12)

By Lemmas 4.4 and 4.3 and (4.6), if N is large enough, there exists a constant C independent
from b such that

‖zN‖ ≤ C
2b

cN
, (4.13)

as required.

This completes the proof of Proposition 3.5 for small b. In the next subsection we generalize
this result to any b.
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4.2. Generalization to all possible values of b

Theorem 4.1. For all (k, m, n) such that k + m + n ≥ 2, v(k, m, n) is an analytic function of
b on R

+∗.

Corollary 4.1. For all demographic parameters b > 0, d, and c > 0, Proposition 3.5 holds.

Proof. From the end of Section 4.1.3, there exists a constant K > 0 such that, if b < Kc,
(3.6) holds, which gives

yN = N2

4(N − 2)(N − 1)
v(N − 1, 0, 1),

xN = N

N − 1

[
v(N − 1, 1, 0) − 2N − 1

4(N − 2)
v(N − 1, 0, 1)

]
.

(4.14)

As long as b < Kc, we then have

v(k, m, n) = m(k − n)

N − 1

[
v(N − 1, 1, 0) − 2N − 1

4(N − 2)
v(N − 1, 0, 1)

]

+ (k − n)
N2 − (k − n)2

4(N − 2)(N − 1)
v(N − 1, 0, 1). (4.15)

Now from Theorem 4.1, for all (k, m, n) in N
3∗∗, v(k, m, n) is an analytic function of b on R

+∗.
The equality of two analytic functions on (0, Kc), (4.15), extends on R

+∗. Then (3.9) holds
for all (k, m, n) ∈ N

3∗∗ if xN and yN are defined for all N ≥ 3 and all b > 0, by (4.14). From
Lemma 4.1, (zN)N≥3 satisfies (3.10) and (3.11), so Proposition 3.5 holds, completing the proof.

Before proving Theorem 4.1, we prove the following result.

Lemma 4.6. For every (k, m, n) in N
3∗∗, there exists a strictly positive real number ρ such that

Ek,m,n((1 + ρ)T� ) < ∞.

Proof. We define the random number of returns of Z in {N = 2} before reaching � by
L ∈ Z+, and let T (i)

2 be the ith time of return of Z in {N = 2} (T (0)
2 = 0 and T (1)

2 = T{2}).
Then

Ek,m,n((1 + ρ)T� )

≤
∞∑
l=0

Ek,m,n((1 + ρ)T
(l+1)

2 1{L=l}) as T�1{L=l} ≤ T (l+1)
2 1{L=l}

=
∞∑
l=0

∑
(k′,m′,n′)/∈� | k′+m′+n′=2

or (k′,m′,n′)=(k,m,n)

Ek,m,n((1 + ρ)T
(l+1)

2 1Z
T

(l)
2

=(k′,m′,n′)1{L=l})

≤ max
(k′,m′,n′)/∈� | k′+m′+n′=2

or (k′,m′,n′)=(k,m,n)

Ek′,m′,n′((1 + ρ)T{2})
∞∑
l=0

Ek,m,n((1 + ρ)T
(l)

2 1{L≥l}),

by the strong Markov property in T (l)
2 . We now define

S = max
(k′,m′,n′) | k′+m′+n′=2

or (k′,m′,n′)=(k,m,n)

Ek′,m′,n′((1 + ρ)T{2}1{L≥1}),
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and prove that, for every l,

Ek,m,n((1 + ρ)T
(l)

2 1{L≥l}) ≤ Sl.

The result obviously holds for l = 0 and is proved to hold recursively for every l by using the
strong Markov property in T

(l−1)
2 , as previously. Now, from Proposition 2.1, for every (k, m, n),

there exists ρ > 0 such that Ek,m,n((1 + ρ)T{2}) < ∞. Then, by the dominated convergence
theorem, Ek,m,n((1 + ρ)T{2}1{L≥1}) → Pk,m,n(L ≥ 1) < 1 as ρ → 0. Hence, there exists ρ0
such that if ρ < ρ0, S < 1 and then Ek,m,n((1 + ρ)T� ) < ∞.

Proof of Theorem 4.1. We need to study the dependence of the probability u in the fecundity
parameter b, so we denote by u((k, m, n), δ, b) the fixation probability of allele a when Z0 =
(k, m, n) and by v((k, m, n), b) its derivative with respect to δ. If u((k, m, n), ·, ·) is an analytic
function of (b, δ) on R

+∗ × R, then v((k, m, n), ·) is an analytic function of b on R
+∗. Now

u((k, m, n), δ, b) =
∑
l≥1

∑
(i1,...,il )∈S(k,m,n)→�a

π
δ,b
i1i2

· · · πδ,b
il−1il

,

where π
δ,b
ikik+1

is the transition probability from state ik to state ik+1 and an analytic function

of (b, δ) on R
+∗ × R. Then u is the simple limit of analytic functions on R

+∗ × R. By
Equations (9.13.1) and (9.13.2) of [9], a sequence of analytic functions (fn)n∈N defined on
an open set S of C which converges simply towards a function f on S is proved to converge
uniformly on every compact subset of S as long as {fn, n ∈ N} is relatively compact. We
extend the functions π

δ,b
ikik+1

on the open set E
β
1 × E

β
2 , where β ∈ R

+∗ and

E
β
1 = {z ∈ C | Re(z) > 0, |Im(z)| < βRe(z)},

E
β
2 = {z ∈ C

∣∣ Re(z)| < 1
2d, |Im(z)| < β(d − |Re(z)| + 2c)

}
.

We set b = br + ibi ∈ E
β
1 and δ = δr + iδi ∈ E

β
2 , and denote by P

b,δ
(k,m,n)(k′,m′,n′) the analytic

extension of π
b,δ
(k,m,n)(k′,m′,n′) on E

β
1 × E

β
2 . For all (b, δ) ∈ E

β
1 × E

β
2 , and all (k, m, n) and

(k′, m′, n′) neighbors in N
3∗∗,

|P b,δ
(k,m,n)(k′,m′,n′)| ≤

√
1 + β2P

br ,δr

(k,m,n)(k′,m′,n′) =
√

1 + β2π
br ,δr

(k,m,n)(k′,m′,n′).

Indeed, let us make the computation if (k′, m′, n′) = (k, m − 1, n):

|P b,δ
(k,m,n)(k,m−1,n)| =

∣∣∣∣ (d + δ + c(N − 1))m

bN + dN + δm + cN(N − 1)

∣∣∣∣
≤ |(d + δ + c(N − 1))m|

Re(bN + dN + δm + cN(N − 1))

=
√

(d + δr + c(N − 1))2m2 + δ2
i m

2

brN + dN + δrm + cN(N − 1)

≤
(d + δr + c(N − 1))m(

√
1 + δ2

i /(d + δr + c(N − 1))2)

brN + dN + δrm + cN(N − 1)
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≤ (d + δr + c(N − 1))m
√

1 + β2

brN + dN + δrm + cN(N − 1)
(since δ ∈ E

β
2 )

=
√

1 + β2P
br ,δr

(k,m,n)(k,m−1,n).

Similar computations are possible for other transitions. Then, as
√

1 + β2 ≤ 1 + β2,

L∑
l≥1

∑
(i1,...,il )∈S(k,m,n)→�a

|P δ,b
i1i2

· · · P δ,b
il−1il

| ≤
L∑

l≥1

(1 + β2)l
∑

(i1,...,il )∈S(k,m,n)→�a

π
δr ,br

i1i2
· · · πδr ,br

il−1il

≤
L∑

l≥1

(1 + β2)lPk,m,n(T�a = l)

≤ Ek,m,n((1 + β2)T�a 1{T�a <∞})
≤ Ek,m,n((1 + β2)T� )

since, if T�a < ∞, T�a = T� .

In the following subsection, we establish some properties of the derivative v(k, m, n).

4.3. Boundedness and the sign of v

Proposition 4.1. (i) For all demographic parameters b, d, and c, v is a bounded function of
(k, m, n).

(ii) Assume that k ≥ n. Then vk,m,n = E(k,m,n)[
∫ T

0 Lv(Zt ) dt] ≥ 0, where T = inf{t, kt =
nt or mt = nt = 0}.
(iii) v(k, m, n) has the same sign as k − n.

Proof. Part (i) is a consequence of (4.13), and part (iii) is a consequence of part (ii). For
(ii), by Proposition 3.5, it suffices to prove the result when k > n. With the function v bounded
in (k, m, n) (by (i)), Dynkin’s formula stopped at the stopping time T gives

Ek,m,n[v(ZT )] = v(k, m, n) − E(k,m,n)

[∫ T

0
Lv(Zt ) dt

]
.

Using the fact that v(ZT ) = 0 (from Proposition 3.5) yields the result.

Note that the sign of δ is not sufficient to determine whether allele a has a larger fixation
probability than a neutral allele. This property depends on the initial genetic repartition of the
population: if there are more alleles A (respectively a) initially then allele a has a lower fixation
probability than a neutral allele if and only if δ > 0 (respectively δ < 0). In Section 5 we will
consider the particular case in which allele a appears as a mutant in the population. In this
case, at the mutation time, there is only one individual with genotype Aa and no individual with
genotype aa, and so the population starts from a state of the form (k, 1, 0). As the derivative
of u with respect to δ is −v, the fixation probability of allele a is

u((k, 1, 0), δ) = 1

2(k + 1)
− δ

(
k

k + 1
xk+1 + k(2k + 1)

(k + 1)2 yk+1

)
+ o(δ).
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4.4. Proof of Proposition 3.6

As in the computations for v, Proposition 3.6 holds if we can find a bounded sequence
(z′

N)N≥2 which is the solution of (3.14) and (3.15). To prove this, we use a similar proof as
for δ′ = 0 (Section 4.1). Setting

hk = f ′
k for all k ≥ 4, h3 = f ′

3 − D′
3C̃

′−1
2 f̃ ′

2,

we easily obtain, for all N ≥ 3,

B ′
Nz′

N+1 = (C′
N + K ′

N)z′
N +

N∑
k=3

(−1)kE′(N, k)hk

with
K ′

3 = D′
3C̃

′−1
2 B̃ ′

2,

K ′
N = D′

N(C′
N−1 + K ′

N−1)
−1B ′

N−1 for all N ≥ 4,

and
E′(k, k) = I2 for all k ≥ 3,

E′(N, k) = D′
N(C′

N−1 + K ′
N−1)

−1E′(N − 1, k)

= K ′
NB ′−1

N−1E
′(N − 1, k) for all N ≥ k + 1.

Note here that the detailed computation of h3 shows that h3 does not depend on x2 and y2 (which
are not known) but only on x2 + 3

2y2. The only difficulty in adapting the proof of Section 4.1
is when proving that there exists a constant C such that, for all N , ‖B ′−1

N hN‖ ≤ C/N2. Note
that we have

B ′−1
N = N − 1

b

N + 1

(2N2 − 2N − 1)(N2 + N − 3/2) + 1/2

×

⎛
⎜⎜⎝

N2 + N − 3/2

N + 1

1

N + 1

−1

2
2N2 − 2N − 1

⎞
⎟⎟⎠ .

From (4.5), (4.7), and (4.12),

yN = C1

N
+ C2

N2 + O

(
1

N3

)
.

Then∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝

N2 + N − 3/2

N + 1

1

N + 1

−1

2
2N2 − 2N − 1

⎞
⎟⎟⎠hN

∥∥∥∥∥∥∥∥
= O(1) and ‖B ′−1

N hN‖ = O

(
1

N2

)
.

We now know that if the birth parameter b is small enough compared to c, then v′ is effectively
defined as in (3.7). To generalize this result to all possible values of parameters b and c, we
adapt the proof of Theorem 4.1 and Corollary 4.1 to δ′, without any difficulty. Note here that,
for all demographic parameters, v′ is a positive bounded function of (k, m, n).
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4.5. Proof of the analyticity of u(k, m, n)

To conclude these results, we now prove that u((k, m, n), δ, δ′) is an analytic function of
(δ, δ′) in the neighborhood of (0, 0).

We use analytic extension arguments as in the proof of Theorem 4.1. Here δ and δ′ are
complex numbers, denoted by δ = δr + iδi and δ′ = δ′

r + iδ′
i . We take (δ, δ′)∈ (Eβ)2 with

Eβ = {z ∈ C | |Re(z)| < d/2, |Im(z)| < β(d −|Re(z)|+2c)}, and denote by π
δ,δ′
(k,m,n)(k′,m′,n′)

the transition probability for Z from (k, m, n) to one of its neighbors (k′, m′, n′) and by
P

δ,δ′
(k,m,n)(k′,m′,n′) the analytic continuation of π

δ,δ′
(k,m,n)(k′,m′,n′) on (Eβ)2. Then

|P δ,δ′
(k,m,n)(k′,m′,n′)| ≤ (1 + β2)P

δr ,δ
′
r

(k,m,n)(k′,m′,n′) = (1 + β2)π
δr ,δ

′
r

(k,m,n)(k′,m′,n′),

which completes the proof.
Theorem 3.1 is now proved.

5. Mutational scale: convergence and extinction vortex

Understanding and quantifying the extinction risk of a population is a very important
issue, in particular within the framework of species conservation [19]. We now consider the
phenomenona called ‘mutational meltdown’ [12]: within small populations, inbreeding favors
the fixation of deleterious alleles that would disappear in an infinite size population [3], [8], [14].
This phenomenona is then characterized by more and more frequent fixations of deleterious
alleles, which creates an extinction vortex and leads to a rapid extinction of the population [11],
[19]. We wish now to observe this acceleration of mutation fixations. To this end, we introduce
mutations in our model, and consider a different time scale.

5.1. General model

As introduced in Section 2, each individual is now characterized by its genotype x ∈ G :=
{{A, C, G, T }G}2. Now every DNA strand can mutate during the individual lifetime, at rate
μK := μ/K . Here K is a scaling parameter that will go to ∞, following a rare mutation
hypothesis, which is usual in evolutionary genetics [1], [11]. For every a, a′ ∈ {A, C, G, T }G,
we denote by M(a, a′) the probability that a DNA strand a mutates to a′ knowing that a mutates.
The population can then be represented at time t by

ZK : t �→
NK

t∑
i=1

δ
x

i,K
t

,

where NK
t is the size of population ZK at time t and x

i,K
t is the genotype of the ith individual

in population ZK at time t ; ZK
t belongs to the discrete space

E =
{ N∑

i=1

δxi
, N ∈ Z+, xi ∈ G for all i

}
,

where E is equipped with its discrete topology and the norm r(μ, ν) =∑x∈G |μ(x) − ν(x)|.
We denote by D([0, ∞), E) the Skorokhod space of left-limited, right-continuous functions
from R

+ to E, endowed with the Skorokhod topology. We denote by b(x, Z) the birth rate
of an individual with genotype x in population Z, and assume that there exists a constant C

such that, for every Z with size N ,
∑

x∈G b(x, Z) ≤ CN. As in Section 2, individuals can die
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either naturally or due to competition with other individuals, and, when the population size
reaches 2, we assume that no death can occur. We denote by d(x, Z) the death rate of a given
individual with genotype x in population Z, and assume that, for every x, d(x, Z) is bounded
below by some positive power of the population size. For all K > 0 and all real bounded
measurable functions f on E, if Z =∑N

i=1 δx(i) with x(i) = (x
(i)
1 , x

(i)
2 ), the generator of the

Markov process ZK is

LKf (Z) =
∑
x∈G

b(x, Z)(f (Z + δx) − f (Z))

+
N∑

i=1

d(xi, Z)(f (Z − δx(i) ) − f (Z))

+
N∑

i=1

μ

K

∑
y∈{A,C,G,T }G

M(x
(i)
1 , y)(f (Z − δx(i) + δ

(y,x
(i)
2 )

) − f (Z))

+
N∑

i=1

μ

K

∑
y∈{A,C,G,T }G

M(x
(i)
2 , y)(f (Z − δx(i) + δ

(x
(i)
1 ,y)

) − f (Z)).

Notation. When the population is monomorphic, i.e. every individual has the same genotype
x, we assume that the population follows a neutral logistic birth-and-death process as presented
in Section 3.2, and we respectively denote by b(x), d(x), and c(x) the birth, natural, and
competition death rates (denoted by b, d , and c in Section 3.2). For all demographic parameters
b, d, and c, we also define the stationary law l(·, b, d, c) of the population size of this neutral
logistic birth-and-death process. Here l satisfies the stationary equations system:

b(N − 1)l(N − 1, b, d, c) + (d + cN)(N + 1)l(N + 1, b, d, c)

= N(b + d + c(N − 1))l(N, b, d, c) for all N ≥ 3,

2bl(2, b, d, c) = 3(d + 2c)l(3, b, d, c).

Then, for all N ≥ 2,

l(N, b, d, c) := 1

N

N−1∏
k=2

b

d + kc

/ ∞∑
i=2

1

i

i−1∏
j=2

b

d + jc
. (5.1)

We now rescale time as K goes to ∞ in order to observe mutation apparitions. More precisely,
with the mean time of apparition of a mutation being equal to 1/μK ∼ K , we accelerate time
by multiplying t by K .

5.2. Convergence and the limiting process in the adaptive dynamics setting

Theorem 5.1. For all 0 < t1 < · · · < tn, the n-tuple (ZK
Kt1

, . . . , ZK
Ktn

) converges in law
towards the process (Nt1δSt1

, . . . , NtnδStn
).

(i) (St )t>0 is a Markov jump process that jumps from a homozygous genotype x(1) = (x1, x1)

to another homozygous genotype x(2) = (x2, x2), where x1 and x2 are in {A, C, G, T }G,
at rate τ(x(1), x(2)).
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(ii) The rate

τ(x(1), x(2)) = 2μM(x1, x2)

∞∑
N=2

Nf ((N − 1, 1, 0), x(1), x(2))

× l(N, b(x(1)), d(x(1)), c(x(1))), (5.2)

where f ((k, m, n), x(1), x(2)) is the probability that, starting from k individuals with
genotype x(1), m with genotype (x1, x2), and n with genotype x(2), the population finally
becomes monomorphic with genotype x(2). In the particular case where only the natural
death rate differs between individuals with genotypes x(1) and x(2), as in (3.3),

f ((N − 1, 1, 0), x(1), x(2)) = u((N − 1, 1, 0), d(x1, x2) − d(x(1)), d(x(2)) − d(x(1)))

with d(x(1)), d((x1, x2)), and d(x(2)) the respective natural death rates of individuals
with genotype x(1), (x1, x2), and x(2) (the generalization of genotypes AA, Aa, and aa

in Section 3.2), and u as given in Section 3.

(iii) Conditionally to (St1 , . . . , Stn) = (x(1), . . . , x(n)), the random variables Nt1 , . . . , Ntn are
mutually independent and, for all i, Nti has law l(·, b(x(i)), d(x(i)), c(x(i))).

At this mutational time scale, the process (NtδSt )t≥0 describes the successive fixations of
mutations. Indeed, a jump of the limiting process S corresponds to a change in the genotype
of every individual of the population, i.e. a mutation fixation. Theorem 5.1 is proved similarly
to the proof of Theorem 3.1 of [2]; see Appendix A.

5.3. The extinction vortex

In this section we focus on the jump process S and assume that all mutations have the same
effect as described in (3.3), i.e. when x1 mutates to x2, individuals with genotypes x(1), (x1, x2),
and x(2) all have the same fecundity b and competition parameter c, but

d(x1, x2) = d(x(1)) + δ and d(x(2)) = d(x(1)) + δ′.

What is more, we exclude overdominance cases by assuming that δ < δ′. We denote by

τ(d, δ, δ′) =
∞∑

N=2

Nu((N − 1, 1, 0), d, δ, δ′)l(N, d) (5.3)

the jump rate of the limiting process S of Theorem 5.1 (5.2) when individuals have birth rate b,
natural death rate d , and competition rate c (the dependence on the parameters b and c is hidden,
and, to simplify the notation, we assumed that μ = 1

2 ). This rate is also the rate of fixation of
a deleterious mutation with size (δ, δ′). Let us recall that the extinction vortex is due to more
and more rapid fixations of deleterious mutations in the population. We want to prove that the
mean time to fixation of a deleterious mutation decreases when the number of already fixed
mutations increases. When a deleterious mutation becomes fixed, the natural death rate of all
individuals is increased by δ′. The vortex is then due to the fact that the mean time to fixation of
a deleterious mutation is a decreasing function of the natural death rate d of individuals, which
we prove in the next theorem.

Theorem 5.2. Let us fix the demographic parameters b and c and assume that E(N2
0 ) <

∞. If δ > 0 and δ′ > δ, and if b is small enough, the mean time to a jump of process S,
T (b, d, c, δ, δ′) = 1/τ(b, d, c, δ, δ′), is a decreasing function of d, the natural death rate of
individuals.
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Here we underline the dependence of all quantities on d, by respectively denoting by
u((k, m, n), d, δ, δ′), v((k, m, n), d), and v′((k, m, n), d) the fixation probability defined in
Section 3 and its derivatives, when individuals have natural death rate d. We also denote by
l(·, d) the stationary law of the population size (5.1). Before proving the theorem, we first
prove the following lemma.

Lemma 5.1. If d and d ′ are two nonnegative real numbers such that d ′ > d , then there
exists an integer N0 such that, for all N ≤ N0, l(N, d ′) ≥ l(N, d), and, for all N > N0,
l(N, d ′) < l(N, d).

Proof. Let q(N) = l(N, d ′)/l(N, d). Equation (5.1) gives q(N + 1) = (d + cN)q(N) ×
(d ′ + cN)−1. Then, if d ′ > d , q(N) is a strictly decreasing function of N . Next,

q(2) = 1

2

∞∑
i=2

1

i

∞∏
j=2

b

d + jc

/
1

2

∞∑
i=2

1

i

∞∏
j=2

b

d ′ + jc
;

hence, q(2) > 1. Finally, if q(N) > 1 for all N then l(N, d ′) > l(N, d) for all N , which
is absurd as l(·, d) and l(·, d ′) are probability measures. Then there exists an integer N0 such
that, for all N > N0, q(N) < 1 and, for all N ≤ N0, q(N) ≥ 1.

Proof of Theorem 5.2. From Theorem 3.1, the mean time to fixation of a mutation is T (d, δ,

δ′) = 1/τ(d, δ, δ′) with

τ(d, δ, δ′) = 1

2
−
[ ∞∑

N=2

N(δv((N − 1, 1, 0), d) + δ′v′((N − 1, 1, 0), d))l(N, d)

]

+ o(|δ| + |δ′|), (5.4)

where the differentiability of the infinite sum in (5.3) is obtained as in the proof of Proposi-
tion 3.4. Then, if d ′ > d ,

τ(d ′, δ, δ′) − τ(d, δ, δ′) =
∞∑

N=2

N(δv((N − 1, 1, 0), d) + δ′v′((N − 1, 1, 0), d))l(N, d)

−
∞∑

N=2

N(δv((N − 1, 1, 0), d ′) + δ′v′((N − 1, 1, 0), d ′))l(N, d ′)

+ o(|δ| + |δ′|)

= δ

∞∑
N=2

Nl(N, d)(v((N − 1, 1, 0), d) − v((N − 1, 1, 0), d ′))

− δ

∞∑
N=2

Nv((N − 1, 1, 0), d ′)(l(N, d ′) − l(N, d))

+ δ′
∞∑

N=2

Nl(N, d)(v′((N − 1, 1, 0), d) − v′((N − 1, 1, 0), d ′))

− δ′
∞∑

N=2

Nv′((N − 1, 1, 0), d ′)(l(N, d ′) − l(N, d))

+ o(|δ| + |δ′|).
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Defining N0 as in Lemma 5.1, we obtain

τ(d ′, δ, δ′) − τ(d, δ, δ′)

= δ

∞∑
N=2

Nl(N, d)(v((N − 1, 1, 0), d) − v((N − 1, 1, 0), d ′))

+ δ′
∞∑

N=2

Nl(N, d)(v′((N − 1, 1, 0), d) − v′((N − 1, 1, 0), d ′))

− δ

∞∑
N=2

(Nv((N − 1, 1, 0), d ′) − N0v((N0 − 1, 1, 0), d ′))(l(N, d ′) − l(N, d))

− δ′
∞∑

N=2

(Nv′((N − 1, 1, 0), d ′) − N0v
′((N0 − 1, 1, 0), d ′))(l(N, d ′) − l(N, d))

+ o(|δ| + |δ′|) (the added terms being equal to 0), (5.5)

which gives, if w((k, m, n), d) = δv((k, m, n), d) + δ′v′((k, m, n), d),

τ(d ′, δ, δ′) − τ(d, δ, δ′)

=
∞∑

N=2

Nl(N, d)(w((N − 1, 1, 0), d) − w((N − 1, 1, 0), d ′))

−
∞∑

N=2

(Nw((N − 1, 1, 0), d ′) − N0w((N0 − 1, 1, 0), d ′))(l(N, d ′) − l(N, d))

+ o(|δ| + |δ′|).
Let us now prove first that N �→ Nw((N−1, 1, 0), d ′) is increasing and then that d �→ (w((N−
1, 1, 0), d) is decreasing. These two results imply Theorem 5.2 and will be consequences of the
following two lemmas. We first prove, as in the proof of Theorem 4.1, that u((k, m, n), δ, δ′)
is an analytic function of (d, δ, δ′) on R

+ × R
2; therefore, we can define the partial derivative

∂w((k, m, n), d)/∂d for all (k, m, n) ∈ N
3∗∗. Next, using Proposition 3.1, we prove, as in the

proof of Proposition 3.4 and the proof of Theorem 4.1 of [2], that there exists a constant C such
that, for all (k, m, n) such that k + m + n = N ,∣∣∣∣∂w

∂d
(k, m, n)

∣∣∣∣ ≤ CN2. (5.6)

Note that the infinitesimal generator L (3.4) is the sum of two generators:

(Lf )(k, m, n) = (Lbf )(k, m, n) + (Ldf )(k, m, n).

Here

Lbf (Z) =
3∑

i=1

bi(Z)(f (Z + ei) − f (Z)),

Ldf (Z) = (d + c(N − 1))

× [kf (k − 1, m, n) + mf (k, m − 1, n) + nf (k, m, n − 1) − Nf (k, m, n)].
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Since ∂Lw/∂d = 0 (from (3.8) and (3.12)),(
L

∂w(·, d)

∂d

)
(k, m, n) = −(Ldw(·, d))(k, m, n)

d + c(N − 1)
. (5.7)

Note also that

(Ldw(·, d))(N − 1, 1, 0)

= (d + c(N − 1))[(N − 1)w(N − 2, 1, 0, d) − Nw(N − 1, 1, 0, d)], (5.8)

so if we prove that (Ldw(·, d ′))(N−1, 1, 0) ≤ 0 for all N ≥ 2 then N �→ Nw((N−1, 1, 0), d ′)
is increasing. In fact, we prove the following result.

Lemma 5.2. If b is small enough and δ′ > δ then, for all (k, m, n) in N
3∗∗,(

L
∂w(·, d)

∂d

)
(k, m, n) ≥ 0.

Proof. There exists a constant C > 0 such that, for all (k, m, n) in N
3∗∗,

(Lw(·, d))(k, m, n) = (Ldw(·, d))(k, m, n)

(
1 + b

d + c(N − 1)

)

+
(

(Lbw(·, d))(k, m, n) − b

d + c(N − 1)
(Ldw(·, d))(k, m, n)

)

= −δm(k − n) + δ′nY

2N(N − 1)

= − (δ′ − δ)nm + k(δm + 2δ′n)

2N(N − 1)

≤ −C(km + mn + kn)

2N(N − 1)
.

Next, it follows from detailed computations that there exists a constant C′ such that∣∣∣∣(Lbw(·, d))(k, m, n) − b

d + c(N − 1)
(Ldw(·, d))(k, m, n)

∣∣∣∣
≤ δb

[
|k − n|

(
m|xN+1 − xN−1| + N2 − (k − n)2

N
|yN+1 − yN−1|

)]
+ δ′b[Ym|xN+1 − xN−1| + mN |x′

N+1 − x′
N−1| + (2N − Y )Y |yN+1 − yN−1|

+ (2N − Y )Y |y′
N+1 − y′

N−1|)]
+ bC′ km + mn + kn

N
(|xN+1| + |xN−1| + |x′

N+1| + |x′
N−1|

+ |yN+1| + |yN−1| + |y′
N+1| + |y′

N−1|).

Now, from (4.5), (4.7), and (4.12), we obtain ‖zN+1 − zN−1‖ ≤ C′′/N2 for a constant C′′.
Finally from (4.12) and (4.13), when b is small enough, there exists a constant C′′′ independent
from b such that ‖zN+1‖ < C′′′/N . The same results are similarly proved for Z′, then if b is
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small enough,∣∣∣∣Lbw(k, m, n)− b

d + c(N − 1)
Ldw(k, m, n)

∣∣∣∣< C(km + mn + kn)

2N(N − 1)
for all (k, m, n) ∈ N

3∗∗,

which gives Ldw(k, m, n) ≤ 0 for all (k, m, n) and the result by (5.7).

Lemma 5.3. If b is small enough and δ′ > δ then, for all (k, m, n) in N
3∗∗,

∂w((k, m, n), d)

∂d
= −E(k,m,n)

∫ T�

0

(
L

∂w(·, d)

∂d

)
(Zt ) dt.

Proof. We use Dynkin’s formula starting from (k, m, n) = Z0 and stopped at time TN =
inf{t > 0, Nt ≥ N} for N ≥ N0:

E

(
∂w(ZT�∧TN

, d)

∂d

)
= ∂w(Z0, d)

∂d
+ E

(∫ T�∧TN

0

(
L

∂w(·, d)

∂d

)
(Zs) ds

)
.

As (L∂w/∂d(·, d))(Z) ≥ 0 for all Z ∈ N
3∗∗ (Lemma 5.2),(∫ T�∧TN

0

(
L

∂w(·, d)

∂d

)
(Zs) ds

)
N≥N0

is an increasing sequence of positive random variables since TN ≤ TN+1 when N ≥ N0 =
k +m+n. From the monotone convergence theorem, since T� ∧TN → T� as N → ∞ almost
surely (Proposition 2.2),

E(k,m,n)

[∫ T�∧TN

0

(
L

∂w(·, d)

∂d

)
(Zs) ds

]

→ E(k,m,n)

[∫ T�

0

(
L

∂w(·, d)

∂d

)
(Zs) ds

]
as N → ∞.

Now, from (5.6), the process (∂w(Zt , d)/∂d)t≥0 is uniformly integrable as long as E(N2
0 ) <

∞ from Proposition 2.2. As it is also a local submartingale, it converges in L1 when t goes to
+∞, which gives

E(k,m,n)

(
∂w(ZT�∧TN

, d)

∂d

)
→ E(k,m,n)

(
∂w(ZT� , d)

∂d

)
as N → ∞.

Using the fact that ∂w(ZT� , d)/∂d = 0 yields the result.

Finally, (5.7), (5.8), and Lemma 5.2 imply that N �→ Nw((N −1, 1, 0), d) is an increasing
function of N , and it follows from Lemmas 5.2 and 5.3 that w((N − 1, 1, 0), d) is a decreasing
function of d.

5.4. Numerical results

Equation (4.12) allows us to approximate the sequences (zN)N≥2 numerically, and we do
the same for (z′

N)N≥2 and then for τ (5.4). In Figure 1 we plot the mean time T to fixation of
a deleterious mutation as a decreasing function of d (Theorem 5.2) for various values of b, δ,
and δ′.

For more biological analysis and numerical results, we refer the reader to [7].
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Figure 1: (a) The relationship between T , the mean time to fixation of a deleterious mutation, and the
population intrinsic death rate d as a function of selection and dominance: recessive mutations (δ = 0)
with δ′ = 0.1 (open circles) and δ′ = 0.2 (open diamonds), and additive mutations (δ = δ′/2) with
δ′ = 0.1 (filled circles) and δ′ = 0.2 (filled diamonds). Other demographic parameters are b = 10,
c = 0.1, and m = 1. (b) The relationship between the mean time to fixation of a deleterious mutation T

and the parameters b and d . Each curve corresponds to a fixed value of b. Other parameters are δ = 0.05,
δ′ = 0.1, c = 0.1, and m = 1.

Appendix A. Proof of Theorem 5.1

In this paper we consider a diploid population and, as seen in Theorem 3.1, the diploidy
generates interesting formulae for the fixation probability of a nonneutral allele. More
precisely, this fixation probability is a function of the initial genetic repartition in the population
(parameters k, m, and n) and cannot be reduced to a function of the initial numbers of alleles A

and a in the population, as for a haploid population. At the mutational time scale (Section 5), this
leads to mutation fixation rates that are different than those obtained in [2] for the haploid case.

The proof of Theorem 5.1 can however be seen as an extension of the proof of Theorem 3.1
of [2] to the cases where mutations occur during life and not at birth, and where no death can
occur when there are two individuals in the population. We now explain why those differences
do not hamper the proof of Theorem 3.1 of [2], which comprises three lemmas.

First lemma. Lemma 6.2 of [2] proves that there are no mutation accumulations when
parameter K goes to ∞. Using Proposition 2.2, the lemma and its proof also hold in our model.

Second lemma. The first part of Lemma 6.3 of [2] gives the limiting law of Kτ1 and of the
population size at time τ1 when K goes to ∞, where τ1 is the first mutation apparition time
for population ZK . Here the proof is similar but uses different rates: as long as t < τ1, if the
population is initially monomorphic with genotype x, the population size (NK

t )0<t<τ1 follows
a birth-and-death process with birth rate b(x, iδx)i and death rate d(x, iδx)i when NK

t = i,
and τ1 is the first point of an inhomogeneous Poisson point process with intensity (2μ/K)NK

t .
Then, for any bounded function f : N \ {1} → R,

E(f (NK

τ−
1
)1{t≥τ1/K}) = 2μ

∫ t

0
E

(
f (NK

Ks)N
K
Ks exp

(
−2μ/K

∫ Ks

0
NK

u du

)
ds

)

= 2μ

∫ t

0
E

(
f (N0

Ks)N
0
Ks exp

(
−2μ/K

∫ Ks

0
N0

udu

)
ds

)
,
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since the law of NK
t does not depend on K . The ergodic theorem finally gives

lim
K→∞ E

K(f (NK

τ−
1
)1{t≥τ1/K}) = E(Nf (N))

E(N)

∫ t

0
2μE(N)e−2μE(N)s ds,

where N is a random variable with law l defined by (5.1). The second part of Lemma 6.3 of
[2] gives supK>1 E

K
nδx

(N
p
τ1) < ∞. Here the proof needs to be slightly changed as the popula-

tion size does not reach 1 in our model. We then define Lt = ∫ t

0 1{N0
u=2} du and have

E
K
nδx

(Np
τ1

) ≤ 2μ

∫ ∞

0
E

(
N

p+1
Ks exp

(
−2μ

K
LKs

)
ds

)
.

We finally prove that there exist λ, λ′, C > 0 such that P(Lt ≤ λt) ≤ Ce−λ′t as in [2], by
defining si := inf{s ≥ ti−1 : N0

s = 2} and ti = inf{t ≥ si : N0
s = 3}.

Third lemma. The third lemma gives the behavior of ρ1, the first time where the population
becomes monomorphic, and V1, the genotype of individuals at time ρ1, if the population initially
contains two genotypes x and y. This lemma and the end of the proof of Theorem 5.1 are easily
generalized to our model.

Appendix B. Asymptotic behavior of (KN)N≥3

The asymptotic behavior of (KN)N≥3 is obtained by several bootstrapping steps whose
initial and central hypothesis is given by (4.3): ‖KN‖ < c/2 for all N ≥ 3. Since KN+1 =
DN+1(CN + KN)−1BN−1 for all N ≥ 4, we obtain

KN+1 = −b

2(N + 1)(N − 1)

d + cN

N

× 1

((b + d + c(N − 1))/N + KN
12)(b + d + c(N − 1) + KN

21) − KN
11K

N
22

×
(

k11 k12
k21 k22

)
,

where

k11 = N − 2

N
[b + d + c(N−1)+KN

21 −KN
11(2N2 − 3)],

k12 = N − 2

N

[
3KN

11 + (b + d + c(N − 1) + KN
21)(2N2 + 4N − 3)

N + 1

]
,

k21 = (N − 1)

[
(2N2 − 3)

(
b + d + c(N − 1)

N
+ KN

12

)
− KN

22

]

+ 3

N
[b + d + c(N−1) + KN

21 − KN
11(2N2 − 3)],

k22 = 3

N

[
3KN

11 + (b + d + c(N − 1) + KN
21)(2N2+ 4N − 3)

N + 1

]

− N − 1

N + 1

[
KN

22(2N2 +4N− 3) + 3

(
KN

12 + b + d + c(N − 1)

N

)]
.
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Now, from (4.3), we know that c + KN
12 does not get close to 0 when N is large enough. We

then easily obtain

KN ∼

⎛
⎜⎜⎝

− (c − 2NKN
11)b

2N2c

−b

N

−b − (6c − 2NKN
22)b

2N2c

⎞
⎟⎟⎠ as N → ∞, (B.1)

which gives

KN =

⎛
⎜⎜⎝

O

(
1

N

) −b

N
+ o

(
1

N

)

−b + o(1) O

(
1

N

)
⎞
⎟⎟⎠ as N → ∞,

and then, from (B.1) again,

KN =

⎛
⎜⎜⎝

O

(
1

N2

) −b

N
+ o

(
1

N

)

−b + o(1) O

(
1

N2

)
⎞
⎟⎟⎠ as N → ∞.

After some calculations, we finally obtain

−b

2(N + 1)(N − 1)

d + cN

N

× 1

((b + d + c(N − 1))/N + KN
12t)(b + d + c(N − 1) + KN

21) − KN
11K

N
22

= − b

2c

[
1

N3 + 2c − d

cN4

]
+ O

(
1

N5

)
and (

k11 k12
k21 k22

)
=
(

cN + O(1) 2cN2 + 2N(d − 2c) + O(1)

2N3c − 2N2(2c − d) + O(N) 6cN + O(1)

)
,

which gives the result.
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