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A SET-VALUED GENERALIZATION 
OF FAN'S BEST APPROXIMATION THEOREM 

XIE PING DING AND KOK-KEONG TAN 

ABSTRACT. Let (E, T) be a Hausdorff topological vector space whose topological 
dual separates points of E, X be a non-empty weakly compact convex subset of E and 
W be the relative weak topology on X. If F: (X, W) —* 2 ( £ , r ) is continuous (respec­
tively, upper semi-continuous if £ is locally convex), approximation and fixed point the­
orems are obtained which generalize the corresponding results of Fan, Park, Reich and 
Sehgal-Singh-Smithson (respectively, Ha, Reich, Park, Browder and Fan) in several 
aspects. 

1. Introduction. Let X be a non-empty set; we shall denote by 2X the family of all 
non-empty subsets of X and by !F(X) the family of all non-empty finite subsets of X. If X is 
a topological space with topology T, we shall use (X, T) and 2 ( x r ) to denote the sets X and 
2X respectively with emphasis on the fact that X is equipped with the topology T. If (X, T) 
is a topological space and A is a subset of X, we shall denote by int(A) and dA the interior 
of A in (X, T) and the boundary of A in (X, T) respectively and we shall use the terms 
"A is T-open (respectively, T-closed, T-compact)" and "A is open (respectively, closed, 
compact) in (X, 7)" interchangeably. Let (X, T) and (Y, S) be topological spaces; a set-
valued map/: (X, T) —• 2(y,lS) is said to be (i) upper semi-continuous (respectively, lower 
semi-continuous) at XQ G X if for each 5-open set G in F with/(xo) C G (respectively, 
/(JCO) H G 7̂  0), there exists a T-open neighborhood U of xQ in X such that/Qc) C G 
(respectively,/(x)PlG ^ 0)foralljc G U; (ii) upper semi-continuous (respectively, lower 
semi-continuous) iff is upper semi-continuous (respectively, lower semi-continuous) at 
each point of X; (iii) continuous if / is both upper semi-continuous and lower semi-
continuous. Let E be a topological vector space with topology T. We shall denote by 
E* = (£, T)* the topological dual of (E,T). E* is said to separate points of E if for each 
x G E with x ^ 0, there exists a n / G E* such that/(x) ^ 0. We shall denote by 
W — W(E, E*) the weak topology of E and by î7 = (P(E, T) the family of all continuous 
semi-norms on (£, T). If X is a non-empty subset of E, we shall denote by co(X) the 
convex hull of X and by (X, T) and (X, W) the set X equipped with the relative topology 
of T to X and the relative topology of W to X respectively. We shall denote by R the set 
of all real numbers and if z is a complex number, we shall denote by Re z the real part of 
z. 

The following is a well-known result of Fan [5, Theorem 1]: 
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THEOREM A. Let Xbea non-empty compact convex set in a locally convex Hausdorff 
topological vector space E. Letf: X —• E be a continuous mapping. Then either f has a 
fixed point in X, or there exist a point y$ £ X and a continuous semi-norm p on E such 
that 

0 < p(yo -f(yo)) = min{p(x -f(y0)) : x G l } . 

Since then many authors have generalized the above result to set-valued maps or have 
weakened the compactness condition therein, e.g. see [6, 7, 8, 9, 10, 14, 15, 16, 19, 20, 
21]. 

Recently, Sehgal, Singh and Smithson [22] generalized Fan's result to a continuous 
map / : (X, W) —-> (E,T) with a weak compactness condition where (£, T) is a locally 
convex Hausdorff topological vector space and X is a non-empty convex subset of E. Also 
Park [12] generalized Fan's result to a continuous set-valued map/: X—• 2E where X is 
a compact convex subset of a Hausdorff topological vector space E whose topological 
dual E* separates points of E. 

In this paper, we shall first improve, generalize and unify those results of Park in [12] 
and Sehgal, Singh and Smithson in [22] to continuous set-valued maps/: (X, W) —+ 2^E,T) 

where (£, T) is a Hausdorff topological vector space whose topological dual E* separates 
points of E and X is a non-empty convex subset of E and thus generalize Fan's result in 
many aspects. Next, we improve and generalize those results of Ha in [7] and Reich in 
[15, 16] to upper semi-continuous set-valued maps/: (X, W) —> 2{E,T) where (E,T) is 
a locally convex Hausdorff topological vector space and X is a nonempty W-compact 
convex subset of E. 

2. Preliminaries. Let (E, T) be a topological vector space; for each non-empty sub­
set A of E and for each p G fP, let 

dp(x9A) = inf{p(x — a) : a G A} 

for each x G E. Then we have the following simple fact which can be easily proved. 

LEMMA 1. Let (£, T)be a topological vector space, Abe a non-empty compact con­
vex subset of E and p G (2. Then the function x —• dp(x,A) is lower semi-continuous and 
convex. 

We shall need the following result of Aubin [1, Theorem 2.5.1, p. 67]: 

LEMMA 2. Let X and Y be topological spaces. Suppose that h: X x Y —>R is lower 
semi-continuous andf: X —• 2Y is upper semi-continuous at xo G X such thatf(xo) is 
compact. Then the function x —• inf'{h(x,y) : y G/(x)} is lower semi-continuous at XQ. 

We shall also need the following result of Aubin [1, Theorem 2.5.2, p. 69]: 
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LEMMA 3. Let X and Y be topological spaces. Suppose that h: X x Y —> R is upper 
semi-continuous andf: X —> 2Y is lower semi-continuous at XQ G X. Then the function 
x —> inf{/z(x, y) : y £/(*)} is upper semi-continuous at XQ. 

LEMMA 4. Let (£, T) be a Hausdorff topological vector space whose topological 
dual E* separates points ofE. Let X be a non-empty subset ofE, p G 2* andf: (X, W) —> 
2^E,T) be upper semi-continuous such that f(x) is T-compact for each x G X. Then the 
function V: (X, W) —+ R defined by 

V(x) = dp(xj(xj) for x G X 

/s /ower semi-continuous, i.e. V:X —>R is weakly lower semi-continuous. 

PROOF. Define h: (X, W)x(E,T)->R by 

/I(JC, y) = p{x - y) for (JC, y) e X x E. 

For each r G R, let A(r) = {(je,y) G X x £ : /Î(JC, j) < r}. Let {(xa,ya)}aeA be a net in 
A(r) and (jc,;y) G X x £ such that ;ca —> JC in W-topology and ya -^ y in T-topology. By 
the Corollary of Hahn-Banach Theorem (e.g. see [17, Corollary 2, p. 29]), there exists 
x* G £* such thatX*(JC—y) = p(jc—y) and \x*(z)\ < p(z) for all z G E. Since jca—_ya —> JC—y 
in W-topology, 

/*(*, y) = p(x -y) = x*(x- y) 

— Re x* (JC — y) 

= limRejc*(xa — ya) 
a 

< liminf \x*(xa — ya)\ 
a 

< lim inf p(xa — ya) < r 
a 

so that (x,y) G A(r). Thus A(r) is closed in (X,W) x (E,T). Thus /i is lower semi-
continuous on (X, W) x (£, 7). By Lemma 2, the function JC —> inf {h(x, y) : y £/(*)} = 
dp(x,f(x)\ is lower semi-continuous on (X, W). • 

We shall need the following useful result: 

LEMMA 5. Let Ebea Hausdorff topological vector space whose topological dual E* 
separates the points ofE. Let A be a non-empty compact convex subset ofE andx G E. 
If for eachf G E*, infaG4 | Re/(;t — a)\ = 0, then x G A. In particular, ifdp(x,A) = Ofor 
each continuous semi-norm p on E, then x G A. 

PROOF. Suppose x $ A. Then for each a G A, as E* separates the points of E, there 
exists fa G E* such that/a(jc) ^fa(a). Let Oa and Ua be disjoint open convex sets contain­
i n g / ^ ) and/a(jc) respectively. Then f~l(Oa) mdf~{(Ua) are disjoint open convex sets 
in E containing a and x respectively. Since A is compact, there exist a\,...,an G A such 
that A C \Ji=\f^l(Oai). Let U = H/Li/aT1^») ' t n e n ^ *s a n °P e n convex set containing 
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x such that UHA = 0. By Theorem 3.4 of Rudin [18, p. 58], there exist/ G ET and 7 G R 
such that Re/(jt) < 7 < Re/(a) for all « G A. It follows that 

inf | Re/(;t - a)\ > 7 - Re/(*) > 0, 

which is a contradiction. Thus we must have x G A. The last assertion follows from the 
fact that for each/ G ET, the function/?: £ - 4 R defined by p(y) = | Re/(y)| for all y G £ 
is a continuous semi-norm on E. m 

We emphasize here that in the above lemma, E is not assumed to be locally convex. 
We also remark here that even when E is Hausdorff, the conclusion of Lemma 5 is false if 
ET does not separate points of E; e.g., the completely metrizable topological vetor space 
LP (where 0 < p < 1) contains no open convex sets other than 0 and LP (see, e.g. 
[18, p. 35]) so that LP has no non-zero continuous linear functionals and no non-zero 
continuous semi-norms. 

LEMMA 6. Let (E, T) be a Hausdorff topological vector space whose topological 
dual ET separates points ofE, X be a non-empty W-compact subset ofE andf: (X, W) —-* 
2^E,T) be upper semi-continuous such that for each x G X, f(x) is T-compact and convex. 
If for each p G (P, there exists xp G Xsuch that dp(xp,f(xp)) = 0, then f has a fixed point 
inX. 

PROOF. For each p G îP, the set 

A(p)= {xeX:dp(x,f(xj) =0} 

is non-empty as xp G A(p) and also W-closed as x —• dp(x,f(x)) is W-lower semi-
continuous by Lemma 4. If {p\,... ,pn} is an finite subset of &, then TPi=\ Pi G ¥ and 
A(E?=1 A ) C D?=I Mpd. Thus {A(p) : p G <P} has the finite intersection property. By 
weak compactness of X, Ç\pefpA{p) ^ 0. Take any û G f]pefpA(p), then dp{u,f(û)) = 0 
for all p G (P. Since/(w) is T-compact and convex, by Lemma 5, û G /(w). • 

Let (E, T) be a topological vector space and X be a non-empty subset of £. It is clear 
that if/: (X, W) —+ 2(£7^ is upper semi-continuous (respectively, lower semi-continuous, 
continuous), then/: (X, F) —• 2 (£ '^ is upper semi-continuous (respectively, lower semi-
continuous, continuous). The following result shows that the converse also holds under 
additional conditions on E and on X: 

LEMMA 7. Let (E, T) be a Hausdorff topological vector space whose topological 
dual ET separates points ofE and X be a non-empty T-compact subset ofE. Iff: (X, T) —> 
2(£,r) js Upper semi-continuous (respectively, lower semi-continuous, continuous), then 
f: (X, W) —> 2^E,r> is upper semi-continuous (respectively, lower semi-continuous, con­
tinuous). 

PROOF. Suppose / : (X, T) —• 2^E,T) is upper semi-continuous (respectively, lower 
semi-continuous). Let U be any 7-open set in E. Then the set A — {x G X : f(x) <£_ 
U} (respectively, A = {x G X : f(x) H U = 0}) is T-closed in X and hence A is T-
compact since X is T-compact. Thus A is W-compact. Since ET separates points of E, W 
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is Hausdorff so that A is W-closed. Therefore/: (X, W) —> 2(E,T) is upper semi-continuous 
(respectively, lower semi-continuous). • 

The following general minimax inequality due to Ding and Tan [3, Theorem 1] will 
be needed to prove our main result. For completeness we shall provide its proof. 

LEMMA 8. Let X be a non-empty convex subset of a topological vector space and 
g: X x X —» R U {—oo, oo} be such that 

(i) for each fixed x G X, g(x,y) is a lower semi-continuous function of y on C for 
each non-empty compact subset C ofX; 

(ii) for each A G ^F(X) and for each y G co(A), m i n ^ g(x,y) < 0; 
(Hi) there exist a non-empty compact convex subset Xo ofX and a non-empty compact 

subset KofX such that for each y G X\Kt there is an x G co(Xo U {y}) with 

g(x,y)>o. 

Then there exists y G K such that g(x, y) < Ofor all x G X. 

PROOF. For each x G X, let 

K(x) = {yeK:g(x,y)<0}. 

By (i), K(x) is closed in K for each x G X. We claim that the family {K(x) : x G X} has 
the finite intersection property. For any fixed {x\9...,xn} G !F(x), let 

D = co(Xo U {x\,... ,xn}), 

then D is a compact convex subset of X. Define G: D —> 2D by 

G(x) = {y G D : g(x,y) < 0}. 

By hypotheses, it is easy to check that all hypotheses of Fan's Lemma 1 [4] (note that 
"Hausdorff" was never needed in its proof) are satisfied. Thus P\x£X G(x) ^ 0; that is 
there exists y G D such that g(x,y) < 0 for all x G D. By (iii), we must have y G AT so 
that y G n?=i K(xù- This shows that {K(x) : x G X} has the finite intersection property 
so that by compactness of AT, f]xeX K(x) ^ 0. Take any y G f]xeX K(x), then y G K and 
g(x,y) <0 fo ra l lxGX. • 

The following result is Theorem 1 of Ha [7]. 

LEMMA 9. Let E, F be Hausdorff topological vector spaces, X C E, Y C F be 
nonempty convex subsets, Y be compact. Let f:X —> 2Y be an upper semicontinuous 
map with nonempty closed and convex values and g:Xx Y —> R be such that 

(a) for each x G X, g(x,y) is a lower semi-continuous function of y in Y; 
(b) for each y G Y, g(x,y) is a quasi-concave function ofx in X. 

Then 

inf sup g(x,y) < sup g(x,u). 
yeY xex uef(x) 

xex 
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3. Approximation of continuous maps. In this section, we shall prove several 
approximation theorems and fixed point theorems for continuous set-valued maps in a 
Hausdorff topological vector space whose topological dual separates points. 

Let X be a non-empty subset of a topological vector space (£, T). For each x e X, the 
inward set and outward set of X at x, denoted by Ix(x) and Ox(x) respectively, are defined 
by 

h(x) = {x + r(y -x) : y G Zand r > 0}, 

Ox(x) = {x - r{y - x) : y G X and r > 0}. 

The closures of /^(i) and Ox(x) in (£, 7), denoted by Ix(x) and #x(x) respectively, are 
called the weakly inward set and the weakly outward set of X at x respectively. We shall 
use Q(x) to denote either Ix(x) or Ox(x). 

THEOREM 1. Let (E, T)he a Hausdorff topological vector space whose topological 
dual E* separates points ofE, Xbea non-empty convex subset ofE andf: (X, W) —> 2^E,T) 

be continuous on Cfor each non-empty W-compact subset C ofX such that for each x G 
X, f(x) is T-compact and convex. Let Xo be a non-empty W-compact and convex subset 
ofX and K be a non-empty W-compact subset ofX. Ifp G fP has the following property: 
"for each y G X \ K, there exists x G co(Xo U {v}) such that dp(x,f(y)) < dp(y,f(y)) ", 
then there exists u G K such that 

dp(u,f(u)) = min{dp(x,f(u)^ : x G /*(«)}. 

Moreover, u G K Pi dX whenever dp(u,f(u)j > 0. 

PROOF. Define g: X x X —* R by 

8(x,y) = dp(y,f(yj)-dp(x,f(y)). 

Then we have 
(a) For each fixed x G X, by Lemma 3, y —» dp(x,f(y)^J is W-upper semi-continuous 

on C for each non-empty W-compact subset C of X (where h(t, u) — p(x — u) for all 
(r, u) G X x X in applying Lemma 3) so that together with Lemma 4, g(x, y) is a W-lower 
semi-continuous function of y on C for each non-empty W-compact subset C of X. 

(b) For each A G ^F(X) and for each y G co(A), we must have m i n ^ g(x, y) < 0; if 
this were not true, then there exist A = {JCI, . . . ,xn} G ^F(X) and v = £"=1 À/jc, G co(A) 
with Aj , . . . , Xn > 0 and £?=1 A, = 1 such that 

(*) g(xi9y) = dp(y,f(y)) - dp(xi9f(yj) > 0 for all i = 1, . . . , n. 

Since/(y) is T-compact, for each / = ! , . . . , « , there exists U( G/(y) such that/7(jc/ — «/) = 
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dp{xi,f(y)\ Let u — EîLi A,w,; then u G/(j) since/(y) is also convex. It follows that 

dP{y,f(yj)<p(y-u) 

= PlYl ^i(Xi - Ui)\ 

n 

< J2 ^iP(xi - ui) 

= i:\idp{xhf(y)) 
i—\ 

<dp(yj(y)) by (*) 

which is impossible. 
(c) By hypothesis, there exist a non-empty W-compact and convex subset Xo of X 

and a non-empty W-compact subset K of X such that for each y G X \ K, there exists 
x G co(X0 U {y}) with g(x,y) > 0. 

Now equip E with the weak topology W, then all hypotheses of Lemma 8 are satisfied 
so that there exists u G K such that g(x, u) < 0 for all x G X; that is, 

(1) dp(u,f(uj) < dp(x,f(u)) for all x G X. 

Now fix an arbitrary v G /x(w) \ X; as X is convex, there exist z G X and r > 1 such that 
v — u-\-r{z — u). Suppose that 

(2) dp(v,f(u)) < dp(u,m). 

Since/(w) is T-compact, there exist z\,Zi £ / (") such thatp(u — z\) = dp(uj(u)) and 
p(v — zi) = dp(y,f(u)). Let z = (1 — l/r)zi + (l/r)z2 , then z G/(w) since/(w) is also 
convex. Since z — (1 — 1 jf)u + (1 /r)v G X, we have 

d P (z , / (K))<p(z-z) 

= p ( ( l - l / r ) ( u - z 1 ) + ( l / r ) (v -z 2 ) ) 

< ( l - l / r ) p ( i i - z i ) + ( l / r )p (v -z 2 ) 

= (1 - l/r)dp(uj(u)) + (\/r)dp(vJ(u)) 

<dp(u,f(u)) by (2) 

which contradicts (1). Thus we must have 

dp{u,f(u)) < dp(x,f{u)) for all x G h{u)-

By the continuity of/?, we have 

dp(u,f(u)) < dp(x,f(u)} for all x G /x(w). 

Hence dp(u,f(u)) = minjd^jcJXw)) : JC G 7x(w)}. 
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Now assume dp(u,f{u)) > 0, then/(«)PiX = 0. Since/(w) is T-compact, there exists 
û G/(w) such thatp(u — u) — dp(uj(u)). Note that û $ X. If u G intX, then there exists 
a real number À with 0 < A < 1 such that z = Aw + (1 — X)û G X. It follows that 

0 <p(u — u) = dp(u,f(ufj 

<dp(zj(u))<p(z-û) 

— Xp(u — u) < piu — u) 

which is impossible. Thus u $ intX so that u G K D 3X. This completes the proof. • 

THEOREM 2. Let (£, 7), £*, X, / , Z0 am/ K be given as in Theorem 1 such that for 
eachp G fP, the following property holds: for each y G X\̂ T, there exists x G co(XoU{y}) 
5-i/c/z r t o dp(x,f(y)^J < dp(yj(y)}. Then either (a)f has a fixed point in K or (b) there 
existp G (Pandu G KDdXsuch thatO < dp(u,f(u)} = niinjd^ (*,/(«)) : x G h{u)}-

PROOF. By Theorem 1 and Lemma 6, the conclusion follows. • 
Theorem 1 generalizes Theorem 1 of Sehgal, Singh and Smithson [22] in several 

ways: (1) / is multi-valued; (2) continuity off is weakened; (3) the space E need not be 
locally convex; (4) our non-compactness condition is weaker than that of (1) in [22]; (5) 
our conclusion is strengthened. In view of Lemma 7, Theorem 2 generalizes Fan's result 
in many ways. 

COROLLARY 1. Let (E, T) be a Hausdorff topological vector space whose topolog­
ical dual E* separates points ofE, X be a non-empty weakly compact convex subset of 
E andf: (X, W) —• 2^E,T) be continuous such that for each x G X,f(x) is T-compact and 
convex. Then either (a)f has a fixed point in X or (b) there exist p G (P and u G dX such 
that 

0 < dp{u,f{u)) = inin{dp(*,/(«)) '• x £ £?(")}• 

PROOF. By taking X$ = K = X, Theorem 2 proves the case when Q(u) = Ix(u). 
Next for each x e X, let g(x) — 2x —f(x); then g: (X, W) —• 2{E,T) is also continuous 

{e.g. see Propositions 1 and 2 in [23]) such that for each x G X, g(x) is T-compact and 
convex. Again by applying Theorem 2 with Xo — K = X, either (a) g has a fixed point 
in X and hence/ has a fixed point in X a s / and g have the same fixed points in X or (b) 
there exist p G fP and v G dX such that 

0 < dp(v,g(vj) = min{dp(x,g(v)) : x G 7*(v)}. 

For each z G Ox(v), let z' = 2v — z, then z' G /^(v) so that 

dp(v,f(v))=dp(v,g(v)) 

<dp(z\g(v)) 

= dp(z,f(vj) 
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so that by continuity of/?, dp(y,f(v)) < dp(zj(v)) for all z G Ox(v). Thus 0 < 
dP(v,f(v)^) = min{^(z,/(v)) : z G #x(v)} which proves the case when Q(v) = Ox(v). 
This completes the proof. • 

In view of Lemma 7, Corollary 1 generalizes Theorem 3 of Park [12] as follows: 
(1) the set X is weakly compact instead of compact; (2) the conclusion is strengthened: 
u G 3X instead of u G X. Corollary 1 also generalizes Lemma 1.6 of Reich [14] in several 
aspects. 

THEOREM 3. Under the same hypotheses as in Theorem 2, if for each x G KC\ dX, 
there exists a real number X such that 0 < A < 1 and yXx + (1 — A )/(.*)) n lx(x) i1 0, 
thenf has a fixed point in K. 

PROOF. Suppose/ has no fixed point in K. Then by Theorem 2, there exist p G (P 
and u G K n dX such that 

0 < dp(u,f(u)} — nMi{dp(*,/(M)) : x G /x(w)}. 

Since u G K Pi 3X, by assumption, there exists À with 0 < A < 1 and v G f(u) such that 
z = Aw + (1 — À)v G /x(w). Thus 

o<dp(u,f(uj)<dp(z,m) 
< Xdp(u,f(u)\ (by Lemma 1) 

< dp(u,f(u)) 

which is a contradiction. Therefore/ must have a fixed point in K. m 

COROLLARY 2. Under the same hypotheses as in Corollary 1, if for each x G dX, 
there exists a real number X such that 0 < A < 1 and (Xx + (1 — X)f(x)) D /x(X) 7̂  0» 
thenf has a fixed point in X. 

PROOF. By applying Theorem 3 with Xo = K — X, the result follows. • 

4. Approximation of upper semi-continuous maps. In this section, we shall 
prove some approximation theorems for upper semi-continuous set-valued maps in lo­
cally convex topological vector spaces. 

THEOREM 4. Let (E, T) be a locally convex Hausdorff topological vector space and 
X be a non-empty W-compact convex subset ofE. Suppose thatf: (X, W) —> 2 (£ , r ) is an 
upper semi-continuous map with non-empty T-compact convex values. Then either f has 
a fixed point in X or there exist Xo G X, u$ G f(xçy) and a weakly continuous semi-norm 
p onE such that 

0 < p(x0 — wo) < p(x — uo)for all x G Ix(*o) 

(respectively, 0 < p(xo — «o) ^ p(x — wo) for all x G OX(XQ)). 

PROOF. Suppose that/ has no fixed point in X, then for each x G X, 6 $ x —f(x) and 
x —f(x) is a T-compact convex subset of E. By Theorem 3.4 of Rudin [18, p. 58], there 
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exist Sx > 0 and a linear functional/?* G E* such that 

dp(x,f(x)) = inf \px(x-u)\ > 6X. 
x y uef(x) 

By Lemma 4, there exists a ^-neighborhood Af(x) of x in X such that 

dPx(z,f(zj) > Sx for all z G Afar). 

Since X = UjcexM*) a nd ^ *s ^-compact, there exists {x\,...,xn} C X such that 
X = \JI=lN(xi). Let/7 = max{|/?x.| : i = 1,2,.. ./i} and 5 = min{^ : 1 < * < n}. 
Then /? is a weakly continuous semi-norm on E. For each x G X, there exists jt/0 such that 
x G N(xi0); it follows that for each w Ef(x), 

p(x -u)= max I/** (* - w)| > \pXo(x - u)\ > dp (x,f(xj) 
\<i<n ° v ' 

so that 

^ ( * , / t o ) = inf{M* - u) ' u €/(*)} > df% (JC,/(JC)) > SXIQ > 6. 

Hence we have 
dp(x,f(xj) ><5foralljtGX. 

Now define the function g: (X, W) x (£, 7) -* R by 

gO, y) = minp(w - y) - p(x - y). 
ueX 

It is easy to see that g: (X, W) x (E,T) —> R is continuous. Thus the condition (a) of 
Lemma 9 is satisfied. Clearly the condition (b) of Lemma 9 is also satisfied. By Corol­
lary 9.6 in [11], the image/(X) = \Jxexf(x) ° V *s ̂ -compact. As the assumptions on X, 
f and the graph Gr(f) off remain unchanged in the completion of £, without loss of gen­
erality we may assume that E is complete. Let Y = œ(/(X)), then Y C E is 7-compact 
convex. By applying Lemma 9, we have 

inf sup g(x,y) < sup g(x, u). 
yeY xex uef(x) 

xex 
Since for each y G F, 

supg(x,y) = sup minp{u — y) — p(x — y)\= minp(u —y)— minp(x — y) = 0, 
xex xEXtuex J ueX xex 

we have 
sup g(x, u) > 0. 

xex 

Since g: (X, W) x (£, 7) —-> R is continuous and the graph Gr(f) off is compact in (X, W) x 

(£, 7), there exists (xo, wo) G Gr(f) such that 

g(xo, w0) = rmnp(x - u0) - p(x0 - m) > 0. 
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It follows that wo £ /(*o) ana* 

(*) <5 < dp(xo,/Uo)) < /?Uo — wo) < p(x — wo) for all x eX. 

For x G /x(*o) \ X, there exist v G X and r > 1 such that x — xo + r(v — JCO). Suppose that 
/?(JC — wo) < p(xo — wo). Since v = -rx + (1 — )̂JCO G X, we have by (*) 

/?(x0 -wo) <p(v — w0) = pi - * + U Jxo - w0 

< -p(x - w0) + ( 1 )p(x0 - w0) < p(x0 - w0) 

which is a contradiction. Therefore we must have 

P(XQ - w0) < p(x - w0) for all x G /xOo)-

Since /? is continuous, we have 

0 < P(XQ — wo) < p(x — wo) for all x G /x(*o)-

For the outward case, define the map/': (X, W) —> 2 ( £ r ) by 

/'(JC) = 2x —f(x) for each x £ l 

Then/' is an upper semi-continuous map (e.g. see [23, Proposition 2.2]) with non-empty 
T-compact convex values. Note that x is a fixed point of/' if and only if x is a fixed point 
of/. Therefore either/' and hence/ has a fixed point in X or, by the above argument, 
there exist x'0 G X, WQ G f'(x'0) and a weakly continuous semi-norm p' on £ such that 

0 < pf(x'0 - w(>) < p'(x' - u'0) for all x' G /XOQ). 

For each fixed x G OXOCQ), let x' = 2XQ — x and wo = 2XQ — u'0, then wo G /(JCQ) and 
JC' G 7x(*o) so that 

0 < //(*(, - wo) = p'(i*o - 4 ) < /A*' - Mo) = Pf(x - wo). 

By continuity of/?', 

0 < p'(xfQ — wo) < p'(xo — wo) for all x G 0x(*o). • 

Theorem 4 improves and generalizes Theorem 3 of Ha [7], Theorem 3 of Park [13], 
which in turn generalizes Corollaries 1 and 1' of Browder [2], Theorem 3.1 of Reich [15] 
and Theorem 1 of Fan [5]. 

As an equivalent version of Theorem 4, we have 

THEOREM 5. Let (£, T)be a locally convex Hausdorff topological vector space and 
X be a non-empty W-compact convex subset ofE. Suppose thatf: (X, W) —> 2 ( £ r ) is an 
upper semi-continuous map with non-empty T-compact convex values. If for each weakly 
continuous semi-normp on E, each x G X with dp[x,f(x)\ > 0 and each u G/(x), 

dp(u,/xW) < p(x — u) (respectively, dp(u, OxU)) < p(x — u)) 

thenf has a fixed point in X. 

Theorem 5 improves and generalizes Theorem 2 of Reich [16]. 
As a direct consequence of Theorem 4, we have the following result: 
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THEOREM 6. Let (£, T) be a locally convex Hausdorff topological vector space, X 
be a non-empty W-compact convex subset ofE andf: (X, W) —> 2^E,T) be an upper semi-
continuous map with non-empty T-compact convex values. Suppose that the following 
condition holds: 

(a) for each x G d(E,w)X\f(x) and u G f(x), there exists a number X (real or complex, 
depending on whether the vector space E is real or complex) with |A| < 1 such 
that Xx + (1 — X)u G lx(x) (respectively, Xx + (1 — X)u G Ox(x)). 

Thenf has a fixed point. (Here, d(E,w)X denotes the boundary ofX in (E, W).) 

PROOF. Suppose/ has no fixed point. By Theorem 4, there exist xo G X, u$ G f(xo) 
and a weakly continuous semi-norm p on E such that 

0 < p(xo — UQ) < p(x — wo) for all x G Ix(xo) 

(respectively, 0 < p(xo — wo) < p(x — «o) for all x G OX(XQ)). 

CASE 1. If xo G i n ^ ^ X , then Ix(xo) = E (respectively, Ox(xo) — E) and hence 
x = ^xo + \UQ G E — Ix(xo) (respectively, x = ^xo + ^uo G OxQto)) so that 

0 < p(x0- UQ) < p(x - W0) = ~p(x0 - Wo) 

which is a contradiction. 

CASE 2. If xo G d(E,w)X, then xo G d(E,w)X \f(xo) so that by (a), there exists A with 
|A| < 1 suchthatjc = AJCO+(1—A)wo G IX(XQ) (respectively,x — Axo+(l— A)wo G Ox(xo)). 
It follows that 

0 <p(x0 - w0) < p(x - w0) < \\\P(XQ - w0) 

which is again a contradiction. 
Therefore/ must have a fixed point. • 
Theorem 6 improves and generalizes Theorem 4 of Ha [7], Theorem 3.1 of Reich [15], 

Theorem 4 of Park [13] and Theorem 3 of Fan [5]. 
Finally, the authors would like to thank the referee for suggesting the work in Sec­

tion 4. 
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