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A SET-VALUED GENERALIZATION
OF FAN’S BEST APPROXIMATION THEOREM

XIE PING DING AND KOK-KEONG TAN

ABSTRACT.  Let (E, T) be a Hausdorff topological vector space whose topological
dual separates points of E, X be a non-empty weakly compact convex subset of E and
W be the relative weak topology on X. If F: (X, W) — 2ED s continuous (respec-
tively, upper semi-continuous if E is locally convex), approximation and fixed point the-
orems are obtained which generalize the corresponding results of Fan, Park, Reich and
Sehgal-Singh-Smithson (respectively, Ha, Reich, Park, Browder and Fan) in several
aspects.

1. Introduction. Let X be a non-empty set; we shall denote by 2% the family of all
non-empty subsets of X and by ¥ (X) the family of all non-empty finite subsets of X. If X is
a topological space with topology T, we shall use (X, T) and 2X:D to denote the sets X and
2X respectively with emphasis on the fact that X is equipped with the topology 7. If (X, T)
is a topological space and A is a subset of X, we shall denote by int(A) and dA the interior
of A in (X, T) and the boundary of A in (X, T) respectively and we shall use the terms
“A is T-open (respectively, T-closed, T-compact)” and “A is open (respectively, closed,
compact) in (X, T)” interchangeably. Let (X, 7) and (Y, S) be topological spaces; a set-
valued map f: (X, T) — 2" is said to be (i) upper semi-continuous (respectively, lower
semi-continuous) at xo € X if for each S-open set G in Y with f(xp) C G (respectively,
f(x0) NG # ), there exists a T-open neighborhood U of xy in X such that f(x) C G
(respectively, f(x)NG # 0) for all x € U; (ii) upper semi-continuous (respectively, lower
semi-continuous) if f is upper semi-continuous (respectively, lower semi-continuous) at
each point of X; (iii) continuous if f is both upper semi-continuous and lower semi-
continuous. Let E be a topological vector space with topology 7. We shall denote by
E* = (E, T)* the topological dual of (E, T). E* is said to separate points of E if for each
x € E withx # 0, there exists an f € E* such that f(x) # 0. We shall denote by
W = W(E, E*) the weak topology of E and by P = P(E, T) the family of all continuous
semi-norms on (E, T). If X is a non-empty subset of E, we shall denote by co(X) the
convex hull of X and by (X, T) and (X, W) the set X equipped with the relative topology
of T to X and the relative topology of W to X respectively. We shall denote by R the set
of all real numbers and if z is a complex number, we shall denote by Re 7 the real part of
Z.

The following is a well-known result of Fan [5, Theorem 1]:
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THEOREM A. Let X be a non-empty compact convex set in a locally convex Hausdorff
topological vector space E. Let f: X — E be a continuous mapping. Then either f has a
fixed point in X, or there exist a point yy € X and a continuous semi-norm p on E such
that

0 < p(yo —fG0)) = min{p(x —f()) : x € X}.

Since then many authors have generalized the above result to set-valued maps or have
weakened the compactness condition therein, e.g. see [6, 7, 8,9, 10, 14, 15, 16, 19, 20,
21].

Recently, Sehgal, Singh and Smithson [22] generalized Fan’s result to a continuous
map f: (X, W) — (E,T) with a weak compactness condition where (E, T) is a locally
convex Hausdorff topological vector space and X is a non-empty convex subset of E. Also
Park [12] generalized Fan’s result to a continuous set-valued map f: X — 2 where X is
a compact convex subset of a Hausdorff topological vector space E whose topological
dual E* separates points of E.

In this paper, we shall first improve, generalize and unify those results of Park in [12]
and Sehgal, Singh and Smithson in [22] to continuous set-valued maps f: (X, W) — 2&7)
where (E, T) is a Hausdorff topological vector space whose topological dual E* separates
points of E and X is a non-empty convex subset of E and thus generalize Fan’s result in
many aspects. Next, we improve and generalize those results of Ha in [7] and Reich in
[15, 16] to upper semi-continuous set-valued maps f: (X, W) — 27D where (E, T) is
a locally convex Hausdorff topological vector space and X is a nonempty W-compact
convex subset of E.

2. Preliminaries. Let (E, T) be a topological vector space; for each non-empty sub-
set A of E and for each p € P, let

dp(x,A) = inf{p(x —a) : a € A}

for each x € E. Then we have the following simple fact which can be easily proved.

LEMMA 1. Let (E,T) be a topological vector space, A be a non-empty compact con-
vex subset of E and p € P. Then the function x — dy(x, A) is lower semi-continuous and
convex.

We shall need the following result of Aubin [1, Theorem 2.5.1, p. 67]:

LEMMA 2. Let X and Y be topological spaces. Suppose that h: X x Y — R is lower
semi-continuous and f: X — 2V is upper semi-continuous at xo € X such that f(xo) is
compact. Then the function x — inf{h(x,y) : y € f(x)} is lower semi-continuous at xy.

We shall also need the following result of Aubin [1, Theorem 2.5.2, p. 69]:
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LEMMA 3. Let X and Y be topological spaces. Suppose that h: X X Y — R is upper
semi-continuous and f: X — 2Y is lower semi-continuous at xo € X. Then the function
x— inf{h(x,y):y €f (x)} is upper semi-continuous at x.

LEMMA 4. Let (E,T) be a Hausdorff topological vector space whose topological
dual E* separates points of E. Let X be a non-empty subset of E, p € P and f: (X, W) —
2ED) be upper semi-continuous such that f(x) is T-compact for each x € X. Then the
function V: (X, W) — R defined by

Vix) = d,,(x,f(x)) forxe X

is lower semi-continuous, i.e. V: X — R is weakly lower semi-continuous.

PROOF. Define h: (X, W) x (E,T) — R by
h(x,y) = p(x —y) for (x,y) € X X E.

For each r € R, let A(r) = {(x,y) € X X E : h(x,y) < r}. Let {(Xa, ya)}aca be a net in
A(r) and (x,y) € X X E such that x, — x in W-topology and y, — y in T-topology. By
the Corollary of Hahn-Banach Theorem (e.g. see [17, Corollary 2, p. 29]), there exists
x* € E* such thatx*(x—y) = p(x—y) and |x*(z)| < p(z) forall z € E. Since xo—yy — x—y
in W-topology,
h(x,y) = p(x —y) = X' (x — y)
=Rex"(x—y)

= limRex*(xy — Yo)
[0
< liminf [x*(xq — ya)|
a

<liminfp(xy —yo) <r

so that (x,y) € A(r). Thus A(r) is closed in (X, W) x (E,T). Thus h is lower semi-

continuous on (X, W) x (E, T). By Lemma 2, the function x — inf{h(x,y) : y € f(x)} =

dp (x, f (x)) is lower semi-continuous on (X, W). ]
We shall need the following useful result:

LEMMAS. Let E be a Hausdorff topological vector space whose topological dual E*
separates the points of E. Let A be a non-empty compact convex subset of E and x € E.
If for each f € E*, inf,eca | Ref(x —a)| = 0, then x € A. In particular, if d,(x,A) = 0 for
each continuous semi-norm p on E, then x € A.

PROOF.  Suppose x & A. Then for each a € A, as E* separates the points of E, there
exists f, € E* such that f,(x) # f,(a). Let O, and U, be disjoint open convex sets contain-
ing f,(a) and f,(x) respectively. Then fu"(Oa) and f,; WU,) are disjoint open convex sets
in E containing a and x respectively. Since A is compact, there exist ai, ..., a, € A such
that A C UL, f,, '(Oa)- Let U = N, f,-'(Ua,), then U is an open convex set containing
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x such that UNA = (. By Theorem 3.4 of Rudin [18, p. 58], there existf € E*andy € R
such that Ref(x) < < Ref(a) for all a € A. It follows that

igﬁ[Ref(x—a)I > —Ref(x) >0,

which is a contradiction. Thus we must have x € A. The last assertion follows from the
fact that for each f € E*, the function p: E — R defined by p(y) = | Ref(y)| forall y € E
is a continuous semi-norm on E. (]

We emphasize here that in the above lemma, E is not assumed to be locally convex.
We also remark here that even when E is Hausdorff, the conclusion of Lemma 5 is false if
E* does not separate points of E; e.g., the completely metrizable topological vetor space
L” (where 0 < p < 1) contains no open convex sets other than () and L7 (see, e.g.
[18, p. 35]) so that L7 has no non-zero continuous linear functionals and no non-zero
continuous semi-norms.

LEMMA 6. Let (E,T) be a Hausdorff topological vector space whose topological
dual E* separates points of E, X be a non-empty W-compact subset of E and f: (X, W) —
2ED be upper semi-continuous such that for each x € X, f(x) is T-compact and convex.
Iffor each p € ‘P, there exists x, € X such thatd,,(x,,, f (x,,)) = 0, then f has a fixed point
inX.

PROOE. For each p € P, the set
Ap) = {x € X : dy(x.f(v)) = 0}

is non-empty as x, € A(p) and also W-closed as x — d,,(x, f(x)) is W-lower semi-
continuous by Lemma 4. If {p,,...,p,} is an finite subset of P, then -7, p; € P and
A(Z;':l p,») C N A(,). Thus {A(p) : p € P} has the finite intersection property. By
weak compactness of X, (,cp A(P) # (). Take any & € Nper A(p), then d,,(ﬁ,f(li)) =0
for all p € P. Since f(i) is T-compact and convex, by Lemma 5, i € f(#). (]

Let (E, T) be a topological vector space and X be a non-empty subset of E. It is clear
that if £: (X, W) — 2D is upper semi-continuous (respectively, lower semi-continuous,
continuous), then f: (X, T) — 2D is upper semi-continuous (respectively, lower semi-
continuous, continuous). The following result shows that the converse also holds under
additional conditions on E and on X:

LEMMA 7. Let (E,T) be a Hausdorff topological vector space whose topological
dual E* separates points of E and X be a non-empty T-compact subset of E. If f: (X, T) —
2ED js upper semi-continuous (respectively, lower semi-continuous, continuous), then
f:1 (X, W) — 2ED js upper semi-continuous (respectively, lower semi-continuous, con-
tinuous).

PROOF.  Suppose f: (X,T) — 2&7 is upper semi-continuous (respectively, lower
semi-continuous). Let U be any T-open set in E. Then the set A = {x € X : f(x) ¢
U} (respectively, A = {x € X : f(x) N U = 0}) is T-closed in X and hence 4 is T-
compact since X is T-compact. Thus A is W-compact. Since E* separates points of E, W
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is Hausdorff so that A is W-closed. Therefore f: (X, W) — 2E7) is upper semi-continuous
(respectively, lower semi-continuous). n

The following general minimax inequality due to Ding and Tan [3, Theorem 1] will
be needed to prove our main result. For completeness we shall provide its proof.

LEMMA 8. Let X be a non-empty convex subset of a topological vector space and
g: X x X — RU{—o00,00} be such that
(i) for each fixed x € X, g(x,y) is a lower semi-continuous function of y on C for
each non-empty compact subset C of X;
(ii) foreach A € F(X) and for each y € co(A), min,c4 g(x,y) < O0;
(iii) there exist a non-empty compact convex subset X, of X and a non-empty compact
subset K of X such that for each 'y € X \ K, there is an x € co(Xo U {y}) with
g(x,y) > 0.
Then there exists ¥ € K such that g(x,¥) <0 forall x € X.

PROOF. Foreach x € X, let

K(x) ={y €K :g(xy) <0}

By (i), K(x) is closed in K for each x € X. We claim that the family {K(x) : x € X} has
the finite intersection property. For any fixed {xi,...,x,} € F(x), let

D = co(Xp U {X], ce. ,x,,}),
then D is a compact convex subset of X. Define G: D — 2P by
G(x) ={y e D: glx,y) <0}.

By hypotheses, it is easy to check that all hypotheses of Fan’s Lemma 1 [4] (note that

“Hausdorff” was never needed in its proof) are satisfied. Thus (,cx G(x) # 0; that is

there exists y € D such that g(x,y) < O for all x € D. By (iii), we must have y € K so

that y € N, K(x;). This shows that {K(x) : x € X} has the finite intersection property

so that by compactness of K, N,cx K(x) # (). Take any § € (N ex K(x), then § € K and

g(x,y) <Oforallx € X. =
The following result is Theorem 1 of Ha [7].

LEMMA 9. Let E, F be Hausdorff topological vector spaces, X C E, Y C F be
nonempty convex subsets, Y be compact. Let f:X — 2Y be an upper semicontinuous
map with nonempty closed and convex values and g: X X Y — R be such that

(a) foreach x € X, g(x,y) is a lower semi-continuous function of y in Y;

(b) foreachy €Y, g(x,y) is a quasi-concave function of x in X.

Then

inf sup g(x,y) < sup g(x,u).
YeY xex uef(x)
xeX
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3. Approximation of continuous maps. In this section, we shall prove several
approximation theorems and fixed point theorems for continuous set-valued maps in a
Hausdorff topological vector space whose topological dual separates points.

Let X be a non-empty subset of a topological vector space (E, T). For each x € X, the
inward set and outward set of X at x, denoted by Ix(x) and Ox(x) respectively, are defined
by

Ix(x) = {x+r(y —x):y € Xand r > 0},
Ox(x) ={x—r(y—x):y € Xandr > 0}.

The closures of Ix(x) and Ox(x) in (E, T), denoted by Ix(x) and Ox(x) respectively, are
called the weakly inward set and the weakly outward set of X at x respectively. We shall
use Q(x) to denote either Ix(x) or Ox(x).

THEOREM 1. Let (E, T) be a Hausdorff topological vector space whose topological
dual E* separates points of E, X be a non-empty convex subset of E and f: (X, W) — 2ET
be continuous on C for each non-empty W-compact subset C of X such that for each x €
X, f(x) is T-compact and convex. Let Xy be a non-empty W-compact and convex subset
of X and K be a non-empty W-compact subset of X. If p € P has the following property:
“for each 'y € X \ K, there exists x € co(Xo U {y}) such that dp(x,f(y)) < dp(y,f(y)) 7,
then there exists u € K such that

dy(u.f(w)) = min{d,(x.f(w)) : x € Ix(w)}.

Moreover, u € K M 0X whenever dp(u,f(u)) > 0.

PROOF. Define g: X x X — R by

gx.y) = dp(y.f0)) — dp(x.f ).

Then we have

(a) For each fixed x € X, by Lemma 3,y — d,,(x, f (y)) is W-upper semi-continuous
on C for each non-empty W-compact subset C of X (where h(t,u) = p(x — u) for all
(t,u) € X X X in applying Lemma 3) so that together with Lemma 4, g(x, y) is a W-lower
semi-continuous function of y on C for each non-empty W-compact subset C of X.

(b) For each A € F(X) and for each y € co(A), we must have min,c4 g(x,y) < 0; if
this were not true, then there exist A = {x;,...,x,} € F(X)andy = 2, \ix; € co(A)
with Aj,..., A, > 0and ¥ | A; = 1 such that

(*) gxi,y) = dp(y’f()’)) — dp(x,-,f(y)) >0forali=1,...,n.

Since f(y) is T-compact, foreach i = 1,...,n, there exists ; € f(y) such that p(x; —u;) =
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d,,(xi,f(y)). Let u = 37 ; A\ju;; then u € f(y) since f(y) is also convex. It follows that
dyp(.f () < p(y — )
= P(,z: Ai(xi — ui))

<D Aip(xi — uy)

M:

1
. /\idp(xi»f(y))
<dp(y.f()) by ()

I
= T

7

which is impossible.

(c) By hypothesis, there exist a non-empty W-compact and convex subset X, of X
and a non-empty W-compact subset K of X such that for each y € X \ K, there exists
x € co(Xo U {y}) with g(x,y) > 0.

Now equip E with the weak topology W, then all hypotheses of Lemma 8 are satisfied
so that there exists # € K such that g(x, u) < 0 for all x € X; that is,

(1) dp(u,f (W) < dy(x.f(w)) forall x € X.

Now fix an arbitrary v € Ix(u) \ X; as X is convex, there exist z € X and r > 1 such that
v = u + r(z — u). Suppose that

) dp(v.f (W) < dp(u.f(w)).

Since f(u) is T-compact, there exist zj,z2 € f(u) such that p(u — z;) = d,,(u,f(u)) and
p(v—2) = d,,(v,f(u)). Let7 = (1— l/r)z| + (1/r)z;>_, then Z € f(u) since f(u) is also
convex. Since z = (1 — 1 /nu+(1/r)v € X, we have

dp(z.f W) < pz—2)
=p((A = 1/Nw—2)+1 /N —2))
<A —=1/npu—z1)+1/npv—2)
= (1 = 1/ndy(u.f W) + (1/Ndp(v.fw))
< dy(u,f(w)) by (2)

which contradicts (1). Thus we must have

dp(u.f () < dy(x.f(u)) for all x € Ix(u).

By the continuity of p, we have
d,,(u,f(u)) < d,,(x,f(u)) for all x € Ix(u).

Hence d, (u, (1)) = min{d,(x.f(u)) : x € Tx(u)}.
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Now assume d,, (u, f (u)) > 0, then f(u) N X = 0. Since f(u) is T-compact, there exists
i € f(u)such that p(u — ir) = d,,(u,f(u)). Note that & ¢ X. If u € intX, then there exists
areal number \ with 0 < X\ < 1 such that z = Au+ (1 — \)iz € X. It follows that

0 < p(u — 1) = dp(u.f (1))
<dp(z.fw) < plz — )
= A\p(u — i) < p(u— @)

which is impossible. Thus u ¢ intX so that u € K N dX. This completes the proof. =

THEOREM 2. Let (E,T), E*, X, f, Xo and K be given as in Theorem 1 such that for
each p € P, the followingproperty holds: foreach'y € X\K, there exists x € co(XoU{y})
such that dp(x,f(y)) < d,,(y,f(y)). Then either (a) f has a fixed point in K or (b) there
existp € Pand u € KN X such that 0 < d,,(u,f(u)) = min{d,,(x,f(u)) X € E(u)}.

PROOF. By Theorem 1 and Lemma 6, the conclusion follows. n

Theorem 1 generalizes Theorem 1 of Sehgal, Singh and Smithson [22] in several
ways: (1) f is multi-valued; (2) continuity of f is weakened; (3) the space E need not be
locally convex; (4) our non-compactness condition is weaker than that of (1) in [22]; (5)
our conclusion is strengthened. In view of Lemma 7, Theorem 2 generalizes Fan’s result
in many ways.

COROLLARY 1. Let (E,T) be a Hausdorff topological vector space whose topolog-
ical dual E* separates points of E, X be a non-empty weakly compact convex subset of
E and f: (X, W) — 2ED be continuous such that for each x € X,f(x) is T-compact and
convex. Then either (a) f has a fixed point in X or (b) there exist p € P and u € 90X such
that

0 < dy(u.f(u)) = min{d,(x.f(w)) : x € Qu)}.

PROOF. By taking Xy = K = X, Theorem 2 proves the case when Q(u) = Ix(w).

Next for each x € X, let g(x) = 2x — f(x); then g: (X, W) — 2D is also continuous
(e.g. see Propositions 1 and 2 in [23]) such that for each x € X, g(x) is T-compact and
convex. Again by applying Theorem 2 with Xy = K = X, either (a) g has a fixed point
in X and hence f has a fixed point in X as f and g have the same fixed points in X or (b)
there exist p € P and v € 9X such that

0< d,,(v, g(v)) = min{dp<x, g(v)) (x € E(v)}.
For each z € Ox(v), let 7/ = 2v — z, then z’ € Ix(v) so that

dp(v,f(v)) = dp(v, g(v))
< dy(,8)
= dy(z.fV))
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so that by continuity of p, dp(v,f(v)) < d,,(z,f(v)) for all z € Ox(v). Thus 0 <
d,,(v,f(v)) = min{d,,(z,f(v)) 1z € O_X(v)} which proves the case when Q(v) = Ox(v).
This completes the proof. ]

In view of Lemma 7, Corollary 1 generalizes Theorem 3 of Park [12] as follows:
(1) the set X is weakly compact instead of compact; (2) the conclusion is strengthened:
u € dXinstead of u € X. Corollary 1 also generalizes Lemma 1.6 of Reich [14] in several
aspects.

THEOREM 3. Under the same hypotheses as in Theorem 2, if for each x € K N dX,
there exists a real number X\ such that0 < A\ < 1 and ()\x +(1— /\)f(x)) N Ix(x) # 0,
then f has a fixed point in K.

PROOF.  Suppose f has no fixed point in K. Then by Theorem 2, there exist p € P
and u € KM dX such that

0 < dp(u.f(w) = min{d,(x.f(w)) : x € Ix(w)}.
Since u € K M dX, by assumption, there exists A with 0 < A\ < 1 and v € f(u) such that
z=Au+(1 =\ € Ix(u). Thus
0 < dy(u.fw) < dp(z.fW))
< Adp(u.f(u)) (by Lemma 1)
< d,,(u,f(u))
which is a contradiction. Therefore f must have a fixed point in K. (]

COROLLARY 2. Under the same hypotheses as in Corollary 1, if for each x € 9dX,
there exists a real number X such that0 < \ < 1 and (/\x + (1 — \)f (x)) N Ix(x) # 0,
then f has a fixed point in X.

PROOF. By applying Theorem 3 with Xy = K = X, the result follows. n
4. Approximation of upper semi-continuous maps. In this section, we shall

prove some approximation theorems for upper semi-continuous set-valued maps in lo-
cally convex topological vector spaces.

THEOREM 4. Let (E, T) be a locally convex Hausdorff topological vector space and
X be a non-empty W-compact convex subset of E. Suppose that f: (X, W) — 2ED jsan
upper semi-continuous map with non-empty T-compact convex values. Then either f has
a fixed point in X or there exist xo € X, uy € f(xo) and a weakly continuous semi-norm
p on E such that

0 < p(xo — ) < p(x — ug) for all x € Ix(xo)
(respectively, 0 < p(xo — up) < p(x — ug) forall x € Ox(xp)).

PROOF.  Suppose that f has no fixed point in X, then for each x € X, 6 & x—f(x) and
x — f(x) is a T-compact convex subset of E. By Theorem 3.4 of Rudin [18, p. 58], there
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exist 6, > 0 and a linear functional p, € E* such that
. (x.f (1)) Jnf [pax =] > 6,
By Lemma 4, there exists a W-neighborhood N(x) of x in X such that

dy,(2.f(2)) > &, for all z € N(x).

Since X = J,ex N(x) and X is W-compact, there exists {xi,...,x,} C X such that
X = UL Nx). Let p = max{|py,| : i = 1,2,...n} and & = min{é,, : 1 < i < n}.
Then p is a weakly continuous semi-norm on E. For each x € X, there exists x;, such that
X € N(x;,); it follows that for each u € f(x),

P — 1) = max |po(x =] > |pe(x = )] > dy,, (1. )
so that
dp(x,f(x)) = inf{p(x —u):u €f(0)} > 4 o (x,f(x)) > by, = 6.

Hence we have
dp(x,f(x)) > forallx € X.

Now define the function g: (X, W) x (E,T) — R by
g(x,y) = minp(u — y) — p(x — y).
ueX

It is easy to see that g: (X, W) x (E,T) — R is continuous. Thus the condition (a) of
Lemma 9 is satisfied. Clearly the condition (b) of Lemma 9 is also satisfied. By Corol-
lary 9.6 in [11], the image f(X) = (J,cx f(x) of f is T-compact. As the assumptions on X,
f and the graph Gr(f) of f remain unchanged in the completion of E, without loss of gen-
erality we may assume that E is complete. Let ¥ = 66(f (X)), then Y C E is T-compact
convex. By applying Lemma 9, we have

inf supg(x,y) < sup g(x,u).

YEY rex

ucf(x)
xeX

Since foreach y € Y,

sup g(x,y) = sup rlpel;gp(u =) —px—y|= r;lel}rgp(u ) r;g}gp(x -y =0,

xeX xeX
we have
sup g(x,u) > 0.
u€ef(x)
xeX

Since g: (X, W) x(E, T) — Ris continuous and the graph Gr(f) of f is compact in (X, W) X
(E, T), there exists (xo, up) € Gr(f) such that

8(xo, up) = rxr}ei)?p(x — up) — p(xo — up) > 0.
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It follows that uy € f(x) and
(%) 6 < dp(X(),f(X())) < p(xo — up) < p(x — ugp) forall x € X.

For x € Ix(xp) \ X, there exist v € X and r > 1 such that x = xy + r(v — x¢). Suppose that
p(x — ug) < p(xo — up). Since v = 1rx +(1 — %)x() € X, we have by (x)

p(xo — uo) < p(v —up) = P(%x + (1 - %)xo - uo)
< %P(x — up) + (1 - %)P(Xo — uo) < p(xo — up)
which is a contradiction. Therefore we must have
p(xo — up) < p(x — ugp) for all x € Ix(xp).
Since p is continuous, we have
0 < p(xo — ) < p(x — ug) for all x € Ix(xo).
For the outward case, define the map f': (X, W) — 2(ED by
f'(x) = 2x — f(x) for each x € X.

Then f’ is an upper semi-continuous map (e.g. see [23, Proposition 2.2]) with non-empty
T-compact convex values. Note that x is a fixed point of f' if and only if x is a fixed point
of f. Therefore either f’ and hence f has a fixed point in X or, by the above argument,
there exist x;, € X, u;, € f'(x;) and a weakly continuous semi-norm p’ on E such that

0 <p'(x — up) <p'(x' —ug) forall X' € Ix(xp).

For each fixed x € Ox(x(), let X' = 2x5 — x and uy = 2x{, — u(, then uy € f(x;) and
x' € Ix(xp) so that

0 < p'(xg — uo) = p'(uy — xp) < p'(x' — ug) = p'(x — up).
By continuity of p’,
0 < p'(xy — uo) < p'(xo — up) for all x € Ox(x}). n

Theorem 4 improves and generalizes Theorem 3 of Ha [7], Theorem 3 of Park [13],
which in turn generalizes Corollaries 1 and 1’ of Browder [2], Theorem 3.1 of Reich [15]
and Theorem 1 of Fan [5].

As an equivalent version of Theorem 4, we have

THEOREM 5. Let (E, T) be a locally convex Hausdorff topological vector space and
X be a non-empty W-compact convex subset of E. Suppose that f: (X, W) — 2ED s an
upper semi-continuous map with non-empty T-compact convex values. If for each weakly
continuous semi-norm p on E, each x € X with d, (x, f(x)) > 0 and each u € f(x),

d,,(u,E(x)) < p(x—u) (respectively, d,,(u,@(x)) < p(x—u))
then f has a fixed point in X.

Theorem 5 improves and generalizes Theorem 2 of Reich [16].
As a direct consequence of Theorem 4, we have the following result:
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THEOREM 6. Let (E,T) be a locally convex Hausdorff topological vector space, X
be a non-empty W-compact convex subset of E and f: (X, W) — 2ED be an upper semi-
continuous map with non-empty T-compact convex values. Suppose that the following
condition holds:

(a) foreach x € dEwX \f(x) and u € f(x), there exists a number X (real or complex,
depending on whether the vector space E is real or complex) with || < 1 such
that M\x + (1 — Mu € Ix(x) (respectively, Ax + (1 — \u € Ox(x)).

Then f has a fixed point. (Here, dg.w\X denotes the boundary of X in (E, W).)

PROOF. Suppose f has no fixed point. By Theorem 4, there exist xo € X, uy € f(xp)
and a weakly continuous semi-norm p on E such that

0 < p(xg — up) < p(x — up) forall x € Tx(x0)
(respectively, 0 < p(xo — ugp) < p(x — up) for all x € Ox(xp)).

CASE 1. Ifxy € intgw)X, then Ix(xo) = E (respectively, Ox(xg) = E) and hence

1

x = X0 + ug € E = Ix(xo) (respectively, x = $xo + 1ug € Ox(x0)) so that

1
0 < plxo — up) < plx —up) = Ep(xo — up)

which is a contradiction.

CASE2. Ifxg € dewX, then xo € dwmX \ f(x0) so that by (a), there exists A with
IA| < 1suchthatx = Axo+(1—M\)ug € Ix(xo) (respectively, x = Axo+(1—Xug € Ox(xp)).
It follows that

0 < p(xo — o) < p(x — up) < |A|p(xo — uo)

which is again a contradiction.

Therefore f must have a fixed point. [

Theorem 6 improves and generalizes Theorem 4 of Ha [7], Theorem 3.1 of Reich [15],
Theorem 4 of Park [13] and Theorem 3 of Fan [5].

Finally, the authors would like to thank the referee for suggesting the work in Sec-
tion 4.
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