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A MINIMAL REAL HYPERSURFACE OF A COMPLEX
PROJECTIVE SPACE WITH NONNEGATIVE
SECTIONAL CURVATURE
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Abstract

We give a characterization of a minimal real hypersurface with respect to the condition for the sectional
curvature.
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1. Introduction

It is an interesting problem to study real hypersurfaces immersed in a complex
projective space with additional conditions for the sectional curvature.

Let CP" be a complex n-dimensional complex projective space of holomorphic
sectional curvature 4. We denote by 7 :S*'*! — CP" the standard fibration,
where S* is the k-dimensional unit sphere. In §2"*! of curvature 1, we have the family
of generalized Clifford surfaces whose fibres lie in complex subspaces:

2p+1 2qg + 1
2p+1 2g+1
Mapi1ag41 =57 ( 2n ) x s ( 2n )’

where p + g =n — 1. Then Mﬁ g= 7 (M2p+1,24+1) are connected compact minimal
real hypersurfaces in CP" (see Lawson [2]).

In [I], Kon proved that if the sectional curvature K of a compact minimal
real hypersurface M in a complex projective space CP" satisfies K > 1/(2n — 1),
then M is a geodesic minimal hypersphere

M§,_, =7(5"(/1/2n) x $*"~1(/2n — 1)/2n)).

In this paper, we give a characterization for a minimal real hypersurface

M1 pnenyp = T(8"(/1/2) x §"(,/1/2))
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with respect to the condition for the sectional curvature. We prove the following
theorem.

THEOREM 1.1. Let M be a connected complete real minimal hypersurface of CP". If
the sectional curvature K of M satisfies

K(X,Y)>n(X)? +n(Y)?

for any orthogonal unit tangent vectors X and Y, then M is congruent to

C
M(n—l)/2,(n—1)/2‘

2. Preliminaries

Let CP" denote the complex space form of complex dimension n (real
dimension 2n) with constant holomorphic sectional curvature 4. We denote by J the
complex structure of CP". The Hermitian metric of CP" will be denoted by G.

Let M be a real (2n — 1)-dimensional real hypersurface immersed in CP". We
denote by g the Riemannian metric induced on M by G. We take the unit normal
vector field N of M in CP". For any vector field X tangent to M, we define ¢, n
and £ by

JX=¢X +n(X)N, JN=-§,

where ¢ X is the tangential part of JX, ¢ is a tensor field of type (1, 1),  is a 1-form,
and £ is the unit vector field on M. Then they satisfy

¢*X = —X + n(X)E,
P =0, n@X)=0, n(X)=g(X,¥&),
g(@X, pY) = g(X, Y) — n(X)n(Y).

Thus (¢, &, n, g) defines an almost contact metric structure on M (see [6]).

We denote by V the operator of covariant differentiation in M"(c), and by V the
one in M determined by the induced metric. Then the Gauss and Weingarten formulas
are given respectively by

6xY =VxY +g(AX, Y)N, 6xN =—-AX

for any vector fields X and Y tangent to M. We call A the shape operator of M.
For the almost contact metric structure on M,

Vx§ =¢AX, (Vx@)Y =n(Y)AX —g(AX, Y)§.

We denote by R the Riemannian curvature tensor field of M. Then the Gauss equation
is given by

RX,V)Z =g(Y, )X —g(X, 2)Y + g(@Y, Z)pX — g(¢ X, 2)¢pY
—2¢(¢X, V)Z + g(AY, Z)AX — g(AX, Z)AY,

and the Codazzi equation by
(VxA)Y — (VY A)X =n(X)¢Y —n(Y)pX —2g(¢X, Y)§.
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EXAMPLE 2.1. Mg’ ¢ 1s a connected compact real hypersurface in CP" with three
constant principal curvatures cotf, —tan 6 and 2 cot 26 with multiplicities 2p, 2¢q

and 1, respectively. Moreover, the structure vector field & of MIE ¢ 1s a principal

curvature vector field, thatis, A = 2 cot 26&. In particular, if a real hypersurface Mg’ q

is minimal and the shape operator A satisfies A& =0, then the real hypersurfac
turns out to be M, gl_l) 12.(n—1)2 whose constant principal curvatures 1, —1 and 0 have
multiplicities n — 1, n — 1 and 1, respectively (see Takagi [3]).
3. Proof of the theorem
First, we prove the following proposition.

PROPOSITION 3.1. Let M be a real hypersurface of CP". If A& =0, then the
sectional curvature K of M is determined by K(Z, W), where Z, W are orthogonal
to &.

PROOF. Let {X, Y} be an orthonormal pair. We put
X =n(X)E+aZ, Y=n(¥)&+bW,
where a = (1 — n(X)»)?, b=(1 —n(¥)>)!/2, Z and W being orthogonal to £.

Then Z and W are unit vectors that satisfy

1
g(Z, W) =——n(X)n(Y).
ab
Since A§ = 0, simple calculation shows that
K(X,Y)=g(R(X, Y)Y, X)

= g(X, X)g(Y, ¥) +3g(#X, ¥)? + g(AX, X)g(AY, ¥) — g(AX, Y)?

= a’n(Y)? + b*n(X)* + 20> (X)n*(Y) + a*b*g(R(Z, W)W, Z).
Noticing that

S(R(Z, \W, Z) = (1 — g(Z, W))K(Z, W)

1 2 o2

we obtain
KX, Y)=nX)* +n(¥)* + (1 —n(X)? = n(V)HK(Z, W). (%)
Therefore, K (Z, W) determines K (X, Y). O

REMARK 3.2. Generally, for a Sasakian manifold, Equation (x) is always satisfied
(see [6, p. 280]). For a real hypersurface M of CP" we see that M is a Sasakian
manifold if and only if AX = X — n(X)&. Then A£ = 0.

On the other hand, there exists a real hypersurface M of CP" which satisfies
Equation (%) and is not a Sasakian manifold. For example, Mgl_l) 12.(1-1))2 satisfies

Equation () and is not Sasakian. We notice that M(?z—l)/Z (n—1)/2 satisfies AE =0
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and K (Z, W) > 0 for any Z and W orthogonal to &. From Proposition 3.1, if A& =0
and K(Z, W) >0 for any Z and W orthogonal to &, then the sectional curvature K
satisfies K (X, Y) > n(X)2 + n(Y)2.

Finally, we prove our theorem.

PROOF OF THEOREM 1.1. An orthonormal basis {ey, ..., ex—2, e2,—1 =&} of
T, (M) can be chosen such that the shape operator A is represented by a matrix,

ap - 0 Iy
A= . . : :
0 -+ a2 hyo
hi - hap o
where we have put h; = g(Ae;, &), i=1,...,2n —2, and o = g(A&, £). By the

Gauss equation and the assumption for the sectional curvature,
K(ei, ej) =1+ 3g(gei, e))* +aja; >0
fori, j =1, ..., 2n — 2. On the other hand, we obtain

K(ei, &) =1+aa —hi>1

foranyi =1, ..., 2n — 2, from which we have q;« > hl.z. Thus
(Z a,.)a =Y w20,
i i
Since M is minimal, it follows that (3, a;)a = —a? < 0. Hence we have « = 0 and

hi=0fori=1,...,2n — 2. So we obtain A§ =0 and Ae; = a;e;. This implies that
g((VxA)Y, &) =—g(ApAX, Y). Using the Codazzi equation,

—28(@X.Y) =g((VxA)Y, §) —g((VYA)X, §) = —2¢(ApAX. Y).

Thus ApAX = ¢X for any vector X orthogonal to £. Therefore, if AX =aX, then
ApX = (1/a)pX.
We now choose an orthonormal basis {eq, ..., e,—1, pe1, ..., pe,—1, E} that
satisfies
Ae; = aje;, Age;=/a))pe; (G=1,...,n—1).

Since M is minimal, there exist i and j such that a;a; < 0. By the assumption

on K,

a; aj

0<K(ei,pej)=1+—=<1, 0=K(ej,¢pe;)=1+—==<1.

aj a;
Hence,

a; a;

-1<—<0, -1<—=<0
J ai
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From these inequalities we see that al.z =a%?=1, and hence ai ==%1, aj==F1.
Since M is minimal and A§ =0, M has three principal curvatures 1, —1, 0 with
multiplicities n — 1, n —1, 1, respectively. By the theorem of Takagi [4] and
Wang [5], we have our assertion. O
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