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Abstract

We give a characterization of a minimal real hypersurface with respect to the condition for the sectional
curvature.
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1. Introduction

It is an interesting problem to study real hypersurfaces immersed in a complex
projective space with additional conditions for the sectional curvature.

Let CPn be a complex n-dimensional complex projective space of holomorphic
sectional curvature 4. We denote by π : S2n+1

−→ CPn the standard fibration,
where Sk is the k-dimensional unit sphere. In S2n+1 of curvature 1, we have the family
of generalized Clifford surfaces whose fibres lie in complex subspaces:

M2p+1,2q+1 = S2p+1
(√

2p + 1
2n

)
× S2q+1

(√
2q + 1

2n

)
,

where p + q = n − 1. Then MC
p,q = π(M2p+1,2q+1) are connected compact minimal

real hypersurfaces in CPn (see Lawson [2]).
In [1], Kon proved that if the sectional curvature K of a compact minimal

real hypersurface M in a complex projective space CPn satisfies K ≥ 1/(2n − 1),
then M is a geodesic minimal hypersphere

MC
0,n−1 = π(S

1(
√

1/2n)× S2n−1(
√
(2n − 1)/2n)).

In this paper, we give a characterization for a minimal real hypersurface

MC
(n−1)/2,(n−1)/2 = π(S

n(
√

1/2)× Sn(
√

1/2))
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with respect to the condition for the sectional curvature. We prove the following
theorem.

THEOREM 1.1. Let M be a connected complete real minimal hypersurface of CPn . If
the sectional curvature K of M satisfies

K (X, Y )≥ η(X)2 + η(Y )2

for any orthogonal unit tangent vectors X and Y , then M is congruent to
MC
(n−1)/2,(n−1)/2.

2. Preliminaries

Let CPn denote the complex space form of complex dimension n (real
dimension 2n) with constant holomorphic sectional curvature 4. We denote by J the
complex structure of CPn . The Hermitian metric of CPn will be denoted by G.

Let M be a real (2n − 1)-dimensional real hypersurface immersed in CPn . We
denote by g the Riemannian metric induced on M by G. We take the unit normal
vector field N of M in CPn . For any vector field X tangent to M , we define φ, η
and ξ by

JX = φX + η(X)N , JN =−ξ,

where φX is the tangential part of JX, φ is a tensor field of type (1, 1), η is a 1-form,
and ξ is the unit vector field on M . Then they satisfy

φ2 X =−X + η(X)ξ,

φξ = 0, η(φX)= 0, η(X)= g(X, ξ),

g(φX, φY )= g(X, Y )− η(X)η(Y ).

Thus (φ, ξ, η, g) defines an almost contact metric structure on M (see [6]).
We denote by ∇̃ the operator of covariant differentiation in Mn(c), and by ∇ the

one in M determined by the induced metric. Then the Gauss and Weingarten formulas
are given respectively by

∇̃X Y =∇X Y + g(AX, Y )N , ∇̃X N =−AX

for any vector fields X and Y tangent to M . We call A the shape operator of M .
For the almost contact metric structure on M ,

∇Xξ = φAX, (∇Xφ)Y = η(Y )AX − g(AX, Y )ξ.

We denote by R the Riemannian curvature tensor field of M . Then the Gauss equation
is given by

R(X, Y )Z = g(Y, Z)X − g(X, Z)Y + g(φY, Z)φX − g(φX, Z)φY

− 2g(φX, Y )φZ + g(AY, Z)AX − g(AX, Z)AY,

and the Codazzi equation by

(∇X A)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ.
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EXAMPLE 2.1. MC
p,q is a connected compact real hypersurface in CPn with three

constant principal curvatures cot θ , −tan θ and 2 cot 2θ with multiplicities 2p, 2q
and 1, respectively. Moreover, the structure vector field ξ of MC

p,q is a principal
curvature vector field, that is, Aξ = 2 cot 2θξ . In particular, if a real hypersurface MC

p,q
is minimal and the shape operator A satisfies Aξ = 0, then the real hypersurface
turns out to be MC

(n−1)/2,(n−1)/2 whose constant principal curvatures 1, −1 and 0 have
multiplicities n − 1, n − 1 and 1, respectively (see Takagi [3]).

3. Proof of the theorem

First, we prove the following proposition.

PROPOSITION 3.1. Let M be a real hypersurface of CPn . If Aξ = 0, then the
sectional curvature K of M is determined by K (Z , W ), where Z , W are orthogonal
to ξ .

PROOF. Let {X, Y } be an orthonormal pair. We put

X = η(X)ξ + aZ , Y = η(Y )ξ + bW,

where a = (1− η(X)2)1/2, b = (1− η(Y )2)1/2, Z and W being orthogonal to ξ .
Then Z and W are unit vectors that satisfy

g(Z , W )=−
1

ab
η(X)η(Y ).

Since Aξ = 0, simple calculation shows that

K (X, Y ) = g(R(X, Y )Y, X)

= g(X, X)g(Y, Y )+ 3g(φX, Y )2 + g(AX, X)g(AY, Y )− g(AX, Y )2

= a2η(Y )2 + b2η(X)2 + 2η2(X)η2(Y )+ a2b2g(R(Z , W )W, Z).

Noticing that

g(R(Z , W )W, Z) = (1− g(Z , W )2)K (Z , W )

=

(
1−

1

a2b2 η(X)
2η(Y )2

)
K (Z , W ),

we obtain

K (X, Y )= η(X)2 + η(Y )2 + (1− η(X)2 − η(Y )2)K (Z , W ). (∗)

Therefore, K (Z , W ) determines K (X, Y ). 2

REMARK 3.2. Generally, for a Sasakian manifold, Equation (∗) is always satisfied
(see [6, p. 280]). For a real hypersurface M of CPn we see that M is a Sasakian
manifold if and only if AX = X − η(X)ξ . Then Aξ = 0.

On the other hand, there exists a real hypersurface M of CPn which satisfies
Equation (∗) and is not a Sasakian manifold. For example, MC

(n−1)/2,(n−1)/2 satisfies

Equation (∗) and is not Sasakian. We notice that MC
(n−1)/2,(n−1)/2 satisfies Aξ = 0

https://doi.org/10.1017/S0004972709001257 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709001257


[4] A minimal real hypersurface 491

and K (Z , W )≥ 0 for any Z and W orthogonal to ξ . From Proposition 3.1, if Aξ = 0
and K (Z , W )≥ 0 for any Z and W orthogonal to ξ , then the sectional curvature K
satisfies K (X, Y )≥ η(X)2 + η(Y )2.

Finally, we prove our theorem.

PROOF OF THEOREM 1.1. An orthonormal basis {e1, . . . , e2n−2, e2n−1 = ξ} of
Tx (M) can be chosen such that the shape operator A is represented by a matrix,

A =


a1 · · · 0 h1
...

. . .
...

...

0 · · · a2n−2 h2n−2
h1 · · · h2n−2 α


where we have put hi = g(Aei , ξ), i = 1, . . . , 2n − 2, and α = g(Aξ, ξ). By the
Gauss equation and the assumption for the sectional curvature,

K (ei , e j )= 1+ 3g(φei , e j )
2
+ ai a j ≥ 0

for i, j = 1, . . . , 2n − 2. On the other hand, we obtain

K (ei , ξ)= 1+ aiα − h2
i ≥ 1

for any i = 1, . . . , 2n − 2, from which we have aiα ≥ h2
i . Thus(∑

i

ai

)
α ≥

∑
i

h2
i ≥ 0.

Since M is minimal, it follows that (
∑

i ai )α =−α
2
≤ 0. Hence we have α = 0 and

hi = 0 for i = 1, . . . , 2n − 2. So we obtain Aξ = 0 and Aei = ai ei . This implies that
g((∇X A)Y, ξ)=−g(AφAX, Y ). Using the Codazzi equation,

−2g(φX, Y )= g((∇X A)Y, ξ)− g((∇Y A)X, ξ)=−2g(AφAX, Y ).

Thus AφAX = φX for any vector X orthogonal to ξ . Therefore, if AX = aX , then
AφX = (1/a)φX .

We now choose an orthonormal basis {e1, . . . , en−1, φe1, . . . , φen−1, ξ} that
satisfies

Aei = ai ei , Aφei = (1/ai )φei (i = 1, . . . , n − 1).

Since M is minimal, there exist i and j such that ai a j < 0. By the assumption
on K ,

0≤ K (ei , φe j )= 1+
ai

a j
≤ 1, 0≤ K (e j , φei )= 1+

a j

ai
≤ 1.

Hence,
−1≤

ai

a j
≤ 0, −1≤

a j

ai
≤ 0.
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From these inequalities we see that a2
i = a2

j = 1, and hence ai =±1, a j =∓1.
Since M is minimal and Aξ = 0, M has three principal curvatures 1, −1, 0 with
multiplicities n − 1, n − 1, 1, respectively. By the theorem of Takagi [4] and
Wang [5], we have our assertion. 2
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