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The onset and saturation of the Faraday
instability in miscible fluids in a rotating
environment

Narinder Singh1 and Anikesh Pal1,†
1Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, India

(Received 27 July 2022; revised 24 July 2023; accepted 3 September 2023)

We investigate the influence of rotation on the onset and saturation of the Faraday
instability in a vertically oscillating two-layer miscible fluid using a theoretical model
and direct numerical simulations (DNS). Our analytical approach utilizes Floquet analysis
to solve a set of the Mathieu equations obtained from the linear stability analysis. The
solution of the Mathieu equations comprises stable and harmonic, and subharmonic
unstable regions in a three-dimensional stability diagram. We find that the Coriolis force
delays the onset of the subharmonic instability responsible for the growth of the mixing
zone size at lower forcing amplitudes. However, at higher forcing amplitudes, the flow is
energetic enough to mitigate the instability delaying effect of rotation, and the evolution
of the mixing zone size is similar in both rotating and non-rotating environments. These
results are corroborated by DNS at different Coriolis frequencies and forcing amplitudes.
We also observe that for ( f /ω)2 < 0.25, where f is the Coriolis frequency, and ω is the
forcing frequency, the instability and the turbulent mixing zone size-L saturates. When
( f /ω)2 ≥ 0.25, the turbulent mixing zone size-L never saturates and continues to grow.

Key words: turbulent mixing, parametric instability, rotating turbulence

1. Introduction

The interface of two immiscible fluids enclosed in a vertically vibrating container upon
reaching a certain frequency and acceleration becomes unstable. This unstable phase is
known as Faraday instability and results in the formation of nonlinear standing waves at
the interface of the two fluids. These waves are termed as Faraday waves and were first
described by Faraday (1831). The onset of Faraday instability in immiscible liquids was
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theoretically demonstrated by Benjamin & Ursell (1954) using linear stability analysis
of the interface of an ideal fluid governed by the set of equations relevant to the system
of Mathieu equations. Linear stability of the immiscible, viscous and finite depth fluid
problem for one and two frequency excitation was studied by Kumar & Tuckerman (1994)
and Besson, Edwards & Tuckerman (1996), respectively, using Floquet analysis. Apart
from theoretical investigations, experimental (Gollub & Meyer 1983; Douady & Fauve
1988; Simonelli & Gollub 1989; Douady 1990; Müller 1993; Edwards & Fauve 1994;
Binks & van de Water 1997; Kudrolli, Pier & Gollub 1998; Arbell & Fineberg 2002;
Westra, Binks & Van De Water 2003; Kityk et al. 2005; Rajchenbach, Clamond & Leroux
2013; Shao et al. 2020, 2021) and numerical (Perinet, Juric & Tuckerman 2009; Takagi
& Matsumoto 2011; Kahouadji et al. 2015; Takagi & Matsumoto 2015) studies were also
performed by many researchers to understand the Faraday wave patterns at the interface of
immiscible liquids.

The majority of the studies on Faraday waves deals with immiscible liquids. However,
in the past few decades researchers have shifted their focus to understanding the dynamics
of Faraday waves in miscible liquids. Zoueshtiagh, Amiroudine & Narayanan (2009)
performed experiments and two-dimensional numerical simulations to investigate the
Faraday instability of diffuse interfaces between pairs of miscible liquids of different
densities in a rectangular cell. They observed that, above a certain forcing amplitude, the
standing waves that appear on the diffuse interface are highly disorganized and interact
with each other leading to the mixing of fluids followed by the disappearance of the
waviness on the interface when the two fluids are mixed. They also found the mixing phase
to be subharmonic, similar to the subharmonic nature of the Faraday waves in immiscible
fluids. Further, this finding was supported by Diwakar et al. (2015) who used Floquet
theory in conjunction with a quasisteady approximation to carry out linear analysis of
Faraday instability in miscible fluids. An experimental and numerical framework similar
to Zoueshtiagh et al. (2009) has been used by Amiroudine, Zoueshtiagh & Narayanan
(2012) to report the exponential growth of the mixing layer thickness owing to fingering at
the interface, followed by a small growth rate that demonstrates the saturation of mixing.
Recently, Gréa & Adou (2018) conducted three-dimensional (3-D) numerical simulations
and demonstrated that Faraday instability can generate turbulent mixing zones for strong
forcing parameter and/or for sufficiently random initial condition at the interface of two
miscible fluids. Further, they formulated a system of equations based on the second-order
correlation spectra for turbulent quantities and used perturbation analysis to estimate the
final size of the mixing zone,

Lsat = 2Ag0

ω2 (2F + 4), (1.1)

where Lsat is the final size of mixing zone (defined later in (2.5)) in the saturation
state, A = (ρ1 − ρ2)/(ρ1 + ρ2) is the Atwood number expressing the density contrast
between heavy fluid (ρ1) and light fluid (ρ2), g0 is the mean acceleration, F is the
oscillation amplitude and ω is the forcing frequency. Gréa & Adou (2018) validated
the predicted Lsat against their simulations for a wide range of parameters within the
homogeneous framework and full-inhomogeneous systems of two miscible fluids. They
reported that the instability of the diffuse interface begins with a small harmonic phase,
but the main instability phase is dominantly subharmonic, where the turbulent mixing
zone develops. The irreversible mixing associated with the growth of the mixing zone
owing to the harmonic to subharmonic transition was numerically quantified by Briard,
Gréa & Gostiaux (2019) using potential energies. The total potential energy (TPE) was
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split into background potential energy (BPE) and available potential energy (APE). They
demonstrated that the BPE, which signifies the measure of irreversible mixing, increases
after the transition. The APE, which denotes the fraction of the TPE that can be converted
to BPE through irreversible mixing, peaks at saturation and is partially released in the
flow as BPE. This increase in the BPE causes the numerically obtained final mixing zone
size L to exceed the theoretically predicted Lsat (1.1). To further elucidate the dynamics
of the turbulent mixing zone driven by the Faraday instability, Briard, Gostiaux & Gréa
(2020) performed experiments with fresh and salty water and supported their finding with
direct numerical simulations (DNS) and theoretical predictions. They concluded that when
the instability is triggered, a natural wavelength appears at the interface between the two
fluids. As the amplitude of this wave increases, well-defined structures break up to produce
a turbulent mixing layer. At the saturation of the instability, turbulence is inhibited and a
mixing layer of final size consistent with the analytically predicted Lsat was obtained for a
wide range of parameters. Mondal & Kumar (2004), performed a linear stability analysis
to investigate the effects of Coriolis force on the Faraday waves in a thin sheet of viscous
fluid placed on the vibrating plate. They used Floquet theory to solve the set of equations
in the form of Mathieu equations and explained the effect of rotation rate on the unstable
and stable regions of the stability diagrams. They found that the subharmonic waves get
suppressed with increasing rotation rates resulting in the delay of the onset of the Faraday
waves. They also reported the existence of a tricritical point at the onset of the instabilities,
where subharmonic, harmonic and superharmonic waves are simultaneously excited.

Many researchers explored the physics associated with the onset of Faraday instabilities
and the subsequent turbulent mixing layer in two miscible fluids. However, the effect
of the Coriolis force on the onset and saturation of the Faraday instabilities that drive
turbulent mixing in miscible fluids is absent from the literature. In stably stratified
fluids, the turbulent mixing mechanisms depend on the nature of external forcing and
background stratification. The vertical time-varying displacement of the density surfaces
in the ocean is mainly associated with tidal oscillations (Garrett & Kunze 2007; Sarkar
& Scotti 2017). These oscillations generate internal waves that can interact with ocean
currents and topography, resulting in instability and turbulent mixing in the deep ocean.
In oceanic flows, the Earth’s rotation significantly influences the dynamics of mixing
processes in the thermocline (Noh & Long 1990; Fernando 1991; Fleury et al. 1991). For
example, N/f ≈ 4.67, where N is the Brunt Väisälä frequency, in the abyssal Southern
Ocean at midlatitude (Nikurashin, Vallis & Adcroft 2013; Rosenberg et al. 2015). The
presence of rotation in stratified flows leads to a generation of inertial-gravity waves
(Hanazaki 2002; Smith & Waleffe 2002; Liechtenstein, Godeferd & Cambon 2005; Ferrari
& Wunsch 2009; Sarkar & Scotti 2017). When stratification is strong and rotation weak
N/f > 1, the motions are primarily controlled by gravity wave dynamics with maximum
frequency ≈ N, resulting in the propagation of internal gravity waves. However, when
rotation is stronger than stratification N/f < 1, inertial waves with maximum frequency
≈ f are generated. Both rotation and stratification produce highly anisotropic flow patterns
with quasihorizontal velocity fields (Liechtenstein et al. 2005; Praud, Sommeria &
Fincham 2006). However, vertically elongated column-like structures are formed in the
rotation-dominant (N/f < 1) flows, whereas horizontally layered pancake-like structures
are formed in stratification-dominant flows (N/f > 1). Praud et al. (2006) performed
experiments to investigate the decaying grid turbulence in a rotating stratified fluid. They
found an important effect of rotation that the increase in rotation rate ( f ) inhibits the
turbulent kinetic energy decay. Most studies in rotating stratified flows have focused
on investigating the impact of the ratio N/f on the direct and inverse energy cascades
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depending on the forcing scales at which the energy is injected into the flow (Smith &
Waleffe 2002; Deusebio, Vallgren & Lindborg 2013; Marino et al. 2013, 2014; Herbert
et al. 2016; Alexakis & Biferale 2018; Pouquet et al. 2018; Li et al. 2020). Marino et al.
(2013) conducted DNS and showed that the interplay between rotation and stratification
plays an important role in the inverse energy cascade, where the small scales transfer
energy to large scales. They found that the inverse energy cascade is most efficient in the
range 1/2 ≤ N/f ≤ 2. These studies have demonstrated how rotation is crucial in stratified
turbulent flows. Therefore, it would be interesting to explore the influence of rotation (or
ratio N/f ) on stratified turbulent flows when the external forcing is time-periodic, which is
fundamentally different from that used in the literature mentioned above. The generation
of turbulent kinetic and potential energy depends on the strength of the periodic forcing.
This gives us an opportunity to investigate how the ratio N/f affects the onset, growth
and saturation/non-saturation of the turbulent mixing driven by the Faraday instability
in the stably stratified miscible fluids. The Faraday instability, which arises when the
interface of two fluids is subjected to time-periodic accelerations has the potential to
promote mixing in stably stratified fluids. Therefore, understanding the dynamics of the
Faraday instability under the influence of rotation can help to gain some insights into
turbulent mixing processes in the deep ocean owing to the time-varying oscillations of
density surfaces caused by tidal forcing. The present investigation of rotating miscible
fluids with time-periodic accelerations will provide a framework to understand the physics
associated with the mixing processes in oceanic flows. We present a linear stability analysis
of the Faraday waves in miscible fluids under the influence of the Coriolis force. We aim to
investigate the effects of the Coriolis force on the harmonic to subharmonic transition, the
onset of the subharmonic instability phase, and the saturation phase of the instability. Our
analytical model accounts for the vertical inhomogeneity in the background density profile
and the Coriolis effect. We followed the classical approach of Yih (1960) to derive the
linear equations of the form of the Mathieu equations and use Floquet theory to solve them.
We draw the stability diagrams for the corresponding stable and unstable solutions of the
Mathieu equations. We also perform DNS at different forcing amplitudes and Coriolis
frequencies to check the validity of our analytical model.

The problem formulation, which includes the governing equations and theoretical
framework for linear stability analysis, is provided in § 2. The details of the numerical
methodology, and simulation parameters, are given in § 3. The predictions of the linear
stability analysis, and the numerical results, are explained in § 4. We conclude § 5.

2. Problem formulation

We present the details of the configuration and the governing equations in § 2.1. Then
we perform the linear stability analysis and derive the Mathieu equations governing the
stability of a full inhomogeneous inviscid rotating system under vertically periodic forcing
in § 2.2. We determine the characteristic frequencies Ωi (defined later) of the Mathieu
equations of the full inhomogeneous problem for the N > f case in § 2.3. Based on the
values of Ωi for the N > f case, we investigate the linear theory for the limiting case of
the fully developed mixing zone in § 2.3.1 and the limiting case of the interface in § 2.3.2.
Finally, we compute the Ωi for the N < f and N = f cases in §§ 2.4 and 2.5, respectively.

2.1. Governing equations
We consider two miscible fluids of small contrasting densities. The lighter fluid of density
ρ2 is above the denser fluid of density ρ1 in a cubical domain (see figure 1). This domain
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–H/2

+H/2

+L0/2
g0 (1 + F cos(ωt))

–L0/2

x3

x2

x1

Denser fluid (ρ1)

lx1

lx2

Mixed fluid

Lighter fluid (ρ2)

Rotation ( f )

Figure 1. Schematic of the domain containing two miscible liquids subjected to vertically periodic forcing.

is subject to periodic vertical oscillations with acceleration g(t) = g0(1 + F cos (ωt)),
where g0 is the mean acceleration, F is the oscillation amplitude and ω is the forcing
frequency. We are assuming that the density of the mixture is linearly varying with mass
concentration, with C(ρ1) = 1 and C(ρ2) = 0. The 3-D conservation equations for mass,
momentum and concentration field under vertically periodic forcing g(t), for unsteady
incompressible flow with Boussinesq approximation, are

∇ · U = 0, (2.1a)

∂U
∂t

+ U · ∇U = −∇P − f k̂ × U + ν∇2U − 2ACg(t)k̂, (2.1b)

∂C
∂t

+ U · ∇C = κ∇2C. (2.1c)

Here U represent the velocity vector with components (U1, U2 and U3) in the x1, x2
and x3 (vertical) directions, respectively, P is the pressure deviation from the hydrostatic
background state, f is the Coriolis’s frequency, ν (m2 s−1) is the kinematic viscosity and
κ (m2s−1) is the diffusion coefficient.

We decompose a variable into its mean 〈B〉H and fluctuating component b following
Reynolds decomposition,

B = 〈B〉H + b, (2.2)

where 〈B〉H is the average in the x1 and x2 horizontal directions, and 〈b〉H = 0. We consider
periodic boundary conditions in both x1 and x2 directions and assume the quantities are
statistically invariant in these directions. Therefore, we can define the horizontal average
for any quantity, say B(x, t), as follows:

〈B〉H(x3, t) = lim
(lx1 ,lx2 )→(∞,∞)

1
lx1 lx2

∫ +lx1/2

−lx1/2

∫ +lx2/2

−lx2/2
B(x, t) dx1 dx2. (2.3)
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Substituting Reynolds decomposition (2.2) into the governing equations (2.1a), (2.1b) and
(2.1c), with mean velocity field 〈U〉H = 0 and 〈u〉H = 〈c〉H = 〈 p〉H = 0, we obtain the
equations for fluctuating velocity u(x, t) and concentration c(x, t) fields as follows:

∂ui

∂xi
= 0, (2.4a)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+ f εij3ujê3 − 2Ag(t)cδi3 + ∂〈uiu3〉H

∂x3
+ ν∇2ui, (2.4b)

∂c
∂t

+ uj
∂c
∂xj

= −u3
∂〈C〉H

∂x3
+ ∂〈u3c〉H

∂x3
+ κ∇2c. (2.4c)

We will compute the mixing zone width L(t) from the mean concentration profile
(Andrews & Spalding 1990) as

L(t) = 6
∫ +∞

−∞
〈C〉H(x3, t)(1 − 〈C〉H(x3, t)) dx3. (2.5)

We define the Brunt Väisälä (or stratification) frequency as follows:

N =
√

−2Ag0
∂〈C〉H

∂x3
=
√

−2Ag0Γ . (2.6)

Here, Γ = ∂〈C〉H/∂x3 is the vertical gradient of mean concentration, which can be
approximated as ∂〈C〉H/∂x3 = −1/L.

2.2. Linear theory for the inhomogeneous inviscid rotating system under parametric
oscillations

Using similar formulation, assumptions and analytical techniques as in Briard et al. (2020),
we extend their linear stability analysis for the inviscid inhomogeneous system to rotating
cases and develop a theoretical model to investigate the effects of initial stratification along
with the Coriolis force on the triggering and development of instability. We define the
initial stratification by Atwood number (A) and initial mixing zone size (L0). We consider
a piecewise concentration profile, constant in the bottom and upper pure (unmixed) fluids
and linear in the mixing layer, with a vertical gradient of concentration Γ = 0, in the
unmixed region and Γ = constant, in the mixed region. We also assume that the fluids
are inviscid and the fluctuations in velocity and concentration are small. After neglecting
the nonlinear, viscous and diffusion terms from (2.4b) and (2.4c) and then eliminating the
pressure term, u1 and u2 from the resulting equation of fluctuating velocity u(x, t), we
obtain (see details in Appendix A)

∂2

∂t2
(∇2u3) = −f 2 ∂

2u3

∂x2
3

+ 2Ag(t)Γ∇2
Hu3, (2.7a)

∂c
∂t

= −u3Γ. (2.7b)

Here, ∇2
H ≡ ∂2/∂x2

1 + ∂2/∂x2
2 is the horizontal Laplacian operator. To solve (2.7a) we first

consider a case constant forcing, g(t) = g0 and assume a solution for u3 of the form

u3(x1, x2, x3, t) = φ(x3) ei(kx1+lx2−Ωt), (2.8)

where φ(x3) is the amplitude, Ω is the temporal frequency or characteristic frequency,
and k and l are the components of the wavevector in the horizontal directions x1 and
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x2, respectively. Substitution of (2.8) in (2.7a) yields (see details in Appendix B)

∂2φ

∂x2
3

+ K2 (N
2 −Ω2)

(Ω2 − f 2)
φ = 0. (2.9)

Here, K is the horizontal wavenumber which is defined as K = √
k2 + l2. Now we focus

on solving the case with vertically periodic forcing (see (2.7a)). The horizontal directions
x1 and x2 are assumed to be periodic. Therefore, we apply a Fourier transform on
u3(x1, x2, x3, t) with respect to x1 and x2 such that

u3(x1, x2, x3, t) = û3(k, l, x3, t) ei(kx1+lx2). (2.10)

Substituting the solution (2.10) in (2.7a), we get

∂2

∂t2

(
∂2û3

∂x2
3

− K2û3

)
= −f 2 ∂

2û3

∂x2
3

− 2Ag(t)Γ K2û3. (2.11)

We further decompose the amplitude û3(k, l, x3, t) on the basis of previously calculated
solutions φi of the stationary system (2.9), as follows:

û3(k, l, x3, t) =
∑

i

Ai(k, l, t)φi(k, l, x3). (2.12)

Here Ai(k, l, t) represents the time-dependent part of the amplitude of vertical velocity
field modes evolving as a result of periodic forcing and φi(k, l, x3) corresponds to the
spatially (x3) dependent amplitude of the vertical velocity field modes. Substituting the
decomposition (2.12) in (2.11), we get

∑
i

∂2

∂t2

(
Ai
∂2φi

∂x2
3

− K2φiAi

)
= −

∑
i

f 2Ai
∂2φi

∂x32 −
∑

i

2Ag(t)Γ K2Aiφi. (2.13)

Since we are interested in the temporally evolving amplitude (Ai) with periodic forcing,
we eliminate φi and K from (2.13) by substituting (2.9) to obtain (see Appendix C)

∑
i

∂2Ai

∂t2
=
∑

i

(
− f 2(N2 −Ω2

i )+ N2(Ω2
i − f 2)(1 + F cosωt)

N2 − f 2

)
Ai. (2.14)

Now, we define the amplitude of the concentration field mode ai which is related to the
amplitude of vertical velocity mode Ai via ∂c/∂t = −u3Γ (from (2.7b)), therefore∑

i

∂ai

∂t
=
∑

i

−AiΓ. (2.15)

Substituting Ai from (2.15) in (2.14) and then integrating the resulting equation with
respect to t and rearranging the terms, we get

∂2ai

∂t2
+
(

f 2

(
N2 −Ω2

i

N2 − f 2

)
+ N2

(
Ω2

i − f 2

N2 − f 2

)
(1 + F cos(ωt))

)
ai = 0. (2.16)

This system of equations is equivalent to a set of Mathieu equations (Kovacic, Rand
& Mohamed Sah 2018) of characteristic frequency Ωi, which governs the stability of our
full inhomogeneous inviscid rotating system under vertically periodic forcing. Briard et al.
(2020) obtained an equation similar to (2.16) in the absence of rotation ( f = 0) for the full
inhomogeneous inviscid system. The discrete values of characteristic frequencyΩi can be
determined for the cases when N > f , N < f and N = f , as detailed below.
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2.3. Characteristic frequency Ωi of the full inhomogeneous problem (2.16) when N > f
To solve (2.9) for N > f , we consider the walls of the domain at x3 = ±H/2. Therefore,
the boundary conditions at x3 = ±H/2 are φ = 0. As we are solving (2.9) for the without
periodic forcing case, we assume constant φ = u3top at x3 = L0/2 (interface between
upper lighter fluid and mixed fluid) and constant φ = u3bot at x3 = −L0/2 (interface
between mixed fluid and bottom denser fluid). Here L0 represents the initial mixing
zone size, and H represents the domain height, as shown in the figure 1. Equation (2.9)
has a finite number of solutions (φi) corresponding to the characteristic frequency Ωi
for a given horizontal wavenumber (K). The solutions of (2.9) (see Appendix D for
the solution steps) in the upper pure fluid region (x3 ≥ L0/2, Γ = 0), bottom pure fluid
region (x3 ≤ −L0/2, Γ = 0) and mixed fluid region (|x3| ≤ L0/2, Γ = −N2/(2Ag0)),
respectively, are

φi

(
x3 ≥ L0

2

)
= −u3top

sinh
(

KYi

(
x3 − H

2

))

sinh
(

KYi

(
H − L0

2

)) , (2.17a)

φi

(
x3 ≤ −L0

2

)
= +u3bot

sinh
(

KYi

(
x3 + H

2

))

sinh
(

KYi

(
H − L0

2

)) , (2.17b)

φi

(
|x3| ≤ L0

2

)
= u3top − u3bot

2 sin
(

KXi
L0

2

) sin (KXix3)+ u3top + u3bot

2 cos
(

KXi
L0

2

) cos (KXix3), (2.17c)

where,

Xi =
√

N2 −Ω2
i

Ω2
i − f 2

, Yi =
√

Ω2
i

Ω2
i − f 2

. (2.18a,b)

Both φi and ∂x3φi are continuous at x3 = ±L0/2. Therefore, we differentiate equation
(2.17c) with respect to x3 at x3 = +L0/2 and x3 = −L0/2, and equate it to the derivative
of (2.17a) at x3 = +L0/2 and derivative of (2.17b) at x3 = −L0/2, respectively. After
comparing the coefficients of u3top and u3bot we obtain the following equations (see
Appendix E):

tan

(
K

√
N2 −Ω2

i

Ω2
i − f 2

L0

2

)
= −

√
N2 −Ω2

i

Ω2
i

tanh

(
K

√
Ω2

i

Ω2
i − f 2

(
H − L0

2

))
, (2.19a)

tan

(
K

√
N2 −Ω2

i

Ω2
i − f 2

L0

2

)
=
√

Ω2
i

N2 −Ω2
i

1

tanh

(
K

√
Ω2

i

Ω2
i − f 2

(
H − L0

2

)) . (2.19b)

If we assume the vertical height of the domain to be infinite, the terms with tanh () can
be replaced by 1. We are interested in the solutions of (2.19a) and (2.19b) in terms of Ω
for a given value of N, f and KL0. In general, the solutions of (2.19a) and (2.19b) show
that for given KL0, the possible values of characteristic frequency Ωi fall between f and
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Ω0 = �Ag0K
Ω0 = �f 2 + Ag0K

Figure 2. Possible values of characteristic frequency Ωi of the full inhomogeneous problem (2.16) as a
function of horizontal wavenumber K and initial mixing zone width L0. (a) Here Ωi, normalized by N, as a
function of KL0 for N > f , whereΩi are the solutions of (2.19a) and (2.19b) for rotating f = 1 and non-rotating
f = 0 cases with N = 3. Solutions of (2.19a) are odd and of (2.19b) are even. For the limiting case of the
interface (KL0 � 1) plot of Ω0/N is shown in the inset. (b) Here Ωi, normalized by f , as a function of KL0,
whereΩi are solutions of (2.27a) and (2.27b) with f = 3, N = 1 and KH = 100. Plot ofΩi/f for f = 3, N = 1
and KH = 1000 is shown in the inset. Solutions of (2.27a) are odd and of (2.27b) are even.

N, where N > f . To demonstrate this, we assume N = 3 and f = 1 and the solutions show
that 1 < Ωi < 3 (as illustrated in figure 2a). All the Ωi become asymptotic for KL0 
 1
andΩ0 ≈ N represents the fully developed mixing zone case corresponding to the limiting
case of homogeneous stratified turbulence as reported by Gréa & Adou (2018) and Briard
et al. (2020). However, for KL0 � 1, from (2.19b), we obtain Ω2

0 � f 2 + N2(KL0/2) �
f 2 + Ag0K (see details in Appendix F), which corresponds to the limiting case of the
interface. Notably, for f = 0, the frequency of interface reduces to Ω0 �

√
N2(KL0/2) �√Ag0K and the limiting case of the interface presented by Benjamin & Ursell (1954) and

Briard et al. (2020) is recovered.

2.3.1. Linear theory for the limiting case of the fully developed mixing zone (when
N > f )

We now simplify the full inhomogeneous inviscid problem (general Mathieu equation
(2.16)) for the homogeneous case corresponding to the fully developed mixing zone where
KL0 
 1, because all the Ωi values are constant. First, we rewrite the (2.9) as

∂2φi

∂x32 + m2φi = 0, (2.20)

where

m2 = K2(N2 −Ω2
i )

(Ω2
i − f 2)

. (2.21)

According to the approximate Wentzel–Kramers–Brillouin (WKB) solution of (2.20)
(see Appendix L for WKB approximation), m represents the local wavenumber in the x3
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Figure 3. A 3-D stability diagram obtained by solving the Mathieu equation (2.25) in the parameter space
(N2 sin2(θ)/ω2, f 2 cos2(θ)/ω2,F). All solutions inside the red and cyan coloured regions are unstable in nature
with subharmonic and harmonic responses, respectively. Solutions are stable outside the unstable regions.

(vertical) direction. So, (2.21) represents the dispersion relation for the inertial–gravity
waves (Smith & Waleffe 2002), and is given by

Ω2
i = K2N2 + m2f 2

K2 + m2 = K2

|K |2 N2 + m2

|K |2 f 2, (2.22)

where, |K | = √
K2 + m2 is the magnitude of wavevector K . We introduce tan(θi) = K/m,

where θi is the angle between the vertical axis and the wavevector K , with components
(k, l,m) in the x1, x2 and x3 (vertical) directions, respectively. After substituting the
definition of angle θi in (2.21), we obtain the characteristic frequency as follows (see
Appendix G):

Ω2
i = N2 sin2 (θi)+ f 2 cos2 (θi). (2.23)

The above relation shows that Ωi depends only on the direction of wavevector K and not
on the magnitude of K , which is consistent with the observation that all Ωi are constant
for KL0 
 1. Now, we substitute the characteristic frequency Ωi from (2.23) in (2.16) to
get (see Appendix H)

∂2ai

∂t2
+ ( f 2 cos2 (θi)+ N2 sin2 (θi)(1 + F cos (ωt)))ai = 0. (2.24)

We define non-dimensional time as τ = ωt and replace θ = θi and a = ai such that
(2.24) becomes

∂2a
∂τ 2 +

(
f 2 cos2 (θ)

ω2 + N2 sin2 (θ)

ω2 (1 + F cos (τ ))

)
a = 0. (2.25)

We solve this Mathieu equation (2.25) using Floquet theory, which provides the
solutions to linear differential equations with periodic coefficients. Details of solving
(2.25) using Floquet theory are in Appendix K. The resulting 3-D stability diagram for
(2.25) is illustrated in figure 3. The stability diagram of the general equation (2.16) for the
full inhomogeneous inviscid rotating system is similar to (2.25) except for the eigenvalues.
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2.3.2. Linear theory for the limiting case of the interface (when N > f )
In the limiting case KL0 � 1, where the frequency of the well-defined interface is Ω2

0 �
f 2 + N2(KL0/2) � f 2 + Ag0K, the full inhomogeneous inviscid problem (see (2.16))
reduces to the interface problem (see derivation in Appendix I), which is written as

∂2a
∂τ 2 +

(
f 2

ω2 + Ag0K
ω2 (1 + F cos(τ ))

)
a = 0. (2.26)

The stability diagram for the interface problem is obtained by solving (2.26) using Floquet
theory (see Appendix K). We show this stability diagram in the (Ag0K/ω2 − F) plane at
different f 2/ω2 in a later figure and will discuss it in the results section (§ 4.3).

2.4. Characteristic frequency Ωi of the full inhomogeneous problem (2.16) when N < f
To solve (2.9) for N < f , we use the same boundary conditions and piecewise background
concentration profile (for simplicity) as used for the previous case N > f . The final
solutions (φi) (see Appendix J for solution steps) are used to derive an equation for Ωi
by ensuring that φi and ∂x3φi are continuous at x3 = ±L0/2 and using the same procedure
as in the earlier case of N > f (Appendix E). The resulting equations are written as

tan

(
K

√
Ω2

i − N2

f 2 −Ω2
i

L0

2

)
= −

√
Ω2

i − N2

Ω2
i

tan

(
K

√
Ω2

i

f 2 −Ω2
i

(
H − L0

2

))
, (2.27a)

tan

(
K

√
Ω2

i − N2

f 2 −Ω2
i

L0

2

)
=
√

Ω2
i

Ω2
i − N2

1

tan

(
K

√
Ω2

i

f 2 −Ω2
i

(
H − L0

2

)) . (2.27b)

We solve (2.27a) and (2.27b) to obtain the characteristic frequency Ωi. Figure 2(b)
illustrates Ωi, normalized by f , as a function of KL0 for f = 3, N = 1 and KH = 100. The
solutionsΩi at higher KH (= 1000) are shown in the inset of the figure 2(b). Note that here
KL0 < KH. For all KL0 eachΩi is constant with possible values between N and f , i.e. N <

Ωi < f or 0.333 < Ωi/f < 1. Moreover, for KH = 100 and 1000 each corresponding Ωi
are approximately equal. The maximum characteristic frequency Ω0 ∼ f corresponds to
the frequency of inertial waves in a stratified rotating fluid, when rotation is stronger and
stratification is weak (N < f ) (Ferrari & Wunsch 2009 and Davidson 2013, chapters 3 and
4). Therefore, the full inhomogeneous inviscid problem (2.16) can be simplified for the
N < f case because all the Ωi are constant for all KL0 and KH. We rewrite the expression
(2.21) for N < f as follows:

m2 = K2(Ω2
i − N2)

( f 2 −Ω2
i )

, (2.28)

where m denotes the local vertical (x3) wavenumber from WKB approximation (see
Appendix L). Notably, the dispersion relation becomes the same as that for N > f which
is given by (2.22) and (2.23). The observation of the constant values of allΩi for each KL0
and KH (see figure 2b) agrees with the independence ofΩi on the magnitude of wavevector
and dependence on the direction (θi) of the wavevector shown by the dispersion relation
(2.23). Since the expression of Ωi is same for the N < f and N > f cases, (2.16) for the
full inhomogeneous inviscid problem simplifies to (2.25). As a result, the 3-D stability
diagram for N < f is the same as that for the N > f case.
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2.5. Characteristic frequency Ωi of the full inhomogeneous problem (2.16) when N = f
When the stratification and rotation are of equal strength (N = f ), the dispersion relation
for the inertial-gravity waves (2.22) gives Ω = N = f . Here, we use the concept of group
velocity cg, which is defined as a gradient of Ω in the wavenumber space (k, l,m) and
shows the velocity at which energy propagates away from a disturbance in the form of
wave packets (Davidson 2013, chapters 3 and 4). Since Ω = N = f , cg = ∂Ω/∂K i = 0,
indicating that the wave energy does not propagate or there is no dispersal of energy by
waves, and there is no anisotropy in the large-scale eddies.

3. Numerical methodology and simulation parameters

The governing equations (2.1a), (2.1b) and (2.1c) are discretized using the finite-difference
method on a staggered grid arrangement. We store the velocity fields at the cell faces
and the pressure and concentration fields at the cell centres. A second-order central
finite-difference scheme is employed to compute all the spatial derivatives. For the
advancement in time, we use an explicit third-order Runge–Kutta method except for the
diffusion terms, which are solved implicitly using the Crank–Nicolson method (Pal 2020;
Pal & Chalamalla 2020). The pressure Poisson equation is employed to project a velocity
field into a divergence-free space and is solved using a parallel multigrid iterative solver
to obtain the dynamic pressure. This numerical solver has been extensively validated and
used for several DNS of stratified free-shear and wall-bounded turbulent flows (Brucker &
Sarkar 2010; Pal, de Stadler & Sarkar 2013; Pal & Sarkar 2015; Pal 2020; Pal & Chalamalla
2020; Naskar & Pal 2022a,b). To control the spurious reflections from the disturbances
propagating out of the domain, we use sponge regions near the top and bottom boundaries,
where damping functions gradually relax the values of the variables to their corresponding
values at the boundary. These damping functions are added on the right-hand side of the
momentum equation (2.1b) as explained (Brucker & Sarkar 2010). The sponge region is
far away from the mixing zone such that it does not affect the dynamics of the mixing of
fluids. Periodic boundary conditions are used in the x1 and x2 (horizontal) directions for
all the variables. In the x3 (vertical) direction, the top and bottom boundaries are walls,
with Dirichlet and Neumann boundary conditions as follows:

U1 = U2 = U3 = 0,
∂P
∂x3

= ∂C
∂x3

= 0, at x3 = ±H/2. (3.1)

The initial concentration profile (Briard et al. 2019, 2020) in the present simulations is
given as

C(x, t = 0) = 1
2

(
1 − tanh

(
2x3

δ

))
, (3.2)

where the parameter δ is used to change the initial mixing zone size-L0. All of the
cases simulated here have the same δ = 0.035 and corresponding L0 = 0.096. Broadband
fluctuations (Pal & Sarkar 2015) are imposed on the initial concentration profile (3.2), with
an initial energy spectrum as follows:

E(K) = (K/K0)
4 e−2(K/K0)

2
, (3.3)

where, K0 = 30. The fluctuations are localized at the centreline and are damped
exponentially away from the centreline by multiplying the fluctuating concentration c′
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Case F ω(rad s−1) f (s−1) f /ω ( f /ω)2 Lend(m)

F075f/ω0 0.75 0.67 0 0 0 �3.1
F075f/ω48 0.75 0.67 0.322 0.481 0.23 �3.25
F075f/ω59 0.75 0.67 0.396 0.591 0.35 never saturate
F1f/ω0 1.0 0.7 0 0 0 �3.22
F1f/ω48 1.0 0.7 0.338 0.482 0.23 �3.22
F1f/ω59 1.0 0.7 0.414 0.591 0.35 never saturate
F2f/ω0 2.0 0.8 0 0 0 �3.22
F2f/ω48 2.0 0.8 0.384 0.48 0.23 �3.16
F2f/ω59 2.0 0.8 0.473 0.592 0.35 never saturate
F3f/ω0 3.0 0.9 0 0 0 �3.0
F3f/ω48 3.0 0.9 0.432 0.48 0.23 �3.0
F3f/ω59 3.0 0.9 0.532 0.592 0.35 never saturate

Table 1. Parameters for the simulation: here F is the forcing amplitude, ω is the forcing frequency, f is the
Coriolis frequency and Lend is the final mixing zone size. The Atwood number A = 0.01, initial mixing zone
width L0 = 0.096 m, gravitational acceleration g0 = 10 m s−2, kinematic viscosity ν = 1 × 10−4 m2 s−1 and
diffusion coefficient κ = 1 × 10−4 m2 s−1 is used for all of the cases (Briard et al. 2019).

with a damping function given by

g(x3) = B e− 1
2 (x3/δ)

2
, (3.4)

where B = 0.7 is the maximum intensity of fluctuation at the centreline. The size of the
computational domain is lx1 = 2π m and lx2 = 2π m in the horizontal directions. The
height of the domain is lx3 = 2H = 3.5π m which includes sponge region of thickness
Hs = 0.64π m at top and bottom boundaries. We have used uniform grids Nx1 = Nx2 =
512 in the horizontal direction, while in the vertical direction x3, non-uniform grids Nx3 =
512 are used. The grid is clustered at the vertical centre region of thickness 1.53π m
with �x3min = �x1 = �x2, which is fine enough to resolve all the length scales in the
mixing zone. We perform simulations with different parameters listed in table 1 to verify
our theoretical solutions. The forcing frequency ω is chosen according to the saturation
criterion (1.1) for all simulation cases with Coriolis frequency f = 0, such that Lsat � 2.45
at all forcing amplitudes F. We use the same ω for rotation cases at the corresponding F
to compare non-rotation and rotation cases.

4. Results

The 3-D stability diagram of our Mathieu equation (2.25) in the homogeneous limit
corresponding to the fully developed mixing zone case for N > f is shown in figure 3.
The stability diagram (figure 3) is also valid for the N < f case since the Mathieu
equation (2.25) is the same for both N > f and N < f cases. The stability diagram
shows the effect of the Coriolis force on the triggering and saturation/non-saturation
of the instability through representative examples (line segments of different colours).
The coloured curves correspond to the neutral stability curves, which separate the
(N2 sin2(θ)/ω2, f 2 cos2(θ)/ω2)-plane into regions of stable and unstable (subharmonic or
harmonic) solutions. Inside the red-coloured subharmonic instability tongues, the possible
frequencies of the growing solutions are only odd multiple of the ω/2, which is half of the
external forcing frequency. The solutions inside the cyan-coloured harmonic instability
tongues can have frequencies that are integer multiples of ω. Other solutions that lie
outside the instability tongues are stable.
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Figure 4. Stability diagram of the Mathieu equation (2.25) for stratification (N) initial condition in the absence
of rotation (Coriolis frequency, f = 0). The red and cyan-coloured stability curves separate the stable and
unstable (subharmonic and harmonic) regions. The brown horizontal line segment represent the frequencies
excited, corresponding to an angle θ between 0–π/2, for the initial condition (N0/ω)

2 (right-hand end (×) at
θ = π/2) in the different tongue-like zones. Arrows indicate the evolution of (N/ω)2 as the mixing zone size-L
increases.

4.1. Exploration of the stability diagram in the absence of the Coriolis force
Figure 4 shows the stability curves only for initial stratification conditions in the absence of
the Coriolis force ( f = 0) in the (N/ω)2 − F parameter plane. We obtained this stability
curve similar to that of Gréa & Adou (2018) and Briard et al. (2020). The stable regions
are separated by the unstable subharmonic (inside the red stability curve) and harmonic
(inside the cyan stability curve) regions. Multiple frequencies are excited for a given initial
stratification condition N0 at a fixed F and ω, corresponding to an angle θ between 0–π/2,
as demonstrated by the horizontal brown line segment delineated by two crosses (×) in
figure 4. This segment ranges from 0 (left-hand end; θ = 0) to (N0/ω)

2 (right-hand end;
θ = π/2), where (N0/ω)

2 represents the initial stratification condition corresponding to
the initial mixing zone width-L0 (because (N/ω)2 = 2Ag0/(Lω2) ∝ 1/L, from (2.6)).
When the initial condition (N0/ω)

2 is in the first stable region, the entire segment (shown
with a diamond in figure 4) lies in the stable region. The corresponding θ -modes are stable,
and the instability does not trigger. However, if the initial conditions (N0/ω)

2 are in the
first subharmonic tongue (segment with circles) the instability is triggered immediately
by the unstable subharmonic θ -modes, resulting in the rapid growth of L and decrease in
(N/ω)2, as indicated by the arrows pointing to the left. Therefore, in a non-rotating system
f = 0, Gréa & Adou (2018) deduced the following sufficient condition for the appearance
of the instabilities:

(
N
ω

)2

> G(0,F). (4.1)

Here G(0,F) = 1/(2F + 4) represents the marginal stability curve, shown by the black
dashed curve in figure 4. This curve lies on the left-most boundary of the first subharmonic
tongue. Finally, the mixing zone size saturates (Lsat) owing to the saturation of Faraday
instability when the instability condition, (4.1), is no longer valid. The estimation of the
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saturated mixing zone size in this situation will be as follows (Gréa & Adou 2018):

(
N
ω

)2

= G(0,F) or Lsat = 2Ag0

ω2
1

G(0,F)
. (4.2)

The black squares indicate the Lsat on the marginal stability curve. When the initial
condition is in the first harmonic tongue (segment with squares) or far away ((N0/ω)

2 >
G(0,F)), the mixing zone size grows due to both subharmonic and harmonic instabilities,
and (N/ω)2 decreases. The transition from harmonic to subharmonic occurs when no more
harmonic θ -modes are excited, such that (N/ω)2 will cross the left stability curve of the
first harmonic tongue. The corresponding mixing zone size is Ltr and is demonstrated
by the black circle (see figure 4). We will also show this transition using numerical
simulations in section § 4.4. Afterwards, the mixing zone size saturates at Lsat (as shown
by the black square on the marginal stability curve) when the instability condition 4.1 is
no longer valid. Therefore, the mixing zone size-L saturates for all cases without rotation.

4.2. Exploration of the stability diagram in the presence of the Coriolis force
Figure 5 shows the top view of the 3-D stability diagram (figure 3) at forcing amplitude
F = 1. Various frequencies are excited for given f and (N0/ω)

2, corresponding to an
angle θ between 0–π/2, as represented by the inclined segments in figure 5. In contrast
to the horizontal segment in the ‘without rotation’ cases, the inclined segment in the
presence of rotation ranges from [(N/ω)2, 0] to [(N/ω)2, ( f /ω)2] for a given value of
f . The right-hand end (×) of the inclined segment (at θ = π/2) corresponds to the initial
stratification condition (N0/ω)

2, while the left-hand end (×) (at θ = 0) corresponds to the
given f .

Similar to the ‘without rotation’ case, we define the condition for the occurrence of
instabilities in the presence of rotation as follows:

(
N
ω

)2

> G( f 2/ω2,F), (4.3)

where G( f 2/ω2,F) represents the extreme left-hand boundary of the first subharmonic
tongue. Beyond G, Faraday instability is triggered by the unstable subharmonic or
harmonic θ -modes, resulting in the growth of L and decrease of (N/ω)2. To understand
the stability diagram in the presence of rotation, we study the following possible
configurations based on the initial condition (N0/ω)

2 and a given ( f /ω)2.

(i) If the initial condition is in the first left-hand most stable region such that (N0/ω)
2 <

G( f 2/ω2,F), then two scenarios, namely ( f /ω)2 < 0.25 and ( f /ω)2 ≥ 0.25, are
possible. For ( f /ω)2 < 0.25, all the excited frequencies lie in the stable region,
and the corresponding θ -modes are stable, as depicted by the inclined pink line
segment in figure 5(a). Therefore, the instability is not triggered, and the mixing
zone size will remain at its initial value of L(t = 0). Note that we have defined the
instability condition, (4.3), based on the fact that if at least one θ -modes fall in any
unstable tongues solution will grow, resulting in instability. Therefore, we define the
saturation state of the Faraday instability when the instability condition (4.3) is no
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Figure 5. Top view of the 3-D stability curve (figure 3) at forcing amplitude F = 1. The inclined segments
represent the frequencies excited, corresponding to an angle θ between 0 to π/2, for (N/ω)2 (right end (×) at
θ = π/2) and ( f /ω)2 (left end (×) at θ = 0). The initial conditions (N0/ω)

2 for given ( f /ω)2 are in the first
left-most (a) stable region and subharmonic tongue, and (b) harmonic tongue. Arrows indicate the evolution of
(N/ω)2 as the mixing zone size-L increases.

longer valid and ( f /ω)2 < 0.25 as follows:(
N
ω

)2

= G( f 2/ω2,F) or Lsat = 2Ag0

ω2
1

G( f 2/ω2,F)
, (when ( f /ω)2 < 0.25).

(4.4)

For ( f /ω)2 ≥ 0.25, some of the excited frequencies are in the first unstable
subharmonic tongue (red), and the corresponding θ -modes are unstable as
demonstrated by the dark blue line segment (figure 5a). Therefore, instabilities
trigger, L grows, and (N/ω)2 decreases as indicated by the arrows directing to the
left. The mixing zone size-L will never reach a saturation state because, at every
instant, some frequencies will always be excited in the subharmonic region, and the
corresponding θ -modes will be unstable, as depicted by the dashed blue segment
in figure 5(a). Therefore, the instability condition 4.3 is always satisfied, and L will
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continue to grow. However, the growth rate of L might be slow at later stages because
the θ -modes that fall in the first unstable tongue decrease as (N/ω)2 decreases.

(ii) The instability condition, (4.3), is always satisfied when (N0/ω)
2 is chosen to be in

the first subharmonic (red) region, and therefore, instabilities are triggered by the
unstable θ -modes. For ( f /ω)2 < 0.25, the most unstable θ -modes are excited in the
first subharmonic region, as depicted by the solid orange segment in the figure 5(a).
Therefore, L grows and (N/ω)2 decreases. The instability will achieve a state of
saturation when no subharmonic unstable θ -modes are excited, i.e. the instability
condition, (4.3), is no longer satisfied. The corresponding mixing zone size, Lsat,
is given by the saturation condition, (4.4). Now Lsat may lie anywhere on the left
stability curve of the first subharmonic tongue, as shown by the orange ellipse (see
figure 5a). For ( f /ω)2 ≥ 0.25, the solid green segment (see figure 5a) represents
the initially excited frequencies. For this case, the mixing zone size-L will never
reach a saturation state because some unstable θ -modes are always excited in the
subharmonic region, as demonstrated by the dashed green segment.

(iii) Now we consider the case when the initial condition (N0/ω)
2 is beyond the first

subharmonic tongue. For the initial condition in the first harmonic tongue (cyan),
the grey segment (see figure 5b) represents the case for ( f /ω)2 < 0.25. Owing to
the validity of (4.3), both harmonic and subharmonic instabilities are triggered by
the unstable θ -modes. For some initial time, the most unstable θ -modes (θ � π/2)
are excited in the harmonic region, so the mixing zone size-L grows due to harmonic
instability and thus (N/ω)2 decreases. The growth of L is followed by the harmonic
to subharmonic transition, and the corresponding mixing zone size Ltr is shown
by the solid grey ellipse on the left boundary of the first harmonic tongue (see
figure 5b). Afterwards, L grows due to subharmonic instability if θ -modes are
excited in the first unstable subharmonic region. We will also demonstrate the
harmonic to subharmonic transition, followed by a subharmonic instability, using
numerical simulations in section § 4.4. Finally, the mixing zone size saturates at Lsat
(shown by a dashed grey ellipse) when the saturation condition, (4.4), is satisfied.
For ( f /ω)2 ≥ 0.25, only the harmonic instability is triggered, as shown by the solid
black segment in figure 5(b). After some time, during the growth of L, the (N/ω)2
can be in the stable region between the first subharmonic and harmonic tongues,
as shown by the dash–dotted black segment (figure 5b). No unstable θ -modes
are excited in this stable region, hence L will not grow. Therefore, subharmonic
instability will not be triggered in the present case. This suggests that the instability
condition 4.3 is not valid if the entire inclined segment lies in any of the stable
regions beyond the first subharmonic tongue for a given ( f /ω)2 and (N/ω)2. Now,
we recall that the present theoretical model does not include the diffusion term.
However, in realistic configurations, L can diffuse and grow owing to the molecular
diffusion resulting in a decrease in (N/ω)2. As a result, the right-hand end of
the dash–dotted black segment (N/ω)2 enters the first subharmonic tongue. The
subharmonic instability then leads to the growth of L. However, the mixing zone
size-L never achieves a state of saturation because, at all times, some frequencies
are excited in the subharmonic region as depicted by the dashed black segment in
figure 5(b).

Figures 6(a), 6(b) and 6(c) illustrate the stability diagram of the Mathieu equation
(2.25) at F = 0.75, 2 and 3, respectively. We can observe that the first subharmonic
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Figure 6. Top view of the 3-D stability curve (figure 3) at three different values of the forcing amplitude
(a) F = 0.75, (b) F = 2 and (c) F = 3. The green segment shown in (a) represents the frequencies excited for
the ‘without rotation’ case ( f /ω)2 = 0 (left end (×) at θ = 0) with the initial condition (N0/ω)

2 (right end (×)
at θ = π/2) in the first harmonic tongue.
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(red) and harmonic (cyan) tongues become wide with increasing forcing amplitude F
(see comparison among figure 6a–c). Therefore, the right-hand boundary of the first
subharmonic tongue (red) shifts towards the right-hand side, and the left-hand boundary
of the first harmonic tongue (cyan) moves towards the left-hand side. As a result, the stable
region between these tongues shrinks. As F increases more subharmonic frequencies
are excited and the possibility that the frequencies fall in the stable region between
the first subharmonic and harmonic tongues decreases. Consequently, at higher F, the
instabilities are always triggered for all values of ( f /ω)2 and (N/ω)2 satisfying the
instability condition, (4.3), unlike the lower F cases where the entire segment can lie in the
large stable region between the first subharmonic and harmonic tongues. Additionally, for
all ( f /ω)2, the excitation of more subharmonic frequencies triggers the instability quickly,
resulting in a rapid increase in L. This signifies that for higher F, the effect of rotation on
triggering the instabilities is negligible. The numerical simulations presented in section
§ 4.4 will further support these findings.

To summarize, the mixing zone saturates at Lsat for ( f /ω)2 < 0.25, whereas for
( f /ω)2 ≥ 0.25, the mixing zone never saturates and continues to grow due to the excitation
of unstable subharmonic θ -modes at all times.

4.3. Effect of Coriolis force on the onset of Faraday instability from a sharp interface
Figure 7(a) demonstrates the stability diagram of the interface problem given by (2.26)
in the (Ag0K/ω2,F)-plane. The marginal stability curves are shown for different values
of rotation rates f 2, normalized by ω2, ranging from 0 to 0.3. Corresponding to f 2/ω2,
the region bounded by the solid curves represents the subharmonic (SH) instability
tongue, whereas the region bounded by the dashed curves represents the harmonic (H)
instability tongue. The stable regions are outside the instability tongues, which are
separated by the solid and dashed neutral stability curves. The growth rates (σ /= 0)
of unstable modes for f 2/ω2 = 0, 0.1 and 0.2 inside the first subharmonic tongue are
depicted in the figure 7(b). These growth rates (σ ) are determined using Floquet analysis
(see Appendix K). Corresponding to f 2/ω2 the solid lines represent σ = 0, whereas
dash–dotted lines represent σ /= 0 where σ ranges from 0.02 to 0.14 with an interval
of 0.02. Inside the instability tongues, the well-defined interface between two fluids is
unstable to any perturbation resulting in the generation of standing waves with wavelength
λ (= 2π/K). For example, at F = 0.75 for f 2/ω2 = 0, the subharmonic waves can be
excited with wavelength λsh between λsh

min and λsh
max as indicated by the black circles

on the horizontal orange dashed line in figure 7(a). We can observe that the first
subharmonic tongue moves upwards at higher rotation rates f 2/ω2 ≥ 0.25. Consequently,
the subharmonic Faraday waves are not triggered at lower forcing amplitudes F < 2 and
f 2/ω2 ≥ 0.25, signifying that the Coriolis force suppresses the formation of subharmonic
waves at relatively higher rotation rates. However, the subharmonic instability can always
be excited by increasing the forcing amplitude above a critical value Fc which is defined as
the minima of the first subharmonic tongue for a given f 2/ω2. In contrast, harmonic waves
can always be triggered because harmonic tongues do not move upwards in the presence
of Coriolis force, as shown in figure 7(a).

Figure 7(a) demonstrates that the first subharmonic tongue shifts leftwards as f 2/ω2

increases from 0 to ≤ 0.25. In addition, all inside U-tongues for growth rates ranging
from σ = 0.02 to 0.14 shifts upwards as f 2/ω2 increases from 0 to 0.2 (see figure 7b).
For example, the minima of U-tongue for σ = 0.02 moves from F ≈ 0.162 to 0.27 and
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Figure 7. Panel (a) shows the stability diagram of the interface problem (Mathieu equation) (2.26) in the
parameter space (Ag0K/ω2,F) for different rotation rates f 2/ω2. The tongue-like region bounded by the solid
curves of respective f 2/ω2 correspond to the subharmonic (SH) instability, whereas the region bounded by
the dashed curves correspond to the harmonic (H) instability. The stable solutions lies outside the SH and H
instability tongues. Panel (b) is an enlargement of the first left-most subharmonic tongues for f 2/ω2 = 0, 0.1
and 0.2 in (a). For the corresponding f 2/ω2 = 0, solid curves denote the neutral stability curve for the growth
rate σ = 0, whereas dash–dotted curves denote the contours of different σ at intervals of 0.02 ranging from
0.02 to 0.14. Arrow lines indicate the increasing order of σ . Panel (c) demonstrates the shrinkage of the first
subharmonic tongue with increasing f 2/ω2 in the ( f 2/ω2 + Ag0K/ω2,F)-plane.

0.76 when f 2/ω2 increases from f 2/ω2 = 0 to 0.1 and 0.2, respectively, as indicated by
the orange squares in figure 7(b). At constant forcing amplitude F, the growth rate of the
most unstable mode decreases with an increase in rotation rate from f 2/ω2 = 0 to < 0.25.
For example, at F = 0.75 indicated by the horizontal dashed orange line in figure 7(b),
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the growth rate of the most unstable mode is σ ≈ 0.095, 0.06 and 0.02 for f 2/ω2 = 0, 0.1
and 0.2, respectively. These results suggest that at a fixed F, the Coriolis force suppresses
the excitation of the subharmonic waves. As a result, the subharmonic waves will take
time to develop and grow, thereby delaying the onset of the subharmonic instability.
We conclude that at lower forcing amplitudes, the subharmonic instability suppressing
and delaying effect of the Coriolis force increases with an increase in rotation rates
and eventually becomes so strong that no subharmonic instability is triggered at higher
rotation rates, i.e. when F < 2 and f 2/ω2 ≥ 0.25. However, the subharmonic instability
can always be excited by increasing F above a critical value Fc. Here we can recall that
if molecular diffusion exists, the subharmonic instability can also be triggered from the
diffuse interface when F < 2 and f 2/ω2 ≥ 0.25, but not from the sharp interface, as
discussed in the previous section (§ 4.2).

Additionally, the first subharmonic tongue and the inside U-tongues shrink when
f 2/ω2 increases from 0 to 0.2 (see figure 7b). This shrinkage can be clearly observed
in the ( f 2/ω2 + Ag0K/ω2,F)-plane shown in figure 7(c). Notably, the shrinkage with
increasing f 2/ω2 is significant at lower F, and becomes insignificant at higher F. This
is illustrated by the following example: in comparison with f 2/ω2 = 0 the shrinkage of
subharmonic tongue for f 2/ω2 = 0.2 is ≈ 80 % at F = 0.75 and ≈ 20 % at F = 3. It
suggests that fewer most unstable modes are available at lower F than at higher F, which
can excite and grow the subharmonic waves. According to the previous discussion, at fixed
F, the growth rate of the most unstable mode is less for f 2/ω2 = 0.2 than for f 2/ω2 = 0,
resulting in the suppression and delay of the subharmonic instability by the Coriolis force.
This observation is only true at lower F owing to the additional fact that shrinkage of the
subharmonic tongue results in the availability of fewer unstable modes for f 2/ω2 = 0.2
than that for f 2/ω2 = 0 which are also responsible for the excitation and growth of the
subharmonic waves. In contrast to the lower F, a large number of most unstable modes are
available at higher F, nearly equivalent to that for f 2/ω2 = 0, that can rapidly grow the
subharmonic waves. Therefore, we can deduce that at higher forcing amplitudes, the flow
is energetic enough to overcome the efficacy of rotation in suppressing and delaying the
onset of subharmonic instability.

For each f 2/ω2, the U-tongues for different σ move upwards as σ increases, as indicated
by the arrows in figure 7(b). For f 2/ω2 = 0 and at lower forcing amplitudes approximately
F ≤ 1, the minima of all U-tongues deviate slightly from Ag0K/ω2 = 0.25 as shown
by a vertical dashed black line in figure 7(b). As a result, for the ‘without rotation’
case f 2/ω2 = 0, at a given F the wavenumber Ksh corresponding to the growth rate of
the most unstable mode at the onset of subharmonic instability can be approximated as
Ksh = ω2/(4Ag0) (Briard et al. 2020). In the presence of rotation, the first subharmonic
tongue (σ = 0) and the inside U-tongues (σ /= 0) move leftwards with an increase in
f 2/ω2 until ≤ 0.25. Similar to the case f 2/ω2 = 0, for approximately F ≤ 1 the minima of
U-tongues depart slightly from Ag0K/ω2 = 0.15 and 0.05 for f 2/ω2 = 0.1 and 0.2 cases,
respectively. Consequently, for f 2/ω2 ≤ 0.25, the approximation of Ksh corresponding to
maximum growth rate can be written as

Ksh = ω2

Ag0

(
1
4

−
(

f
ω

)2
)
. (4.5)
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Substituting λsh = 2π/Ksh in (4.5), we get

λsh = 2πAg0

ω2

(
1

1/4 − ( f /ω)2

)
. (4.6)

Therefore, this approximation (4.6) of the wavelength of the initial most amplified mode
starting from the well-defined sharp interface signifies that λsh increases (or Ksh decreases)
with an increase in f 2/ω2(≤ 0.25). With further increase in f 2/ω2(> 0.25), λsh starts to
decrease (or Ksh increase) since the first subharmonic tongue begins to shift rightwards
(see figure 7a). Similar effects of the Coriolis force on the onset of subharmonic waves in
a thin sheet of viscous fluid were reported by Mondal & Kumar (2004), who performed a
linear stability analysis by solving the set of Mathieu equations using Floquet theory.

4.4. Numerical results
In the analytical model, the instability of the interface under the influence of rotation is
presented in terms of the mixing zone size-L(∝ ω2/N2). We present the time evolution of
the mixing zone size-L (see (2.5)) for forcing amplitude F = 0.75 in figure 8(a) obtained
from our simulations. The initial stratification condition corresponding to the initial
mixing zone size-L0 = 0.096 is N2

0/ω
2 = 4.64 that satisfies the instability condition (4.3)

and ensures the onset of the Faraday instability. For the case without rotation (F075f/ω0)
at ωt � 58, L � 0.48 and begins to oscillate with a small amplitude that rapidly grows
(shown in the inset of figure 8a indicated by black arrow) owing to the subharmonic
instability resulting in turbulent mixing. According to the stability diagram in figure 6(a)
(green line segment), the N2/ω2 � 0.93 corresponding to L � 0.48 lies in the stable
region between the first subharmonic and harmonic tongues. When L increases, N2/ω2

decreases and enters the first subharmonic tongue resulting in the rapid growth of L and
turbulent mixing. After ωt � 130, an asymptotic state is achieved, where the mixing zone
size oscillates without any further increase, signifying the saturation of instability. The
final size of the mixing zone is Lend � 3.1 for F075f/ω0. In the stability diagram (figure 6a,
green line segment), N2/ω2 � 0.144 corresponding to Lend � 3.1 lies in the first stable
region and signifies the saturation state of the instability.

The presence of rotation at F = 0.75 impedes the growth of the instabilities. For
the case with f /ω = 0.48 the subharmonic instability is triggered at ωt � 340–355,
L � 1.08–1.12, N2/ω2 � 0.412–0.398, as illustrated by the case F075f/ω48 in figure 8(a)
(see the inset indicated by a green arrow). When the Coriolis frequency is increased
to f /ω = 0.59, the subharmonic instability begins at ωt � 635–650, L � 1.48–1.52,
N2/ω2 � 0.3–0.293, as depicted by the case F075f/ω59 in figure 8(a) (see the inset
indicated by a red arrow). Therefore, the onset of the subharmonic instability causing
turbulent mixing is significantly delayed owing to rotation. The large Coriolis frequency
( f /ω = 0.59) also suppresses the amplitude of oscillations in L in the subharmonic
instability phase. For f /ω = 0.48 ( f 2/ω2 = 0.23) the instability saturates (Lend � 3.25)
and small oscillations in the asymptotic state are damped out by diffusion, whereas for
f /ω = 0.59 ( f 2/ω2 = 0.35) the instability never saturates and hence the mixing zone
size-L continues to evolve with oscillations. This result is consistent with our theoretical
prediction that the instability saturates for f 2/ω2 < 0.25 but never saturates for f 2/ω2 ≥
0.25.

At forcing amplitude F = 1, the time evolution of L for ‘without rotation’ (F1f/ω0)
and ‘with rotation’ (F1f/ω48 and F1f/ω59) cases are illustrated in figure 8(b). For all
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small oscillation before the harmonic to subharmonic transition Ltr . Insets indicated by arrows correspond to
the onset of subharmonic instability (shown by square box). 973 A6-23
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the cases, the instability condition, (4.3), is satisfied by the initial stratification condition
N2

0/ω
2 = 4.25 corresponding to the initial mixing zone size-L0 = 0.096 that ensures the

onset of the Faraday instability. Before the rapid growth of L small oscillations of varying
periods (shown in the inset labelled by a transition region of figure 8b) is observed for both
the ‘without rotation’ ( f /ω = 0) and ‘with rotation’ ( f /ω = 0.48 and f /ω = 0.59) cases.
These small oscillations represent the harmonic phase following which the harmonic to
subharmonic transition (Briard et al. 2019) occurs. For f /ω = 0.48 and 0.59, this transition
occurs at ωt � 60–70 and 65–75 (see inset of figure 8b labelled by transition region)
followed by the stable region until ωt � 150–160 and 290–300, respectively. No harmonic
or subharmonic modes are excited in the stable region, and L grows due to diffusion. We
also observe similar stable regions for F075f/ω48 and F075f/ω59 in figure 8(a) (see the
Supplementary movies 1 and 2 are available at https://doi.org/10.1017/jfm.2023.744 of
the concentration field for F = 0.75 and 1). The presence of this stable region delays the
onset of the subharmonic instability. This verifies our theoretical prediction in § 4.2 that
no instability is triggered if the excited frequencies lie in the stable region between the first
subharmonic and harmonic tongues for f 2/ω2 ≥ 0.25. However, the presence of diffusion
causes L to grow and eventually subharmonic instability triggers. Based on the numerical
results we can also conclude that the same observation is also true for f 2/ω2 < 0.25 cases
if all the modes are excited in the stable region. Here L rapidly grows after the triggering of
the subharmonic instability resulting in turbulent mixing. Similar to F = 0.75, we observe
that L saturates for F1f/ω48, but continues to grow for F1f/ω59.

The effect of rotation on the evolution of L at higher forcing amplitudes F = 2 and
F = 3 is demonstrated in figures 8(c) and 8(d), respectively. The initial stratification
condition is N2

0/ω
2 = 3.26 for F = 2 and N2

0/ω
2 = 2.6 for F = 3 corresponding to the

initial mixing zone size-L0 = 0.096 which ensures the onset of Faraday instability. At
F = 2, the harmonic to subharmonic transition (Ltr � 0.5) occurs at ωt � 13 for F2f/ω0,
F2f/ω48 and F2f/ω59 as indicated by the black circle in the inset of figure 8(c). Further
increasing the forcing amplitude to F = 3, the transition (Ltr � 0.375) occurs at ωt � 6.5
for the F3f/ω0, F3f/ω48 and F3f/ω59 cases, as shown by the black circle in the inset of
figure 8(d). The instability delaying effect of rotation is subdued as the forcing amplitude
increases. This observation is consistent with our analytical model that predicts the
shrinkage of the stable region between the unstable harmonic and subharmonic tongues
with increasing forcing amplitudes (see stability diagrams at F = 2, 3 in figures 6b and 6c,
respectively). For cases with f 2/ω2 = 0 and f 2/ω2 = 0.23, the instability saturates, and
the oscillations in the asymptotic state are damped. However, the instability never saturates
for cases with f 2/ω2 = 0.35 and L continues to evolve with oscillations. Note that at each
corresponding forcing amplitude F = 0.75, 1, 2 and 3, the values of the final mixing zone
size Lend for the corresponding rotation cases f /ω = 0.48 ( f 2/ω2 < 0.25) are very close
to the non-rotation cases ( f /ω = 0). We report Lend values in table 1. Therefore, for the
parameters used in the present simulations, the main difference between the ‘with rotation’
and ‘without rotation’ cases at each F comes principally from the growth of the instability.

Fourier transforms of the derivatives of L for different time intervals, each starting
from t = 0, are performed to capture the harmonic to subharmonic transition in our
simulations. For case F1f/ω0, the normalized Fourier transform of dL/dt as a function
of the normalized frequency f /(ω/2π) is depicted in figure 9(a–d). Two peaks of different
frequencies are present in L. The first and the second peaks represent the subharmonic
and harmonic regimes, respectively. We can observe that for ωt ≤ 45, the second peak is
higher (see figure 9a), denoting the dominance of the harmonic regime. At ωt = 45.92
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Figure 9. Normalized Fourier transform of L̇ as a function of normalized frequency, (a–d) for F1f/ω0 case,
(e–h) for F1f/ω48 case, for different time intervals each starting from ωt = 0 to ωt mentioned on the top
of each figure. The first peak at f /(ω/2π) � 1 corresponds to the subharmonic regime and second peak at
f /(ω/2π) � 2 corresponds to the harmonic regime (Briard et al. 2019).

(figure 9b) the amplitude of both the peaks are similar (see figure 9b) indicating the
transition from harmonic to subharmonic regime. Note that the small oscillations in L
also rapidly grow from ωt � 45 (see figure 8b) owing to the onset of the subharmonic
instability. When ωt > 45 the first peak becomes the dominating peak as illustrated in
figures 9(c) and 9(d), signifying the primary role of the subharmonic instabilities in
turbulent mixing. The Fourier transform of dL/dt for F1f/ω48 demonstrates the harmonic
to subharmonic transition, stable region and the onset of the subharmonic instability. The
dominating second peak at ωt = 65.4 in figure 9(e) shows small oscillations of L (see inset
of figure 8b indicated by a green arrow) are in the harmonic region. The amplitude of the
first and second peak remains approximately unchanged until ωt � 150 (figures 9 f and
9g) which represents the stable region. At ωt � 150–160, the first peak starts increasing,
and the second peak starts decreasing. Eventually the first peak becomes the dominant
(figure 9h) marking the onset of the subharmonic instability at ωt � 150–160. An increase
in the Coriolis frequency to f /ω = 0.59 impedes the harmonic to subharmonic transition,
expands the stable region, and delays the onset of the subharmonic instability (figures not
shown).

Figure 10 depicts the 3-D concentration field in the mixing zone for ‘without rotation’
F1f/ω0 and ‘with rotation’ F1f/ω48 cases. The random wave patterns on the interface
at ωt = 41.5 for F1f/ω0 indicate the inception of the Faraday instability as shown in
figure 10(a). The turbulent mixing caused by the subharmonic instability is demonstrated
at ωt = 70.6 for F1f/ω0 in figure 10(b) followed by the beginning of instability saturation
and fully saturated instability in figures 10(c) and 10(d) at ωt = 120 and ωt ∼ 152,
respectively. For F1f/ω48, the stable region after the harmonic to subharmonic transition
is depicted by figure 10( f ) at ωt = 120. The subsequent figures 10(g) and 10(h) for
F1f/ω48 at ωt ∼ 212 and 329 show a significant delay in turbulent mixing and saturation
of the instability with respect to F1f/ω0. Movies (1)–(4) of the concentration field at the
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0

(a) (b) (c) (d)

(e) ( f ) (g) (h)
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ωt = 41.5, F1f/ω0 ωt = 70.6, F1f/ω0 ωt = 120, F1f/ω0 ωt = 152.3, F1f/ω0

0.6 0.8 1.0

0 0.2 0.4

ωt = 41.5, F1f/ω48 ωt = 120, F1f/ω48 ωt = 212.5, F1f/ω48 ωt = 329.6, F1f/ω48

0.6 0.8 1.0

Figure 10. Visualization of 3-D concentration field, (a–d) for F1f/ω0 case, (e–h) for F1f/ω48 case, at
different time instants. Colour map: blue for C = 0 (lighter fluid) and red for C = 1 (denser fluid). For better
visualization of the mixing of fluids, the pure fluids are made transparent.

x2 = π plane for different forcing amplitudes are included as Supplementary movies, to
demonstrate the influence of rotation on the evolution of the mixing zone.

5. Conclusions

The effect of rotation on the onset and saturation of Faraday instability in two miscible
fluids subjected to vertical oscillations is investigated by means of theoretical analysis
and DNS. A linear stability analysis is performed in the presence of rotation, yielding
a set of Mathieu equations for the full inhomogeneous inviscid rotating problem. These
equations are investigated further for the limiting case of the interface and homogeneous
case when N > f . The N < f case analysis yields the same Mathieu equations as the
homogeneous case for N > f . The analytical model utilizes Floquet theory to solve a set
of Mathieu equations derived from linear stability analysis. On solving the set of Mathieu
equations, a 3-D stability diagram is obtained that consists of stable and unstable harmonic
and subharmonic regions. In the limiting case of interface, we found that increasing
rotation rates suppress and delay the onset of subharmonic instability at lower forcing
amplitudes (F). Eventually, no subharmonic instability is triggered at relatively strong
rotation rates. However, the subharmonic instability can always be excited by increasing
F above a critical value Fc. In contrast, the instability suppressing and delaying effect of
rotation diminishes with an increase in F. The reason for this occurrence is the increase
in the area of the first subharmonic unstable tongue resulting in the majority of excited
modes being most unstable. We also predicted a wavelength (λsh) of the subharmonic
waves corresponding to the initially most amplified mode starting from the sharp interface,
revealing that λsh increases with an increase in f 2/ω2(≤ 0.25).

Further, we have performed simulations at different forcing amplitudes and rotation rates
to verify the findings of our theoretical model. The harmonic to subharmonic transition
followed by the onset of the subharmonic instability, and its saturation, is shown in terms
of the time evolution of the mixing zone size L. For F = 0.75 and 1, the evolution of the
mixing zone size manifests a significantly slow growth under the influence of rotation.
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This slow growth of L represents the stable region between the harmonic to subharmonic
transition and before the onset of the subharmonic instabilities. After this stable region,
the subharmonic instability triggers, and L rapidly grows, resulting in turbulent mixing.
At forcing amplitudes of 2 and 3, the vertical vibrations are strong enough to diminish
the instability delaying effect of rotation. Therefore, the mixing zone size for the cases
with F = 2 and 3 with rotation grows similar to the non-rotating cases. We also perform
the Fourier transform of the rate of change of L to capture the harmonic to subharmonic
transition and demonstrate the delay in this transition in terms of the peak frequencies.

Finally, we have compared the simulations for f /ω = 0.48 and f /ω = 0.59, which
correspond to ( f /ω)2 < 0.25 and ( f /ω)2 ≥ 0.25, respectively, on the 3-D stability
diagram, at different forcing amplitudes. We find that for f /ω = 0.48, the instability
saturates, and the mixing zone size asymptotes. However, for f /ω = 0.59, the instability
does not saturate, and the mixing zone size keeps growing. This confirms our theoretical
observation that for ( f /ω)2 < 0.25 the instability saturates, whereas it never saturates for
( f /ω)2 ≥ 0.25 because some θ -modes are always excited in the first subharmonic tongue
at all times.

The turbulent mixing, attributed to the onset of the subharmonic instability, is associated
with exchanges among the TPE, the BPE and the APE. We aim to extend the present
investigation to explore the influence of rotation on these energy exchanges through
reversible buoyancy flux, irreversible diapycnal mixing and irreversible kinetic energy
dissipation to quantify the irreversible mixing efficiency.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.744.
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Appendix A. Steps to derive (2.7a)

We neglect the nonlinear, viscous and diffusion terms from (2.4b) and (2.4c), which yields

∂ui

∂t
= − ∂p

∂xi
+ f εij3ujê3 − 2Ag(t)cδi3, (A1a)

∂c
∂t

= −u3Γ. (A1b)
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Differentiating (2.4a) with respect to time and using (A1a) yields

∇2
Hp = f

(
∂u2

∂x1
− ∂u1

∂x2

)
+ ∂2u3

∂x3∂t
, (A2)

where ∇2
H ≡ ∂2/∂x2

1 + ∂2/∂x2
2 is the horizontal Laplacian operator. Now, eliminating the

pressure term from (A2) by taking the ∇2
H of (A1a) for i = 3 and using (A2) we obtain

∂

∂t
(∇2u3) = − ∂

∂x3

[
f
(
∂u2

∂x1
− ∂u1

∂x2

)]
− 2Ag(t)∇2

Hc. (A3)

Next, we eliminate u1 and u2 from (A3) by differentiating it with respect to ‘t’, and using
(A1a) and (A1b) yields (2.7a).

Appendix B. Steps to derive (2.9)

Starting with

∂2

∂t2

((
φ(i2k2 + i2l2)+ ∂2φ

∂x2
3

)
ei(kx1+lx2−Ωt)

)
= −f 2 ∂

2φ

∂x2
3

ei(kx1+lx2−Ωt)

+ 2Ag0Γ φ(i2k2 + i2l2) ei(kx1+lx2−Ωt), (B1)

where i2 = −1, and substituting N2 = −2Ag0Γ (from (2.6)) and horizontal wavenumber
K, which is defined as K = √

k2 + l2, in (B1) we get

(−iΩ)2
(

−φK2 + ∂2φ

∂x2
3

)
ei(kx1+lx2−Ωt) = −f 2 ∂

2φ

∂x2
3

ei(kx1+lx2−Ωt) + N2φK2ei(kx1+lx2−Ωt),

(B2a)

−Ω2

(
−φK2 + ∂2φ

∂x2
3

)
= −f 2 ∂

2φ

∂x2
3

+ N2φK2. (B2b)

Rearranging (B2b) we get (2.9).

Appendix C. Derivation of (2.14)

Substituting equation (2.9) into (2.13) yields

∑
i

∂2

∂t2

(
−AiK2

(
N2 −Ω2

i

Ω2
i − f 2

)
φi − K2φiAi

)
=
∑

i

f 2AiK2

(
N2 −Ω2

i

Ω2
i − f 2

)
φi

−
∑

i

2Ag(t)Γ K2Aiφi, (C1)

rearranging the terms we get

∑
i

−K2

(
N2 −Ω2

i

Ω2
i − f 2

+ 1

)
φi
∂2Ai

∂t2
=
∑

i

f 2AiK2

(
N2 −Ω2

i

Ω2
i − f 2

)
φi

−
∑

i

2Ag(t)Γ K2Aiφi. (C2)
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Taking the K2 common from both sides of the above (C2) which cancels out each other,
and after arranging the terms, we get

∑
i

−
(

N2 − f 2

Ω2
i − f 2

)
∂2Ai

∂t2
φi =

∑
i

(
f 2

(
N2 −Ω2

i

Ω2
i − f 2

)
− 2Ag(t)Γ

)
Aiφi. (C3)

Since φi forms a basis on which the decomposition is unique, therefore, the coefficients
of each φi on both sides of the above (C3) would be the same. Hence, we get

∑
i

−
(

N2 − f 2

Ω2
i − f 2

)
∂2Ai

∂t2
=
∑

i

(
f 2

(
N2 −Ω2

i

Ω2
i − f 2

)
− 2Ag(t)Γ

)
Ai. (C4)

Further rearranging the terms of the above (C4) and doing some simplifications, we get

∑
i

∂2Ai

∂t2
=
∑

i

(
− f 2 (N2 −Ω2

i
)− (Ω2

i − f 2)2Ag(t)Γ
N2 − f 2

)
Ai. (C5)

After substituting g(t) = g0(1 + F cosωt) and Γ = −N2/(2Ag0) (see (2.6)) in (C5) we
get (2.14).

Appendix D. Steps for solving (2.9) when N > f

We show the steps to solve (2.9) for the N > f case which represents the second-order
linear homogeneous equation with constant coefficients. First, we solve this equation
in the upper pure fluid regime where vertical gradient of mean concentration Γ = 0
and thus N = √−2Ag0Γ = 0, according to our assumption of piecewise background
concentration profile. So (2.9) becomes

∂2φ

∂x2
3

− K2Ω2

(Ω2 − f 2)
φ = 0. (D1)

Let q2 = K2Ω2/(Ω2 − f 2) and thus the above equation can be written as

∂2φ

∂x2
3

− q2φ = 0. (D2)

Let φ = erx3 be a solution to this equation, for some as-yet-unknown constant r.
After substituting this assumed solution in (D2) we get erx3(r2 − q2) = 0. Since erx3 is
never zero, the above equation is satisfied if and only if r2 − q2 = 0 and roots of this
characteristic equation are r = ±q, which are real and distinct. Therefore, the general
solution of (D2) is

φ = A eqx3 + B e−qx3 . (D3)

To find out the constants A and B, we consider the boundary condition φ = 0 at x3 =
H/2 and φ = u3top at x3 = L0/2. Substituting the boundary conditions in (D3) and solving
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for the constants A and B we get

A = −u3top
exp(−qH/2)

exp(q(H − L0)/2)− exp(−q(H − L0)/2)
, (D4a)

B = u3top
exp(qH/2)

exp(q(H − L0)/2)− exp(−q(H − L0)/2)
. (D4b)

After substituting the constants A and B from (D4a) and (D4b), respectively, into (D3),
we get

φ

(
x3 ≥ L0

2

)
= −u3top

exp(q(x3 − H/2))− exp(−q(x3 − H/2))
exp(q(H − L0)/2)− exp(−q(H − L0)/2)

. (D5)

We can write the exponential terms in the form of hyperbolic trigonometric functions
as

sinh(a) = exp(a)− exp(−a)
2

. (D6)

Therefore, we can write

φ

(
x3 ≥ L0

2

)
= −u3top

sinh
(

q
(

x3 − H
2

))

sinh
(

q
(H − L0)

2

) . (D7)

Now, substituting the value of q in the above (D7) we get the final solution as follows:

φ

(
x3 ≥ L0

2

)
= −u3top

sinh

⎛
⎝K

√
Ω2

Ω2 − f 2

(
x3 − H

2

)⎞⎠

sinh

⎛
⎝K

√
Ω2

Ω2 − f 2

(
H − L0

2

)⎞⎠
. (D8)

We follow the above same procedure to find out the solution for (2.9) in the bottom
pure fluid region from x3 = −L0/2 to x3 = −H/2. In this region, we consider the vertical
gradient of mean concentration Γ = 0, thus N = √−2Ag0Γ = 0 and with boundary
condition φ = u3bot at x3 = −L0/2 and φ = 0 at x3 = −H/2, we get the solution of (2.9)
as follows:

φ

(
x3 ≤ −L0

2

)
= u3bot

sinh

⎛
⎝K

√
Ω2

Ω2 − f 2

(
x3 + H

2

)⎞⎠

sinh

⎛
⎝K

√
Ω2

Ω2 − f 2

(
H − L0

2

)⎞⎠
. (D9)

Next, we see the solution of (2.9) in the mixed fluid region between x3 = L0/2 to x3 =
−L0/2 where the vertical gradient of mean concentration is Γ = −N2/2Ag0. Let q2 =
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K2((N2 −Ω2)/(Ω2 − f 2)) then (2.9) can be written as

∂2φ

∂x2
3

+ q2φ = 0. (D10)

Again we assume the solution of the above equation of the form φ = erx3 where r is
an unknown constant. Substituting this solution in (D10) we get erx3(r2 + q2) = 0, where
erx3 /= 0, therefore we get the characteristic equation r2 + q2 = 0 which has two complex
roots r = ±iq. Thus, the general solution of (D10) is

φ = A eiqx3 + B e−iqx3 . (D11)

We use Euler’s formula eia = cos(a)+ i sin(a) to write the solution in the form of
trigonometric terms and we get

φ = A cos(qx3)+ iA sin(qx3)+ B cos(−qx3)+ iB sin(−qx3), (D12a)

φ = (A + B) cos(qx3)+ i(A − B) sin(qx3), (D12b)

φ = C cos(qx3)+ iD sin(qx3), (D12c)

where C and D are the unknown constants. Now we apply the boundary conditions φ =
u3top at x3 = +L0/2 and φ = u3bot at x3 = −L0/2 to the (D12c) and solving for constants
C and D, we get

C = u3top + u3bot

2 cos
(

qL0

2

) ; D = u3top − u3bot

2i sin
(

qL0

2

) . (D13)

Substituting values of these constants in (D12c) we obtain

φ

(
|x3| ≤ L0

2

)
= u3top + u3bot

2 cos
(

qL0

2

) cos(qx3)+ i
u3top − u3bot

2i sin
(

qL0

2

) sin(qx3), (D14a)

φ

(
|x3| ≤ L0

2

)
= u3top + u3bot

2 cos
(

qL0

2

) cos(qx3)+ u3top − u3bot

2 sin
(

qL0

2

) sin(qx3). (D14b)

Substituting the value of q = K
√
(N2 −Ω2)/(Ω2 − f 2) we finally obtain

φ

(
|x3| ≤ L0

2

)
= u3top + u3bot

2 cos

⎛
⎝K

√
N2 −Ω2

Ω2 − f 2
L0

2

⎞
⎠

cos

⎛
⎝K

√
N2 −Ω2

Ω2 − f 2 x3

⎞
⎠

+ u3top − u3bot

2 sin

⎛
⎝K

√
N2 −Ω2

Ω2 − f 2
L0

2

⎞
⎠

sin

⎛
⎝K

√
N2 −Ω2

Ω2 − f 2 x3

⎞
⎠ . (D15)
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Appendix E. Derivation of the equation for Ωi when N > f

We differentiate (2.17a) with respect to x3 which yields

∂φi

∂x3

(
x3 ≥ L0

2

)
= −u3top

KYi cosh
(

KYi

(
x3 − H

2

))

sinh
(

KYi

(
H − L0

2

)) , (E1a)

∂φi

∂x3

(
x3 ≥ L0

2

)
= −u3top

KYi cosh
(

KYi

(
H
2

− x3

))

sinh
(

KYi

(
H − L0

2

)) ; (E1b)

here we have used the trigonometric hyperbolic function identity cosh (−θi) = cosh (θi).
Further calculating the above derivative of φi at x3 = L0/2 we get(

∂φi

∂x3

)
x3=L0/2

= −u3top
KYi

tanh
(

KYi

(
H − L0

2

)) . (E1c)

Differentiating (2.17c) with respect to x3 we get

∂φi

∂x3

(
|x3| ≤ L0

2

)
= u3top − u3bot

2 sin
(

KXi
L0

2

)KXi cos (KXix3)

+ u3top + u3bot

2 cos
(

KXi
L0

2

) (−KXi) sin (KXix3); (E2a)

again calculating this derivative at φi at x3 = L0/2 we get(
∂φi

∂x3

)
x3=L0/2

= (u3top − u3bot)
KXi

2 tan
(

KXi
L0

2

) − (u3top + u3bot)
KXi

2
tan

(
KXi

L0

2

)
.

(E2b)

We equate (E1c) and (E2b) for continuity of ∂φi/∂x3 at x3 = L0/2. First, we compare
the coefficients of u3top and get

−KYi

tanh
(

KYi
H − L0

2

) = KXi

2 tan
(

KXi
L0

2

) − KXi

2
tan

(
KXi

L0

2

)
, (E3a)

then we compare the coefficients of u3bot and get

0 = − KXi

2 tan
(

KXi
L0

2

) − KXi

2
tan

(
KXi

L0

2

)
, (E3b)

1

tan
(

KXi
L0

2

) = − tan
(

KXi
L0

2

)
. (E3c)
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The Faraday instability in miscible fluids in a rotating environment

Substituting the above (E3c) in (E3a) we get

−Yi

tanh
(

KYi
H − L0

2

) = −Xi

2
tan

(
KXi

L0

2

)
− Xi

2
tan

(
KXi

L0

2

)
, (E3d)

−Yi

tanh
(

KYi
H − L0

2

) = −Xi tan
(

KXi
L0

2

)
; (E3e)

rearranging the terms we get

tan
(

KXi
L0

2

)
= Yi

Xi

1

tanh
(

KYi
H − L0

2

) . (E3f )

Substituting the Xi and Yi from (2.18a,b) in the above (E3 f ), we get

tan

(
K

√
N2 −Ω2

i

Ω2
i − f 2

L0

2

)
=
√

Ω2
i

N2 −Ω2
i

1

tanh

(
K

√
Ω2

i

Ω2
i − f 2

(
H − L0

2

)) . (E4)

Now we substitute

− tan
(

KXi
L0

2

)
= 1

tan
(

KXi
L0

2

) , (E5a)

from (E3c) in (E3a) and we get

−Yi

tanh
(

KYi
H − L0

2

) = Xi

2 tan
(

KXi
L0

2

) + Xi

2 tan
(

KXi
L0

2

) ; (E5b)

rearranging the terms we get

tan
(

KXi
L0

2

)
= −Xi

Yi
tanh

(
KYi

H − L0

2

)
. (E5c)

Further, substituting the Xi and Yi from (2.18a,b) in (E5c) we get

tan

(
K

√
N2 −Ω2

i

Ω2
i − f 2

L0

2

)
= −

√
N2 −Ω2

i

Ω2
i

tanh

(
K

√
Ω2

i

Ω2
i − f 2

(
H − L0

2

))
. (E6)

Appendix F. Derivation of Ω0 for the limiting case of the interface

For the limiting case of the interface KL0 � 1, (2.19b) reduces to

K

√
N2 −Ω2

0

Ω2
0 − f 2

L0

2
=
√

Ω2
0

N2 −Ω2
0
. (F1)

Here, we utilized a small-angle approximation tan(x) ∼ x, and assumed an infinite vertical
domain height which implies that in (2.19b) tanh () ∼ 1. Squaring both the sides of an (F1)
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and rearranging the terms, we get

Ω4
0 (1 − Q2)+ (2N2Q2 − f 2)Ω2

0 − N4Q2 = 0, (F2)

where Q = KL0/2. Because Q � 1, above (F2) reduces to

(Ω2
0 )

2 + (2N2Q2 − f 2)Ω2
0 − N4Q2 = 0. (F3)

The roots of above quadratic equation are

Ω2
0 = −(2N2Q2 − f 2)±

√
(2N2Q2 − f 2)2 + 4N4Q2

2
, (F4a)

Ω2
0 = f 2 − 2N2Q2 ±

√
f 4 − 4N2Q2f 2 + 4N4Q4 + 4N4Q2

2
. (F4b)

Since, 4N4Q4 � 4N4Q2, the above (F4b) reduces to

Ω2
0 = f 2 − 2N2Q2 ±

√
f 4 − 4N2Q2f 2 + 4N4Q2

2
, (F5a)

Ω2
0 = f 2 − 2N2Q2 ±

√
( f 2 + 2N2Q)2 − 4N2Qf 2 − 4N2Q2f 2

2
. (F5b)

Here, 4N2Q2f 2 � 4N2Qf 2, which yields

Ω2
0 = f 2 − 2N2Q2

2
±

(I)︷ ︸︸ ︷√
( f 2 + 2N2Q)2 − 4N2Qf 2

2
. (F6)

Substituting Q = KL0/2 in term (I) of the above (F6), and rearranging the terms we can
rewrite term (I) as

(I) = f 2

2

√√√√(1 +
(

N
f

)2

KL0

)2

− 2
(

N
f

)2

KL0, (F7a)

(I) = f 2

2

(
1 +

(
N
f

)2

KL0

)√√√√√√√√√1 −
2
(

N
f

)2

KL0(
1 +

(
N
f

)2

KL0

)2 , (F7b)
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The Faraday instability in miscible fluids in a rotating environment

(I) = f 2 + N2KL0

2

√√√√√√√√1 −
2
(

N
f

)2

KL0

1 +
(

N
f

)4

(KL0)
2 + 2

(
N
f

)2

KL0

, (F7c)

(I) = f 2 + N2KL0

2

√√√√√√√√√√√

1 − 2

1(
N
f

)2

KL0︸ ︷︷ ︸
(II)

+
(

N
f

)2

KL0︸ ︷︷ ︸
(III)

+ 2︸︷︷︸
(IV)

. (F7d)

As f increases from 0 ( f = 0 corresponds to the non-rotation case) to N/f > 1, the
factor (N/f )2 decreases for a constant N. Moreover, we can take KL0 sufficiently small
due to the limiting case KL0 � 1 so that the product (N/f )2KL0 � 1. Consequently, term
(II) 
 1 and term (III) � 1 of the above (F7d), and therefore we can neglect terms (III)
and (IV) in comparison with term (II), which yields

(I) = f 2 + N2KL0

2

√√√√√√√√
1 − 2

1(
N
f

)2

KL0

, (F8)

(I) = f 2 + N2KL0

2

√√√√√√1 − 2
(

N
f

)2

KL0︸ ︷︷ ︸
(V)

. (F9)

Since (N/f )2KL0 � 1, term (V) � 1 in (F9) and we can neglect term (V) in
comparison with 1. Therefore, (F9) reduces to

(I) = f 2 + N2KL0

2
= f 2 + 2N2Q

2
. (F10)

Substituting term (I) (equation (F10)) in (F6), we get

Ω2
0 = f 2 − 2N2Q2 ± ( f 2 + 2N2Q)

2
. (F11)

The first root of the above equation (with a ‘minus’ sign) is

Ω2
0 = f 2 − 2N2Q2 − ( f 2 + 2N2Q)

2
. (F12a)

As 2N2Q2 � 2N2Q, we get

Ω2
0 = −N2Q. (F12b)
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This implies that the root Ω0 =
√

−N2Q is complex, and therefore we discard this root.
The second root of (F11) (with a ‘plus’ sign) is

Ω2
0 = f 2 − 2N2Q2 + ( f 2 + 2N2Q)

2
, (F13a)

Ω2
0 = f 2 + N2Q = f 2 + KL0

2
N2. (F13b)

The above expression (F13b) shows that for a sufficiently small KL0 and a fixed N
and f , Ω2

0 is close to f 2 and starts to increase from f 2 with an increase in the KL0. To
elucidate this, we consider N = 3 and f = 1 and show the plot of Ω0/N with KL0 for the
limiting case of the interface (KL0 � 1), i.e. (F13b) in the inset of a figure 2(a). Therefore,
the expression (F13b) is consistent with the solutions of (2.19a) and (2.19b) as shown in
figure 2(a) (for a fixed N = 3 and f = 1) demonstrating that all the Ωi are very close to f
(withΩi > f ) when KL0 is very small. Additionally, for f = 0, (F13b) recovers the limiting
case of the interface (i.e. Ω0 =

√
N2(KL0/2) = √Ag0K) reported by Briard et al. (2020)

for the ‘without rotation’ case.

Appendix G. Derivation of (2.23)

First, we rearrange the (2.21) as follows:

Ω2
i − f 2 = K2

m2 (N
2 −Ω2

i ). (G1)

Then we substitute the definition of angle θi in (G1) and obtain the characteristic
frequency Ωi in terms of the angle θi as follows:

Ω2
i − f 2 = tan2(θi)(N2 −Ω2

i ), (G2a)

Ω2
i (1 + tan2(θi)) = N2 tan2(θi)+ f 2, (G2b)

using the trigonometric identity 1 + tan2(θi) = sec2(θi) = 1/ cos2 (θi) in the above (G2b)
and rearranging the terms we get

Ω2
i = N2 tan2(θi)+ f 2

1/ cos2 (θi)
, (G2c)

Ω2
i = N2 sin2(θi)

cos2(θi)
cos2(θi)+ f 2 cos2(θi). (G2d)

Rearranging (G2d) will give (2.23).

Appendix H. Derivation of (2.24)

Rearranging the terms of (2.16), we obtain

∂2ai

∂t2
+
(
Ω2

i + N2

(
Ω2

i − f 2

N2 − f 2

)
F cos(ωt)

)
ai = 0. (H1)
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The Faraday instability in miscible fluids in a rotating environment

Substituting the characteristic frequency Ωi from (2.23) in the above (H1) yields

∂2ai

∂t2
+

⎛
⎜⎜⎜⎝N2 sin2 (θi)+ f 2 cos2 (θi)+ N2(N2 sin2 (θi)+ f 2 cos2 (θi)− f 2)

N2 − f 2︸ ︷︷ ︸
(I)

F cos (ωt)

⎞
⎟⎟⎟⎠ ai = 0.

(H2)

Now we simplify the term (I) of above (H2) as follows:

(I) = N2(N2 sin2 (θi)+ f 2 cos2 (θi)− f 2)

N2 − f 2 , (H3a)

(I) = N2(N2 sin2 (θi)+ f 2 cos2 (θi)+ ( f 2 sin2 (θi)− f 2 sin2 (θi))− f 2)

N2 − f 2 , (H3b)

(I) = N2(N2 sin2 (θi)+ f 2(cos2 (θi)+ sin2 (θi))− f 2 sin2 (θi)− f 2)

N2 − f 2 , (H3c)

using the Pythagorean trigonometric identity cos2 (θi)+ sin2 (θi) = 1 , we get

(I) = N2(N2 sin2 (θi)+ f 2 − f 2 sin2 (θi)− f 2)

N2 − f 2 , (H3d)

(I) = N2(N2 sin2 (θi)− f 2 sin2 (θi))

N2 − f 2 . (H3e)

Now we substitute the term (I) from above (H3e) in (H2), and we get

∂2ai

∂t2
+
(

N2 sin2 (θi)+ f 2 cos2 (θi)+ N2(N2 sin2 (θi)− f 2 sin2 (θi))

N2 − f 2 F cos (ωt)

)
ai = 0.

(H4)

After doing some simplifications, we get

∂2ai

∂t2
+
(

f 2(N2 − f 2) cos2 (θi)

N2 − f 2

+(N
2)2 sin2 (θi)(1 + F cos (ωt))− f 2N2 sin2 (θi)(1 + F cos (ωt))

N2 − f 2

)
ai = 0, (H5a)

∂2ai

∂t2
+
(

f 2 cos2 (θi)+ N2(N2 − f 2) sin2 (θi)

N2 − f 2 (1 + F cos (ωt))

)
ai = 0. (H5b)

After rearrangement of (H5b) we obtain (2.24).

Appendix I. Derivation of (2.26)

We substitute Ω2
0 � f 2 + N2(KL0/2) from the interface limit KL0 � 1 in the general

Mathieu equation (2.16) and replace ai with a for clarity. This gives

∂2a
∂t2

+
(

f 2
(

N2 − f 2 − N2(KL0/2)
N2 − f 2

)
+ N2

(
f 2 + N2(KL0/2)− f 2

N2 − f 2

)
(1 + F cos(ωt))

)
a = 0.

(I1)
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Since KL0 � 1, N2(KL0/2) � N2, then (I1) reduces to

∂2a
∂t2

+
(

f 2
(

N2 − f 2

N2 − f 2

)
+ N2

(
N2(KL0/2)

N2 − f 2

)
(1 + F cos(ωt))

)
a = 0. (I2a)

∂2a
∂t2

+
(

f 2 + N4(KL0/2)
N2 − f 2 (1 + F cos(ωt))

)
a = 0. (I2b)

Substituting N2 = 2Ag0/L0 in the above (I2b) and rearranging the terms, we get

∂2a
∂t2

+

⎛
⎜⎝f 2 + 2A2g2

0K

2Ag0 − L0f 2︸ ︷︷ ︸(I)
(1 + F cos(ωt))

⎞
⎟⎠ a = 0. (I3)

This (I3) can be further simplified by assuming that the interface between two fluids
is well-defined (i.e. no wave/interface breaking) and that the interface is very sharp at the
onset of instability. Accordingly, we can take a small value of K for a well-defined interface
and L0 � 1 for a sharp interface. This implies that KL0 � 1 which represents the limiting
case of the interface. The assumption of the sharp interface is reasonable because, for the
non-rotating system, Briard et al. (2020) has recovered the limiting case of the interface
(KL0 � 1) reported by Benjamin & Ursell (1954) for immiscible fluids with sharp
interfaces. Therefore, for a moderate value of f the product L0f 2 � 2Ag0 or f 2 � N2

(since N2 = 2Ag0/L0). Here, we used the assumption of small density contrast A ≈ 0.01,
g0 ≈ 10 ms−2 which gives 2Ag0 = 0.2 ms−2. We can verify the approximation L0f 2 �
2Ag0 by taking L0 = 0.003 m from the experimental data of Cavelier et al. (2022) and
f = 0.322 s−1 from the present numerical simulations (see table 1 for case F075f/ω48),
which yields L0f 2 ≈ 0.0003 ms−2. This implies that L0f 2 � 2Ag0 (0.0003 � 0.2) and
we can neglect L0f 2 compared with 2Ag0. This also holds true for the other f values given
in table 1. Therefore, using this approximation L0f 2 � 2Ag0 in term (I) of (I3), we obtain

∂2a
∂t2

+ ( f 2 + Ag0K(1 + F cos(ωt)))a = 0. (I4)

Substituting τ = ωt in (I4) yields the Mathieu-like (2.26).

Appendix J. Steps for solving (2.9) when N < f

We rearrange (2.9) as

∂2φ

∂x2
3

+ K2 (Ω
2 − N2)

( f 2 −Ω2)
φ = 0. (J1)

Here, the same solution strategy, boundary conditions and piecewise background
concentration profile is used as for N > f case in Appendix D. We first solve (J1) for N < f
in the upper pure fluid regime x3 ≥ L0/2 where Γ = 0 and hence N = √−2Ag0Γ = 0.
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Therefore, (J1) becomes

∂2φ

∂x2
3

+ K2 Ω2

( f 2 −Ω2)
φ = 0. (J2)

The general solution of (J2) is

φ = C cos

⎛
⎝K

√
Ω2

f 2 −Ω2 x3

⎞
⎠+ iD sin

⎛
⎝K

√
Ω2

f 2 −Ω2 x3

⎞
⎠ , (J3)

where C and D are the unknown constants. These constants are obtained by using the
boundary condition φ = 0 at x3 = H/2 and φ = u3top at x3 = L0/2, which yields the
following solution of (J3):

φ

(
x3 ≥ L0

2

)
= −u3top

sin

⎛
⎝K

√
Ω2

f 2 −Ω2

(
x3 − H

2

)⎞⎠

sin

⎛
⎝K

√
Ω2

f 2 −Ω2

(
H − L0

2

)⎞⎠
. (J4)

Following the above same procedure, we obtain the solution for (J1) in the bottom pure
fluid region x3 = −L0/2 to x3 = −H/2, where Γ = 0, thus N = √−2Ag0Γ = 0 and
boundary condition φ = u3bot at x3 = −L0/2 and φ = 0 at x3 = −H/2. Then the final
solution is given as

φ

(
x3 ≤ −L0

2

)
= u3bot

sin

⎛
⎝K

√
Ω2

f 2 −Ω2

(
x3 + H

2

)⎞⎠

sin

⎛
⎝K

√
Ω2

f 2 −Ω2

(
H − L0

2

)⎞⎠
. (J5)

In the mixed fluid region between x3 = L0/2 to x3 = −L0/2, we consider Γ =
−N2/2Ag0. Therefore, the general solution of (J1) is given as

φ = A cos

⎛
⎝K

√
Ω2 − N2

f 2 −Ω2 x3

⎞
⎠+ iB sin

⎛
⎝K

√
Ω2 − N2

f 2 −Ω2 x3

⎞
⎠ , (J6)

where A and B are the unknown constants. We find out these constants by applying
the boundary conditions φ = u3top at x3 = +L0/2 and φ = u3bot at x3 = −L0/2 to (J6).
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After substituting the expressions for A and B in (J6), we get

φ

(
|x3| ≤ L0

2

)
= u3top + u3bot

2 cos

⎛
⎝K

√
Ω2 − N2

f 2 −Ω2
L0

2

⎞
⎠

cos

⎛
⎝K

√
Ω2 − N2

f 2 −Ω2 x3

⎞
⎠

+ u3top − u3bot

2 sin

⎛
⎝K

√
Ω2 − N2

f 2 −Ω2
L0

2

⎞
⎠

sin

⎛
⎝K

√
Ω2 − N2

f 2 −Ω2 x3

⎞
⎠ . (J7)

Appendix K. Floquet analysis

In this appendix, we briefly discuss the theorems related to Floquet theory, and provide
the steps to solve the Mathieu equation, (2.25), by using these theorems. Proofs of the
theorems and solution steps are given in Jordan & Smith (2007, pp. 308–317).

THEOREM K.1 (Floquet’s theorem). Let dx/dt = A(t)x, be a first-order linear differential
system, where A(t) is T-periodic matrix such that A(t + T) = A(t), ∀ t. This system has at
least one non-trivial solution x = χ(t) such that

χ(t + T) = μχ(t), ∀ t, (K1)

where μ is a characteristic number or Floquet multiplier.

If 𝟇(t) is a fundamental solution matrix of system ẋ = A(t)x, then 𝟇(t + T) is also a
fundamental matrix, and there exists a non-singular matrix C such that

𝟇(t + T) = C𝟇(t), ∀ t, (K2a)

C = 𝟇−1(t)𝟇(t + T), (K2b)

where characteristic numbers, μ′s, are the eigenvalues of C. We can obtain the matrix
C = 𝟇(T) for initial conditions at t = 0 such that 𝟇(0) = I , where I is the identity matrix.

THEOREM K.2. For system ẋ = A(t)x, where A(t) is T-periodic, with characteristic
numbers μ1, μ2, . . . , μn, the product of the characteristic numbers is obtained as

μ1μ2 . . . μn = exp
(∫ T

0
tr{A(t)}

)
. (K3)

Now, we define the characteristic exponent, σ of the system as eσT = μ.

THEOREM K.3. Let C have n distinct eigenvalues,μi and corresponding σi, i = 1, 2, . . . , n.
Then system ẋ = A(t)x has n linearly independent solutions of the form

χi(t) = eσitPi(t), (K4)

here Pi(t) are the periodic vector functions with period T.

Clearly, characteristic exponents eσit, will determine the behaviour of the solutions (K4).
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Now, we apply above theorems to study the nature of solutions of Mathieu (2.25). We
can rewrite (2.25) as

ä + (γ + α + β cos τ)a = 0, (K5)

where,

γ = f 2 cos2 (θ)

ω2 ; α = N2 sin2 (θ)

ω2 ; β = F
N2 sin2 (θ)

ω2 . (K6a–c)

We begin by defining a = X and ȧ = Y , so (K5) can be expressed as a first-order system,[
Ẋ
Ẏ

]
=
[

0 1
−(γ + α + β cos τ) 0

] [
X
Y

]
. (K7)

In the notation of Theorem K.1,

A(τ ) =
[

0 1
−(γ + α + β cos τ) 0

]
. (K8)

Here, A(τ ) is periodic with period 2π and tr{A(τ )} = 0. As our system is of size 2 × 2,
so we have two characteristic numbers μ1 and μ2. Therefore, from Theorem K.2

μ1μ2 = e0 = 1. (K9)

For the following initial condition:

𝟇(0) =
[

1 0
0 1

]
, (K10)

we obtain the matrix C = 𝟇(T) by numerically integrating (with MATLAB) the system
(K7) from τ = 0 to τ = 2π. The eigenvalues or characteristic numbers are the solutions
of quadratic characteristic equation of C

μ2 − (sum of roots)μ+ ( product of roots) = 0, (K11)

and using the (K9), we get

μ2 − φ(γ, α, β)μ+ 1 = 0, (K12)

here, φ(γ, α, β) represents the sum of roots. The solutions μ1 and μ2 of the (K12) are

μ1, μ2 = 1
2(φ ±

√
(φ2 − 4)). (K13)

Thus, different values of φ will determine the behaviour of solutions as follows.

(i) When φ > 2: μ1, μ2 are both real and positive with μ1μ2 = 1 (from (K9)), one of
them, say μ1 > 1 and μ2 < 1. The corresponding characteristic exponents are real
and have the form σ1 = ξ > 0, σ2 = −ξ < 0 (because σ2 = ln(μ2)/T < 0). So, the
general solution from Theorem K.3 can be written as

X(τ ) = c1 eξτP1(τ )+ c2 e−ξ tP2(τ ), (K14)

where ξ > 0, thus eξτ corresponds to the exponential growth in time and solution
becomes unstable with harmonic in nature.
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(ii) When φ < −2: μ1, μ2 are both real and negative with μ1μ2 = 1. The form of
general solution is

X(τ ) = c1 e
(
ξ+ 1

2 i
)
τ
P1(τ )+ c2 e

(
−ξ+ 1

2 i
)
τ
P2(τ ). (K15)

Here, eξτ leads to the exponential growth of solution and eventually becomes
unstable, with subharmonic response.

(iii) When −2 < φ < +2: μ1, μ2 are complex, we have σ1 = iν and σ2 = −iν, thus we
get the solution

X(τ ) = c1 e(iν)τP1(τ )+ c2 e(−iν)τP2(τ ). (K16)

The solutions are bounded at all times and oscillatory but not necessarily periodic,
and lies in stable parameter region.

(iv) When φ = +2: μ1 = μ2 = 1, one solution is periodic with period 2π and lies on
the harmonic tongue of stability curve φ = 2 .

(v) When φ = −2: μ1 = μ2 = −1, one solution is periodic with period 4π and lies on
the subharmonic tongue of stability curve φ = 2 .

Appendix L. The WKB approximation of (2.20)

We consider the (2.21) and assume that N(x3) = √−2Ag0(∂〈C〉H/∂x3) (see (2.6)) is a
slowly varying function such that its fractional change over a vertical wavelength is much
less than unity, therefore m(x3) is also a slowly varying function. With such slowly varying
properties of the medium (here N), we can approximate the WKB solution (for details see
Kundu, Cohen & Dowling 2015, pp. 743–745) of (2.20) by assuming a solution of the form

φ = A(x3) eiψ(x3), (L1)

where A represents the amplitude and ψ the phase. We substitute this solution in (2.20)
and equate the real and imaginary parts, and after doing some simplifications (see Kundu
et al. 2015, pp. 743–745), we get

A = A0√
m

; ψ = ±i
∫ x3

m dx3, (L2a,b)

where A0 is a constant. Therefore, the WKB solution becomes

φ = A0√
m

e± ∫ x3 m dx3 . (L3)

Substitution of this WKB solution (L3) in the assumed solution of u3 (from (2.8)) yields

u3 = A0√
m

ei(kx1+lx2±
∫ x3 m dx3−Ωt). (L4)

Now, taking real parts of the above (L4), we obtain the vertical velocity

u3 = A0√
m

cos
(

kx1 + lx2 ±
∫ x3

m dx3 −Ωt
)
. (L5)

Here, the argument of cos () represents the ‘phase’ and ∂( phase)/∂x3 = m, therefore m
is the local vertical wavenumber in vertical direction x3 and we can define the dispersion
relation as

m2 = k2(N2 −Ω2)

(Ω2 − f 2)
. (L6)
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