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The Continuous Hochschild Cochain
Complex of a Scheme

Amnon Yekutieli

Abstract. Let X be a separated finite type scheme over a noetherian base ring K. There is a complex
¢ (X) of topological Ox-modules, called the complete Hochschild chain complex of X. To any Ox-
module M—not necessarily quasi-coherent—we assign the complex U—(om%);“ ( ¢ (X)), M) of contin-
uous Hochschild cochains with values in M. Our first main result is that when X is smooth over K
there is a functorial isomorphism

FomSy! (€ (), M) 2 RHomo,, (Ox, M)

in the derived category D(Mod O ), where X? := X Xk X.
The second main result is that if X is smooth of relative dimension n and 7! is invertible in I, then

the standard maps 7: C€~9(X) — QZ /K induce a quasi-isomorphism

Hompy (@ Q)q(/K[q],M) — ﬂfomcg;t (@'(X),M) ]
q

When M = Oy this is the quasi-isomorphism underlying the Kontsevich Formality Theorem.
Combining the two results above we deduce a decomposition of the global Hochschild cohomology

q
Exty , (0x, M) = @Hi’q(X, (A Txx) ®oy Jv[) 7
q Ox

where Ty i is the relative tangent sheaf.

0 Introduction and Statement of Results

Let K be a noetherian commutative ring and X a separated K-scheme of finite type.
The diagonal morphism A: X — X? = X xx X is then a closed embedding. This al-
lows us to identify the category Mod Ox of Ox-modules with its image inside
Mod Ox: under the functor A,.

We shall use derived categories freely in this paper, following the reference [RD].
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Definition 0.1 (Hochschild Cohomology, First Definition)

(1) Given an Ox-module M the Hochschild cochain complex of X with values in M
is R Homg ,(Ox, M) € D(Mod Oxz)
(2) The g-th Hochschild cohomology of X with values in M is

EXt%XZ(OXam) = Hq(X27 Rﬂ{omoxz((‘)x,M)) :

This definition of Hochschild cohomology was considered by Kontsevich [Ko]
and Swan [Sw] among others. We observe that if K is a field, A is a commutative K-
algebra, A® := A ®K A, X := Spec A, M is an A-module and M is the quasi-coherent
Ox-module associated to M, then Ext%xz(ox, M) & Extf\e (A,M) = HHY(A, M) is
the usual Hochschild cohomology. This partly justifies the definition. As we shall see,
Definition 0.1 agrees with two other plausible definitions of Hochschild cohomology
of a scheme.

In Section 1 we introduce the complex € (X) of complete Hochschild chains of
X. For any q the sheaf c- 1X) = ¢ 4(X) is a topological Ox-module. (Note the
unusual indexing, due to our use of derived categories.) If ¢ < 0 then Gq(X) =
0, whereas for any ¢ > 0 and any affine open set U = SpecA C X the group
of sections F(U, @q (X)) is an adic completion of the usual module of Hochschild
chains C,(A) = A®4*?) @, A. The coboundary operator 9: CI(X) — C~H(X) is
continuous.

Definition 0.2 (Hochschild Cohomology, Second Definition)

(1) Given an Ox-module M the continuous Hochschild cochain complex of X with

values in M is Hom™" (@ (X), M), where M has the discrete topology.
(2) In the special case M = Ox we write

€1 (X) := Homg™ (Gq(X), Ox).
(3) The g-th Hochschild cohomology of X with values in M is
HI (X, Fom (€(), M) ).
It turns out that on any open set U as above we get
r(U.€,(x) =
{f € Homg(A®? A) | f is a differential operator in each factor}.

Hence this is the same kind of Hochschild cochain complex considered by Kontsevich
in [Ko].

Theorem 0.3  Suppose K is a noetherian ring and X is a smooth separated K-scheme.
Given an Ox-module M there is an isomorphism

g_(omcont ( e (X), M) =~ R fHomoxz (OX7 M)
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in D(Mod Ox:). This isomorphism is functorial in M. In particular for M = Ox we

get
e(.;d (X) =R %Omoxz (OXa OX)

The theorem is proved in Section 2, where it is restated as Corollary 2.9, and is
deduced from the more general Theorem 2.8.

Theorem 0.3 says that on a smooth scheme the two definitions of Hochschild
cochain complexes coincide. In Section 3 we examine a third definition of Hochschild
cohomology, due to Swan [Sw]. We prove (Theorem 3.1) that when X is flat over K
this third definition also agrees with Definition 0.1.

In Section 4 we look at the homomorphism : €,(X) — Q% = Qf  given by the
formula

T((1®a®@ - ®a®1)®1) =day A---Aday.

Let us denote by Tx = Tx /i := Homep, (2%, Ox) the tangent sheaf, and A\? Ty :=
N6, Tx. Consider the complexes . 953 sxlq) and D, AT Tx)[—q] with trivial co-
boundaries.

Theorem 0.4 (Decomposition) Let K be a noetherian ring, let X be a separated
smooth K-scheme of relative dimension n, and assume n! is invertible in K. Then for
any M € Mod Oy the homomorphism of complexes

Teomo, (€D 2lal, M) — FHomig™ (€ (x), M)
q
induced by T is a quasi-isomorphism. In particular for M = Ox we get a quasi-

isomorphism
q
ma: (A Tx) (=4l = (0.

q

Theorem 0.4 is restated (in slightly more general form) in Section 4 as Theo-
rem 4.5 and proved there.

The quasi-isomorphism 7.4 underlies Kontsevich’s Formality Theorem. The fact
that 74 is a quasi-isomorphism in the case of a C* real manifold is [Ko, Theo-
rem 4.6.11]; ¢f. also [Ts, Theorem 2.2.2].

Putting Theorems 0.3 and 0.4 together we obtain a decomposition of the Hochs-
child cochain complex

q
(0.5) R Homo,, (0,30 = (A Tx) [-a] @0, M
q

in D(Mod Ox2).

Passing to global cohomology in (0.5) we obtain the following corollary. It extends
Corollary 2.6 of [Sw] where the assumptions are that K is a field of characteristic 0
and X is smooth and quasi-projective.
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Corollary 0.6  Let K be a noetherian ring, let X be a separated smooth K-scheme of
relative dimension n, and assume n! is invertible in K. Then for any M € Mod O the
Hochschild cohomology decomposes:

q
Extp, (0x, M) = PH (X, (/\ ‘Tx) ®oy M> :

q

Observe that for M = Oy, X affineand A := I'(X, Ox) we recover the Hochschild-
Kostant-Rosenberg Theorem Ext';c (A, A) = \' Ta.

Remark 0.7 This paper replaces “Decomposition of the Hochschild Complex of a
Scheme in Arbitrary Characteristic”, which has been withdrawn. The proof of the
main result of that paper, which relied on minimal injective resolutions, turned out
to have a serious gap in it. The gap was discovered by M. Van den Bergh.

Acknowledgments The paper grew out of an inspiring series of discussions with
Monique Lejeune-Jalabert in 1997 on the subject of characteristic classes and Hochs-
child complexes. I wish to thank her, and the Université Joseph Fourier, Grenoble, for
their kind hospitality. Also thanks to Vladimir Hinich, Colin Ingalls, Joseph Lipman,
Carlos Simpson and the referee for their helpful suggestions. Finally I want to thank
Michel Van den Bergh for detecting an error in an earlier version of the paper (see
Remark above).

1 Complete Hochschild Chains

Let K be a commutative ring and A a commutative K-algebra. As usual we write A¢ :=
A®A where ® := ®y. For any natural number glet B,(A) := A®1*Y) = A®- - QA.
B,(A) is an A°-module via the ring homomorphisma; ® a; = 4, ®1® - Q@ 1 Q@ ay.
The (unnormalized) bar resolution is

(1.1) S By(A) S BA) D ByA) - A — 0,

where 0 is the A®-linear homomorphism

q
Nag @ +++ @ agsy) = Z(—l)lao - ®aidiy Q-+ & dger-

i=0

The coboundary 9 is A®-linear, and the complex (1.1) is split-exact with splitting
homomorphism s(ay ® - - - ® a441) = ap ® - - - ® ag41 ® 1. The homomorphism s is
A-linear when A acts viaa — a ® 1. Cf. [Lo, Section 1.1].
For any q let
Cy(A) := By(A) ®ac A.

C4(A) is the module of degree g Hochschild chains of A.
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Since we will be using derived categories, whose objects are cochain complexes,
we shall unfortunately have to abandon the conventional notations for Hochschild
chains. The first departure will be to write the bar resolution as a cochain complex,
with B79(A) := By(A). Likewise we write C™9(A) := C4(A).

From now on K is assumed to be a noetherian ring. Let A be a finitely gen-
erated K-algebra. Denote by I, the kernel of the ring epimorphism B,(A) — A,
ay @ -+ ® agr > dg- - dgy. Let @q(A) be the I,-adic completion of B,(A). The
homomorphisms 0 and s are continuous for the I;-adic topologies, and hence B (A)
is a complex and B(A) > Aisa continuously A-split quasi-isomorphism. We call

B (A) the complete bar resolution.
Next define

€7(A) = €y(A) == By(A) @5 A= By(A) @y A

and

€l (A) := Hom 2™ (B,4(A),A) = Hom§™ (€y(A),A),
where the superscript “cont” refers to continuous homomorphisms with respect to
the adic topology, and “cd” stands for “continuous dual”. We call C;(A) the module

of complete Hochschild chains, and @Zd (A) the module of continuous Hochschild
cochains.

Lemma 1.2 Assume A is flat over K. Then B (A) is a flat resolution of A as @O(A)-
module.

Proof Let’s write B;(A) = By(A) ® A®1, Since A is a flat K-algebra, it follows that
Bo(A) = Bo(A) ® A¥1is flat. Now By(A) ® A®1 is noetherian, and B,(A) is an adic
completion of it, so By(A) @ A®T — B, (A) is flat. []

Suppose Y is a noetherian scheme and Yy C Y is a closed subset. The formal com-
pletion of Y along Yy is a noetherian formal scheme %) with underlying topological
space Y. The structure sheaf Oy is a sheaf of topological rings with J-adic topology,
where J C Oy is any coherent ideal sheaf defining the closed set Y. The canonical
morphism 9 — Y is flat, i.e., Oy is a flat Oy-algebra. See [EGA I, Section 10.8] for
details.

Definition 1.3  Let X be a finite type separated IK-scheme. For any g > 2 let X4
be the formal completion of the scheme X% := X xi --- Xk X along the diagonal
embedding of X.

(1) Foranyq > 0let @q(X) = Oxgea.
(2) Foranyq > 0 the sheaf of degree g complete Hochschild chains of X is Cy(X) :=
B,(0) ®0,, Ox.

The benefit of the complete sheaves @q(X) and @q(X) is they are coherent (al-
though over different ringed spaces). Indeed:
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Proposition 1.4  On any affine open set U = Spec A C X one has F(U, @q(X)) =
By(A) and T (U, Cy(X)) = Cy(A),

Proof See [EGA I, Section 10.10]. [ |

The homomorphisms 0: @q(A) — @q,l(A) and s: @q(A) — @qH(A) sheafify;
hence @'(X) and @'(X) are complexes with continuous coboundary operators, and
B (X) — Oy is a continuously Ox-split quasi-isomorphism.

Given an Ox-module M we consider M ®I(9X2 Ox =2 LA*M as an object of
D(MOd Ox)

Proposition 1.5  Assume X is flat over K. Then there is an isomorphism
€ (X) = 0x ®%9X2 Ox
in D(Mod Oy).
Proof As in any completion of a noetherian scheme, @O(X) = Oy is a flat Oxe-

algebra. From Lemma 1.2 we see that @q(X) is a flat @O(X)—module. Hence B'(X) is
a flat resolution of Ox as Ox:-module. But €'(X) = B'(X) ®o,, Ox. [ |

Given an Ox-module M we have sheaves fHomg’;“ (@q (X), M) , where “Homen”
refers to continuous homomorphisms for the adic topology on @q(X) and the dis-

crete topology on M. The continuous coboundary 9 makes Hom" (@'(X), M)
into a complex. In Definition 0.2 this was called the continuous Hochschild cochain
complex with values in M.

Proposition 1.6

(1) If M is quasi-coherent then Homg"* (@q (X), M) is also quasi-coherent.
(2) For any affine open set U = Spec A C X, with M := I'(U, M), one has

T (U, Hom* (€,00,M) ) = Hom$™ (&,(4), M)
(3) With U as above,
I'(U,CL (X)) =€)
=~ {f € Homg(A®1, A) | f is a differential operator in each factor}.
Proof (1), (2) We have
Hom5 (€,(X), M) = lim Homo,, (B,(X)/Ty, M)

where iq = Ker(@q(X) — (‘_)X) . But the sheaf @q(X)/ig’ is a coherent O x2-module.
(3) This is immediate from the results in [EGA IV, Section 16.8]. [ |

We see from part (3) of the proposition that this approach to Hochschild cochains
is the same as the one used by Kontsevich [Ko].
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2 Comparison of Two Definitions

In this section we prove that the two definitions of Hochschild cohomology, Defini-
tions 0.1 and 0.2, coincide when X is smooth over K (Corollary 2.9). Throughout we
assume K is a noetherian ring and X is a separated finite type scheme over K.

We start by recalling the notion of discrete Og-module on a noetherian formal
scheme 9). An Og-module M is called discrete if it is discrete for the adic topology of
Oy; in other words, if any local section of M is annihilated by some defining ideal of
9). The subcategory Modgisc Oy C Mod Oy of discrete modules is abelian and closed
under direct limits. Moreover Modg;sc Oy is locally noetherian, so every injective ob-
ject in Modgisc Oy is a direct sum of indecomposable ones. The category Modgisc Oy
has enough injectives, but we do not know if every injective in Modg;sc Oy is also
injective in the bigger category Mod Oy). See [RD, Section II.7] and [Ye2, Sections
3—4] for details.

Given a point y € 9 let k(y) be the residue field and Oy, the local ring. Denote
by J(y) an injective hull of k(y) as Oy ,-module. If y’ is a specialization of y define

d(y,y’) to be a constant sheaf on the closed set { y’} with stalk J(y).

Proposition 2.1  Let Y be a noetherian formal scheme. The indecomposable injective
objects in Modgisc Oy are the sheaves J(y, y').

Proof Exactly as in the proof of [Ye2, Proposition 4.2]. [ ]

In particular this applies to 9 = X2, and we shall denote by J(x, x’) the indecom-
posable injective objects in Modgisc Ox2. Therefore any injective J in Modgisc Ox: has
a decomposition J = @, ., J(x,x’ )HEx)  where pu(x, x') are cardinal numbers and

J(x, x")**") means a direct sum of zi(x, x') copies.
If M € Modgise Ox2 then }Com%’i’; (Bq(X), M) makes sense. The formula is

ﬂ{omg’:; (‘Bq(X), M) = };r_r} Homo,, (Bq(X)/fJ;”, M)
where J, := Ker(@q(X) — OX) . Hence given a complex M' € D(Modgisc Ox2) we
obtain a total complex Fom™ (B*(X), M") with the usual indexing and signs.

Recall that Oy is an Ox-algebra via the first projection X* — X, namely a — a®1.

Lemma 2.2 Let J be an injective object in Modgisc Ox:, and define Jx :=
Home,,(Ox,d). Then there is a homomorphism of Ox-modules T: § — Jx, such
that for any q the induced homomorphism

7yt HomS™ (By(X),d) — HomS™ (B,(X), dx)

is an isomorphism.
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Proof For any pair of points x,x’ € X such that x’ is a specialization of x let
Ix(x,x") = Homo, (Ox, d(x,x")) be the indecomposable injective Ox-module.

Let J, :== Ker(@q(X) — OX) , a defining ideal of the formal scheme X7*2, For
any m > 1 the sheaf of rings B,(X)/J}" is coherent both as an Ox:-module
and as an Ox-module. We see that both Homg,, (@q(X)/Jg”, d(x, x’)) and
Homg, (‘Eq(X) / 7, dx(x, x’)) are constant sheaves on {x’} with stalks being injec-
tive hulls of k(x) as (@q(X) /37) -module. Therefore

Homeo , (Bg(X) /90, 3(x,x")) = Homo, (By(X)/I, dx(x,x")).

This isomorphism is not canonical, yet we can fit it into a compatible direct system
as m varies. Thus there is a (noncanonical) isomorphism

Homg™ (By(X),d(x,x")) = lim Homo,, (By(X)/9, (x,x"))
(2.3) = lim Homo, (By(X)/75, dx(x, %)
= g_(omcont (Bq(X)a 3X(xa xl)) .

Taking g = 0 above, and composing with homomorphism “evaluation at 1”, we ob-
tain Tyt J(x, x7) = Jx(x,x").

Now consider the given injective object J. Choosing a decomposition J =
D, . I, x’)”("”‘/), and summing up the homomorphisms 7/, we obtain a ho-
mofnorphism 7:d — Jx. Because

on con (x,x')
fHomfi)xzt B (X, 3 @%om N{ X) J(x,x")) "
x,x!
and ’
Homg™ (B,(X), Ix) EB Hom§™ (By(X), 3 (x, x) "
it follows from (2.3) that 7, is an isomorphism. [ |

Let A be a K-algebra. For an element a € A, an indexgand any 1 < j < g, let us

define
(2.4) dia=1® 01 R@®1-18a) Q1@ - ® 1€ ByA).
%l,_/
]
Also let
(2.5) da:=a®1® - ®1—-1® - ®1®a € By(A).

The ring B,(A) is an A-algebraby themapa—a®1®---® L.
Let C be a noetherian commutative ring. A C-algebra A is étale if it is finitely
generated and formally étale.
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Lemma 2.6  Denote by K[t1,...,t,] the polynomial algebra in n variables, and let
K[t1,...,t,] — A bean étale ring homomorphism. Then for any q > 0 the ring B,(A)
is a formal power series algebra over A in the n(q + 1) elements d jt;.

Proof For any q the homomorphism A ® K[t,...,,]®@) — B.(A) is étale,
which implies that A — B,(A) is formally smooth of relative dimension #(q + 1). In
particular Q‘qu(A)/A is a free B,(A)-module with basis {d #; ;}, where 1 < j < g+ 1
and
i =10 ®134t01Q---®1c By(A).
\w—/
j

Now for 1 < j < g we have ajt,- = t;; — t;,j+1, whereas dot; — tiqr1 € A. We see that
the set {d(ajti)}?zo is also a basis of Q’qu(A)/A‘

Since the elements d jti are all in the defining ideal I, and since B,(A) — @Q(A) is
formally étale, we get a formally étale homomorphism

¢: Alldotr, ..., dgta]] — By(A).
Because ¢ lifts the identity ¢g: A — A it follows that ¢ is bijective. ]

Recall that X is said to be smooth over K if it is formally smooth and finite type
(see [EGA IV, Section 17]). A smooth scheme is also flat.

Lemma 2.7  Suppose X is smooth over K. Then for any q > 0 the functor
ﬂ{omcom (3 (X) ) MOddisc O}gz — MOddisc Oxz
is exact.

Proof The statement can be verified locally on X, so let U = SpecA C X be an
affine open set that is étale over affine space Af; cf. [EGA IV, Corollary 17.11.3]. In
other words there is an étale ring homomorph1sm ]K[tl, ...y ta] = A. According to
Lemma 2.6, B q(A) is a formal power series algebra over A = @O(A) in the elements
d; jti-where 1 < j < gq.

Denote by I, . the kernel of the ring homomorphism B,(A) — A%, ay®a; Q- ®
dg+1 = g ® ay---ag. Let qu be its completion. For any m > 0 the A¢-module
B q(A) / is free of finite rank—with basis consisting of monomials in the d; jti—and
it has the Io—adlc topology.

Passing to sheaves we see that for any m the functor Homy,, (B (X)/Jq o —) s
exact. But for any discrete module M,

ﬂ{om“’m(B (X), M) = hmﬂ-fomo o (B (X)/J M). [ ]

a.e’
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Theorem 2.8  Suppose K is a noetherian ring and X is a smooth separated K-scheme.
Given a complex M € D*(Modgisc Ox2) there is an isomorphism

Homg™ (B (X), M) = R Home , (Ox, M)
in D(Mod Oyz). This isomorphism is functorial in M.
Proof Let M' — J be an injective resolution of M’ in Modgisc Ox:. By this we
mean that M' — J' is a quasi-isomorphism and J" is a bounded below complex of
injectives objects in Modgisc Ox2. Then each J7 is an injective Ox2-module supported

on X, and

Hom$? (0x,3) = Homo,, (0x,3") = R Homo , (0, M).

Since the homomorphism B (X) — Oy is split by the continuous Ox-linear ho-
momorphism s, Lemma 2.2 says that for any g > 0 the homomorphism

Homy? (0x,31) — Homyy (@ (X),37)

is a quasi-isomorphism. Because B (X) is bounded above and J" is bounded below,
the usual spectral sequence shows that

Homg™ (Ox,d7) — Homg" (B0.4)

is a quasi-isomorphism.
Next by Lemma 2.7 for any g < 0 the homomorphism

FHomg™ (BUX), M) — Hom$™ (BI(X),7)
is a quasi-isomorphism. Therefore
Hom§™ (B'(X), M) — HomE™ (B'(X),7)
is a quasi-isomorphism. [ ]
Now we may compare the two definitions of Hochschild cochain complexes.

Corollary 2.9  Suppose K is a noetherian ring and X is a smooth separated K-scheme.
Given an Ox-module M there is an isomorphism

HomI™ (€ (X), M) = R Home,, (Ox, M)
in D(Mod Ox2). This isomorphism is functorial in M. In particular for M = Ox we

get
Cq(X) = R Homo_, (O, O).
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Proof This is immediate from the theorem, since Mod Ox C Modgisc Ox2, and
¢ (X) = 0x ®o, B(X). [ ]

Remark 2.10  Assume K is a field, and let K be the residue complex of X, see [Ye3].
If X is smooth of dimension n over K then 0 — Q% — K" — --- — X% — 0isa

minimal injective resolution. Hence Jom{" (é (X), Ky) is a bounded below com-
plex of flasque sheaves isomorphic to R Homg , (Ox, 2%)[n]. Moreoverif f: X — Y
is a proper morphism the trace Tr¢: f,Xx — Ky induces a homomorphism of com-
plexes

fHomS (€ (X), Kx) — Hom! (€ (1), Ky).

This angle ought to be explored.

3 A Third Definition

In the paper [Sw] Swan makes the following definition. Let K be a commutative
ring and X a K-scheme. Let C;(X) be the sheaf on X associated to the presheaf
U €, ( I'u, OX)) . Then € (X) is a complex of Ox-modules. Given an O x-module
M choose an injective resolution M — 3% — J' — ---. The g-th Hochschild coho-
mology of X with values in M is defined to be

HH?(X, M) := H1 I‘(X, f}ComOX(G'(X), 8') ) .
This section is devoted to proving the following theorem.

Theorem 3.1  Let K be a noetherian ring and X a flat finite type separated K-scheme.
Let M € D*(Mod Ox) be a complex. Assume either of the following:

(i) X isembeddable as a closed subscheme of some smooth K-scheme, and K is a regular
ring.
(ii) Each H1 M is quasi-coherent.
Then there is an isomorphism
R Homp, (€' (X),M') =R Home,, (Ox, M)
in D*(Mod Oxz). This isomorphism is functorial in M.

Corollary 3.2 Under the assumptions of the theorem, with M' = M a single Ox-
module, there is an isomorphism

HH(X, M) = Ext}y (Ox, M).

Corollary 3.2 was proved by Swan in the case of a field K and a quasi-projective
scheme X [Sw, Theorem 2.1].

The proofs of Theorem 3.1 and Corollary 3.2 are at the end of the section, after
some preparation.
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The sheaves C,(X) are ill behaved; they are not quasi-coherent except in trivial
cases. The sheaves B,(X), associated to the presheaves U 3q(I‘(U, Ox)) , are
even more troublesome: we do not know if B;(X) is an Ox2-module. We get around

these problems by using the completions @q (X).

Proposition 3.3  Let K be a noetherian ring and X a flat finite type separated K-
scheme. Then there is an isomorphism

C(X) =2 0x ®%9X2 Ox
in D(Mod Ox).

Proof For any affine open set U = Spec A C X there is a quasi-isomorphism
C(A) — € (A); see Lemma 1.2. Therefore when we pass to sheaves we obtain a
quasi-isomorphism € (X) — €' (X). Now use Proposition 1.5. [ |

Definition 3.4 Let Y be a noetherian scheme. An Oy-module L is called finite
pseudo locally free if L = @:’:1 giLi, where for each i, g;: U; — Y is the inclusion
of an affine open set, g1 is extension by zero, and £L; is a locally free Oy,-module of
finite rank.

According to [RD, Theorem I1.7.8], for any noetherian scheme Y the category
Mod Oy is locally noetherian.

Lemma 3.5 SupposeY is a noetherian scheme.

(1) A finite pseudo locally free Oy -module L is a noetherian object in Mod Oy.

(2) Given a noetherian object M € Mod Oy there is a surjection L — M with L a
finite pseudo locally free Oy -module.

(3) Let L be a finite pseudo locally free Oy -module. Then L is a flat Oy -module.

(4) IfY is separated and L is a finite pseudo locally free Oy -module then the functor

Home, (L, —): QCoh Oy — QCoh Oy
is exact.

Proof (1) By the proof of [RD, Theorem II.7.8], for any inclusion g: U — X of
an affine open set, the sheaf g Oy is noetherian in Mod Oy. This implies that for any
coherent Oy -module M, M is noetherian in Mod Oy.

(2) For every affine open subset g: U — Y and every section of I'(U, M) we get a
homomorphism g0y — M. By the ascending chain condition finitely many of these
cover M.

(3) In order to verify flatness we may restrict to a sufficiently small open subset
V C Y. Thus we can assume each L; in Definition 3.4 is free; and hence we reduce
to the case L = g Oy for an affine open subsetg: U — Y.
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For any Oy-module M we have
20y ®9, M = gig" M.

Since both functors g* and g are exact it follows that gOy is flat.
(4) After the same reduction as in (3) we have

Homo, (§0u, M) = g.g"M.
Since g is now an affine morphism the functor
g QCOh Oy — QCOh Oy

is exact. ]

Proof of Theorem 3.1 If condition (i) is satisfied then X? is embeddable in a regular
scheme. Hence we can find a resolution - - - — £L~! — L% — Oy where all the Ox.-
modules L7 are locally free of finite rank. Otherwise by Lemma 3.5 we can at least
find such a resolution where the L7 are finite pseudo locally free Ox2-modules.

Since L is a flat resolution of Oy, by Proposition 3.3 we have

C(X) = Ox ®o, L

in D_(MOd Ox).

Choose a quasi-isomorphism M' — K where X" is a bounded below complex
of injective Ox-modules. Then choose a quasi-isomorphism K= — J where J is a
bounded below complex of injective Oy2-modules. If condition (ii) holds then take
K and J° to be complexes of quasi-coherent injective modules over Ox and Oy
respectively (c¢f. [RD, Theorem I1.7.18]).

We have

R Homo,, (Ox, M) = Hom , (0x, 5,

and there is a quasi-isomorphism
Homeo ,(0x,d") = Home, (L,7).

Since either all the £ are locally free Oy -modules of finite rank (in case condition (i)
holds), or all the £9 are finite pseudo locally free and all the K9 and J9 are quasi-
coherent (in case condition (ii) holds), it follows that we have a quasi-isomorphism

f}Comoxz L, X)) — ﬂ'Comoxz(L',H').

But
Home,, (L', K") = Home, (Ox @, L, K").
Finally
Homo, (Ox ®o,, L',K) = RHome, (Ox ®o, L, K")
= R Homg, ( C(X), IK')
= R Homg, ( C(X), 3\/[)
in D(Mod Oy). To this isomorphism we apply the functor A,. ]
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Proof of Corollary 3.2 Choose an injective resolution M — J'. Then
Home, (€(X),d) = RHomp, (€(X),M).
Because each sheaf Hom, ( C1(X), 31’) is flasque it follows that
HIT (X, Homo, (€'(X),") ) = HIRT(X, R Homo, (€(X),M) ).

The left hand side is by definition HH?(X, M). The right hand side is, according to
the theorem,

HIRT(X,R Home ,(0x, M)) = Extgxz(oX,M). [ |

4 Decomposition in Characteristic 0

In this section we prove that the Hochschild cochain complex decomposes when X is
smooth and char K = 0. Throughout this section the base ring K is noetherian and
X is a separated finite type scheme over K.

Let A be a finitely generated K-algebra and Q1 = Qf /i the module of relative

Kihler differentials of degree q. We declare €D g Q11q] to be a complex with trivial
coboundary. For any g > 0 there is an A-linear homomorphism

m: Ce(A) = By(A) ®ac A — QZ,
T((1®m®@ - ®a®1)®1) =day A---Ada,.
Since w0 = 0 we obtain a homomorphism of complexes 7: C'(A) — q Q[ql.
Recall that I, = Ker (B4(A) — A).

Lemma4.1 Letm > q. Then 71'(131 . Gq(A)) =0.

Proof Let us consider QZ as a By(A)-module. Then 7 is a differential operator of
order < g. Now use [Yel, Proposition 1.4.6]. |

The lemma shows that 7 is continuous, so it extends to a homomorphism of com-
plexes

m: €(A) - P Qilql-
q

If we take A = K[t] := Klty,...,t,] the polynomial algebra in # variables,
then B,(K[t]) is a polynomial algebra over K[#] in the n(q + 1) elements Eljti, .
Lemma 2.6. Put a Z-grading on B, (K[¢t]) by declaring degd ;#; := 1, and dega := 0
for 0 # a € K[t]. This induces a grading on C,(K[t]) = B,(K[t]) ®3,xt)) K[E].
Also consider Q]?([t] to be homogeneous of degree q.

Lemma 4.2  The homomorphism m: C,(K[t]) — Q?«[t] has degree 0.
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Proof Since C,(K[t]) is a free K[t]-module with basis the monomials 3 =
djti---dj b, withl < ji,...,jm < qand 1 <ij,...,i, < nitsuffices to look at
7(3). We note that deg 3 = m. Now

T(1on® - ®ael)el) =0

ifanya, € K, 1 < p < q. Therefore 7(3) = O unless {ji,..., jm} = {1,...,q}. We
conclude that 7(3) = 0if m < g. On the other hand, since each &jti € I;, Lemma4.1
tells us that 7(8) = 0 if m > q. [ |

The lemma says that 7 is @ morphism in the category GrMod K[t] of Z-graded
IK[t]-modules and degree 0 homomorphisms.

Lemma 4.3  Assume n! is invertible in K. Then w: C (K[t]) — EBq Q;Iqt] [q] is a
homotopy equivalence of complexes over GrMod IK[¢].

Proof Write A := K[t]. For g > n we have Q% = 0, and g! is invertible for all
q < n. So by [Lo, Proposition 1.3.16] the homomorphism of complexes 7: € (A) —
@q Q%[q] is a quasi-isomorphism. Now the complexes €' (A) and EBq Qq] are
both bounded above complexes of projective objects in GrMod A. So the quasi-
isomorphism 7: C'(A) — @ q Q1[q] has to be a homotopy equivalence. Namely
there are homomorphisms ¢: QZ — C1(A) and h: C1(A) — C T Y(A) in
GrMod A satisfying: 0¢ = 0, 1e—q(s) — ¢m = hd — Oh and lgi — ¢ = 0. ]

Proposition 4.4 Suppose K[t] — A is étale and n! is invertible in K. Then m:

) — @D, Q11q] is a homotopy equivalence of topological A-modules. Namely
there are continuous A-linear homomorphisms ¢: Qi — @’q(A) and h: @*q(A) —
e-11(A) satisfying: 0¢ = 0, 15 —¢m = h0—0hand1q: —w¢ = 0. Furthermore

e-a(a)
the homomorphisms ¢ and h are functorial in A.

Proof Declare A to be homogeneous of degree 0. From Lemma 4.3 we get homo-
morphisms

¢ A QK Qf([t] — A @y CTUK[E])

and
h: A @k CTIK[E]) — A ®kpe) €171 (K[E])

in GrMod A, satisfying the homotopy equations. Because K[t] — A is étale there
is an isomorphism A Q¢ Q?K[t] o Qi. By Lemma 2.6, @q(A) is the completion of
A ®xpz) C4(K[t]) with respect to the grading. Therefore ¢ and h extend uniquely
to continuous homomorphisms as claimed. The functoriality in A follows from the
uniqueness. [ ]
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Theorem 4.5 Let K be a noetherian ring, let X be a separated smooth IK-scheme of
relative dimension n, and assume n! is invertible in I<. Then for any complex M €
D(Mod Oy) the homomorphism of complexes

Homo, (@ QLql, M) = HomS™ (€ (X), M)
q

induced by T is a quasi-isomorphism.

Proof The assertion may be checked locally on X, so let U = Spec A C X be an
affine open set admitting an étale morphism U — A}. If U’ = Spec A’ C U is any
affine open subset then the ring homomorphisms K[¢] — A — A’ are étale. We
deduce from Proposition 4.4 that 7: ew) — @D, Q1 [q] is a homotopy equivalence
of topological Oy-modules, i.e., there are continuous Oy -linear homomorphisms
¢: Q) — @_q(U) and h: @_q(U) — @_Q_I(U) satisfying the homotopy equations.

|

Corollary 4.6~ Under the assumptions of the theorem, for any complex M' €
D*(Mod Oy) there is an isomorphism

q
B (A Tx) (=al @0, M = R Iomo,, (0, M)
q

in D(Mod Oy ). This isomorphism is functorial in M. In particular for M' = Ox we

obtain
q
B (A7) (-al = RHomo,, (0x, 0x)
q
in D(Mod Ox2).
Proof Use Theorem 2.8. |

Observe that the isomorphism A7 Ty = Extf,)X2 (Ox, Ox) deduced from Corol-

lary 4.6 differs by a factor of g! from the Hochschild-Kostant-Rosenberg isomor-
phism (¢f. [HKR, Theorem 5.2] and [Lo, Theorem 3.4.4]).
Taking global cohomology in Corollary 4.6 we deduce the next corollary.

Corollary 4.7  Under the assumptions of the theorem, for any O x-module M there is
an isomorphism

q
Exty, (Ox, M) = DH (X, (/\ ‘Tx) ®oy M> :
q
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Corollary 4.7 was proved by Swan [Sw, Corollary 2.6] in the case X is smooth
quasi-projective over the field K = C.

Let us concentrate on the Hochschild cochain complex with values in Ox. Here
we give notation to the homomorphism induced by 7; it is

q
ma: [\ Tx = €4 (0.

The precise formula on an affine open set U = Spec A is

Taa A A1 @ @~ @a,®@ 1) = Y sgn(0)va)(@) - - Vorg) (ag)
oEY,

for v; € Ty = Derk(A) and a; € A, where sgn(o) denotes the sign of the permuta-
tion o.

Theorem 4.5 says that 7 is a quasi-isomorphism if X is smooth of relative di-
mension n and #n! is invertible in K. The next result is a converse.

Theorem 4.8  Let IK be a Gorenstein noetherian ring of finite Krull dimension and let
X be a smooth separated IK-scheme of relative dimension n. Then the following three
conditions are equivalent.

Q) 7 X - D, Q% 1q] is a quasi-isomorphism.

(i) 7eq: GBq(/\q Tx)[—q] = C4(X) is a quasi-isomorphism.
(iii) n!isinvertible in Ox.

Proof All three conditions can be checked locally. So take a sufficiently small affine

openset U = Spec A C X such that there is an étale homomorphism K¢, ..., #,] —
A. We will prove that the three conditions are equivalent on U (cf. Propositions 1.4
and 1.6).

(i) < (ii): Denote by D the functor Homs(—,A) and by RD: D(ModA) —
D(Mod A) its derived functor. Consider the homomorphism of complexes

Ted : @(;\‘J}Q [—q] — C4(A).
q

By Lemma 2.6, @q(A) is a power series algebra over A in nq elements. Hence the
adjunction map

€,(4) — DCY,(A) = Hom, (Homffm (€,(A), A) ,A)

is bijective, and we get
7= D(mea): CylA) — Q.
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We claim that moreover €' (A) =RDC_4(A) and

(4.9) ™ =RD(r): C(4) — P Qi Lql.
q

To verify this let us choose a bounded injective resolution A — J' in Mod A, which
is possible since A is Gorenstein of finite Krull dimension. Each A-module (‘,’Zd (A)is
free. Then, even though the complex €, (A) is unbounded,

Homy (C4(A),A) — Homy (€C4(A), J)

is a quasi-isomorphism. Thus the claim is proved.

The functor RD is a duality of the subcategory D.(ModA) of complexes
with finitely generated cohomologies. By Corollary 2.9 we know that C_,(A) €
D.(Mod A), and clearly @q(/\q Ta)[—q] € D.(ModA). We conclude that 7 is
an isomorphism in D.(Mod A) iff 7 = R D(7r¢q) is an isomorphism.

(i) & (iii): We know that C'(A) — é‘(A) is a quasi-isomorphism. Let €: QZ —
H™7C€ (A) be the isomorphism of the Hochschild-Kostant-Rosenberg Theorem [Lo,
Theorem 3.4.4]. Then by [Lo, Proposition 1.3.16], me(a) = q! a for all o € Q4.

If n! is invertible in A then so is ¢! for all ¢ < n. For ¢ > n we have Q4 = 0. So 7
is a quasi-isomorphism.

Conversely, suppose 7 is a quasi-isomorphism. Let « be a basis of the free A-
module 2. Then n! o = me(a) is also a basis, so n! must be invertible in A. ]

Oddly, if X is affine there is always a decomposition, regardless of characteristic.

Proposition 4.10  If K is noetherian and X is affine and smooth over K then there is a
canonical isomorphism

q

R Homo,, (0x, 0x) = P ( A Tx) [~d]

q
in D(Mod Oy2).

Proof Say X = Spec A. Let A — ] be an injective resolution in Mod A€, and set
N := Homy: (A, J'), which is a complex of A-modules. Denote by F: ModA —
Mod A€ the restriction of scalars functor for the homomorphism A¢ — A (this is the
ring version of A,). Then FN' = R Hom. (A, A) in D(Mod A®). Let G: Mod A® —
Mod Oy be the sheafication functor. Since GJ is an injective resolution of Ox we
see that
GFN' = g‘fOn’loxz (Ox, G]) =R j‘COﬂ’lon (Ox, Ox)

in D(Mod Oyz).

Now according to the Hochschild-Kostant-Rosenberg Theorem (see [HKR, The-
orem 5.2] and [Lo, Theorem 3.4.4]) the cohomology HI N* = Ext’. (A, A) = A\17,.
Since the A-modules A7 T4 are projective and almost all of them are zero, it is easy to
see, by truncation and splitting, that N* @q(/\q T4)[—q] in D(Mod A). Therefore
GFN'" = @q(/\q Tx)[—¢g] in D(Mod Oxz). [ |
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Question 4.11 'We have seen that if X is affine or if I contains enough denominators
then the Hochschild cochain complex €_; (X) decomposes in the derived category. Is
there decomposition in other circumstances?

Question 4.12 How is the decomposition of Theorem 4.5 related to the Hodge de-
composition of Gerstenhaber-Schack [GS]? Perhaps the comparison to Swan’s defi-
nition of Hochschild cochains (Section 3) can help.

Remark 4.13 1n [Ko], Déoly (X) := C4(X)[1] is called the complex of poly-differ-

ential operators. The complex {‘Ti)oly X) =6 q( AT Tx)[1 — q] is called the complex
of poly-vector fields. Kontsevich’s Formality Theorem [Ko] says that ( %ng )g>o0 is the

degree 1 component of an L, -quasi-isomorphism of the DG Lie algebra structures
of D' (X)and ‘J'I',Oly (X) when K is a field of characteristic 0.

poly
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