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Abstract
Political event data are widely used in studies of political violence. Recent years have seen notable advances
in the automated coding of political event data from international news sources. Yet, the validity ofmachine-
coded event data remains disputed, especially in the context of event geolocation. We analyze the fre-
quencies of human- and machine-geocoded event data agreement in relation to an independent (ground
truth) source. The events are human rights violations in Colombia. We perform our evaluation for a key,
8-year period of the Colombian conflict and in three 2-year subperiods as well as for a selected set of
(non)journalistically remote municipalities. As a complement to this analysis, we estimate spatial probit
models based on the three datasets. These models assume Gaussian Markov Random Field error processes;
they are constructed using a stochastic partial differential equation and estimated with integrated nested
Laplacian approximation. The estimated models tell us whether the three datasets produce comparable
predictions, underreport events in relation to the same covariates, and have similar patterns of prediction
error. Together the two analyses show that, for this subnational conflict, themachine- and human-geocoded
datasets are comparable in terms of external validity but, according to the geostatistical models, produce
prediction errors that differ in important respects.

Keywords: Event data, geocoding, spatial analysis, spatial regression, machine coding, external validity,
human rights violations

1 Introduction

Scholars agree that text is a valuable sourceof political data (Grimmer andStewart 2013;Wilkerson

and Casas 2017). They also agree that machines are potentially better able to extract information

about the location and timing of political events than humans, especially in the context of large

scale event data collection efforts (King and Lowe 2004). This is predominantly becausemachines

can filter large amounts of text more quickly and consistently than humans (Beiler et al. 2016).
Using machines for event data coding, we therefore should be able to make significant progress

in conducting subnational (micro level) analyses of terrorism and other forms of conflict.

What is at issue is whether machine coding is as valid as human coding for the measurement

of political events. Measurement validity can be defined as the degree to which one’s codings

meaningfully reflect a corresponding concept (Adcock and Collier 2001). With regard to event data

derived from text, there are two kinds of validity, internal and external. The former evaluates

whether machine and human coders extract the same information from the same text (Grimmer

and Stewart 2013, 279). The latter assesses whether the information extracted from the text by the

machine and human coders corresponds to ground truth, or to what actually happened at some

location at a particular time. Internal validation alone is a pyrrhic victory if the text on which it is

based is itself inaccurate and/or incomplete.
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The results of validation efforts are mixed. Some studies find that machines and humans do

an equally good job of coding events (Schrodt and Gerner 1994; King and Lowe 2004).1 Others

argue thatmachinesdoanespecially poor jobof coding events, particularly the locationof events.

For example, in introducing the Uppsala Conflict Data Program’s Georeferenced Event Database

(GED), Sundberg and Melander (2013, fn. 4) argue that machine geocoding is not fruitful because

machines cannot distinguish locations of events when there are multiple cities across the world

with the same names (see also Althaus, Peyton, and Shalmon 2021). As regards external validity,

several researchers founda remotenessproblem in human- and/ormachine-codedevent datasets.
Due to journalistic practice and other factors, human—and especiallymachine—coded event data

have been shown to be less accurate the more remote an event is from major urban centers

(Davenport and Ball 2002; Hammond andWeidmann 2014; Weidmann 2016).

Two researchdesignsareused inextantevaluations. Inone, researchersuseexperts toestablish

what is assumed to be valid codings. These experts—often project managers—then train a group

of individuals to code text. Individuals’ error rates are gauged in a pilot study. Then a text corpus is

assembledand trainee coding is compared to the codingby aparticular pieceof software (Althaus,

Peyton, and Shalmon 2021; RaytheonBBNTechnologies, 2015). In some cases, the design includes

assessments of the accuracy of the locations of events reported in the corpus by humans and

software. Confusion matrices and related tools are primarily used within such validation efforts.2

There are three problems with this design. First, the accuracy of the expert codings is not

questioned and in the case of location coding it is assumed that the trainees have extensive

geographical knowledge. Yet even GED, for example, admits that human coders often lack this

knowledge (Croicu and Sundberg 2015, 14). Moreover, in these cases, external validity often is not

assessed. Neither the human (trainees) nor the machine coding is compared to an independent

source.3 Second, confusionmatrices and tools used for theanalysis of rawdatadonot tell uswhere
coding errors are located, for instance, if they cluster far away from major cities (the remoteness

problem). As such, these tools do not tell us where errors in the predictions made on the basis
of each kind of data are most prevalent, and where the errors cluster spatially. A third problem

is that such evaluations usually are based on a relatively small sample of events. The datasets we

employ in this article allow formore than 8,000 comparisons of ground truth versusmachine- and

human-geocodedhuman (HRVs).Making this number of comparisons is not feasible by hand. And,

again, by hand evaluations of a subset of complete datasets do not reveal statistically meaningful

patterns synonymous with the remoteness problem and related sources of error.

Theother validationdesignasks if the inferencesbasedon theestimates fromstatisticalmodels

of human- andmachine-codeddata are the sameand if the two event datasets are equally good at
predicting an independently collected set of events. An early example of this approach is Schrodt

andGerner’s (1994) comparison of cross correlations and periodograms for human- andmachine-

coded data. More recently, Bagozzi et al. (2019) used Cook et al.’s (2017) binary misclassification
model to gauge underreporting bias in the human-coded GED and the widely used machine-

coded Integrated Crisis Early Warning System dataset (ICEWS; Boschee et al. 2016). Bagozzi et al.
(2019) found remarkable similarities in the patterns and statistical significance of the coefficients

in models of machine- and human-coded event data as well as in the coefficients in the auxiliary

1 See theSupplementary Appendix for schematics of howSchrodt andGerner (1994) andKingandLowe (2004) eachattempt
to achieve one or both kinds of validity.

2 A more extensive description of this approach to establishing external validity can be found in the Supplementary
Appendix.

3 Althaus et al. compare human- and machine-derived events coded for the same corpus of reports about Boko Haram in
Nigeria.RaytheonBBNTechnologies (2015) is anassessmentof thehumancodingversus the IntegratedCrisisEarlyWarning
System (ICEWS) machine coding of a comparable corpus. The former study includes some assessment of geocoding.
The latter does not. We also note that the idea of using independently collected data to gauge the external validity of
event datasets is becoming more common. See, for instance, Zammit-Mangion et al. (2012); Weidmann (2016), and von
Borzyskowski and Wahman (2021).
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equations that explain the tendency of the codings to underreport events. In addition, Bagozzi

et al.’s statistical model employing machine-coded event data performed as good or better than
their models employing human-coded event data in predicting independently collected data on

HRVs. Neither Schrodt and Gerner (1994) nor Bagozzi et al. (2019) explicitly modeled geolocation
accuracy, however. Hence, they provide few insights into the usefulness of machine-coded data

for investigating subnational patterns of conflict.

Both research designs are employed in this article. First, the frequency of agreement between

reports of human right violations by an independent source and reports in themachine-geocoded

and human-geocoded datasets are each compared for 8- and 2-year periods of conflict and for

a small cluster of (non)remote units. Then, as an important complement to this evaluation, we

fit geostatistical spatial error models (SEMs) of HRVs for each dataset’s full set of events (over

one thousand units over an eight year period and also for several subperiods). We employ SEMs

because, conceptually, they are best suited to address the external validity issue (Anselin 1996,

907; Ward and Gleditsch 2019, 76). Geostatistical spatial error models are employed rather than

neighborhood spatial errormodels because, asweexplain below, the former aremore informative

than the latter. In particular, themost useful insights into the validity of the datasets are produced

by spatial probit models for which the errors are assumed to be Gaussian Markov Random Fields

(GMRFs). These models are estimated by means of integrated nested Laplacian approximation

(INLA). They yield estimates of the range of spatial error dependence as well as site specific infor-
mation about the mean and variance of the errors in machine-geocoded and human-geocoded

events.4

Our test beds are cross-sections5 of subnational data on FARC-perpetrated acts of violence

against civilians in Colombia during the period 2002–2009, as coded by humans for GED and

by machines via ICEWS. Both the GED and ICEWS data are widely used in the study of conflict.6

In addition, ICEWS is considered one of the most accurate machine-coded datasets currently

available (D’Orazio, Yonamine, andSchrodt 2011, 4). GEDhas likewisebeen shown tohave superior

geolocation accuracy compared to other prominent human-coded datasets (Eck 2012). The inde-

pendently collected data from the Centro de Investigación y Educación Popular (CINEP) is used to

assess the external validity of the GED and ICEWS data.

We find the external validity of our machine-geocoded (ICEWS) data compares favorably to

that of our human-geocoded (GED) dataset. Predictions of FARC–HRV events based on these

machine-geocoded and human-geocoded datasets depend on the same covariates—covariates

that are, in some respects, indicative of the remoteness problem. These same covariates explain

underreporting in the two datasets. Our geostatistical analysis based on these covariates reveals

some differences in the spatial dependence of the respective model errors. For example, the

ranges of spatial error dependence and marginal variance of these errors differ for models based

on the ICEWS- and GED-based datasets. But in terms of predictive accuracy and other metrics,

the two models are comparable. In delving deeper into these findings, some differences in the

pattern of spatial error dependence is found formodels of subperiods of the Colombia conflict.We

attribute these differences to, among other things, the number of news sources on which ICEWS

4 This geostatistical approach is closely related to kriging, a method that has been applied in political science by Cho and
Gimpel (2007)andmore recentlybyGill (2021). Foradiscussionofhowthepresentapproach is related tokrigingandseveral
other geostatistical methods, see Lindgren and Rue (2015, 1–2); see also Blangiardo and Cameletti (2015). Weidmann and
Ward (2010, 885ff) use GMRFs for lattice data in their application of the autologisticmodel. Chyzh and Kaiser (2019) use the
GMRF concept in their graph theoretic analysis.

5 Sequential cross-sectional designsareoftenused toevaluate spatial interdependence. Examples includeBalleretal. (2001)
and Cho (2003). Single cross sections sometimes are employed in the study of spatial patterns of local violence as well, for
example, DeJuan (2013).

6 A 2021 Google search for “Integrated Crisis Early Warning System” and “Georeferenced Event Database” produced approx-
imately 4,100 and 5,200 results, respectively.
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and GED are based. But overall then there is little evidence that, in our case, machine-geocoded

data are less externally valid than human-geocoded data.

The ensuing discussion is divided in to three parts. In the next section, we discuss two

approaches to external validity assessments, and especially the use of geostatistical models in

external validity assessment. Part three explains the Colombian testbed, and presents our results.

Part four outlines directions for future research including the need to evaluate additional human-

and machine-coded datasets, and how to incorporate more complex kinds of spatial evaluation

in our validity assessments.

2 External Validation of Event Data

Both human- and machine-coded event datasets primarily code events (in terms of who did

what to whom, and where/when) from international news(wire) reports. The Supplementary

Appendix reviews the current state-of-the-art for geolocation methods used within human- and

machine-coded political event data. As noted above, the Supplementary Appendix also contains

a description of how researchers employ experts to assess the validity of subsamples of these

codings. Once more, spatial data analysis is a valuable complement to these latter assessments.

Spatial data analysis enables researchers to evaluate the validity of complete sets of machine-

and human-geocoded data, and, in the process, to illuminate statistically meaningful correlates

of geocoding and, concomitantly, of underreporting.

There are two forms of spatial data analysis. The first is the familiar “neighborhood approach”

(Anselin 1996). It analyzes spatial dependence in a variable between discrete units like census
tracts, municipalities, electoral districts, provinces, and countries.7 A connectivity matrix is pre-
specified for neighborhood models indicating presumed relationships between the values of a
variable in certain units or between themodel errors of certain units. Themodelsmay contain spa-

tial and(or) aspatial covariates (Cho2003). Conceptually, theSEM is thebest suited “neighborhood

approach” for answering our questions about the validity of human- and machine-coded event

data. SEMs capture model errors for neighboring units that cluster together—“smaller(larger)

errors for observation i . . . go together with smaller [larger] errors for [neighbor] j” (Ward and
Gleditsch 2019, 76). Errors also may be correlated because of the mismatch between the spatial

scale of a process and the discrete spatial units of observations (Anselin 2006, 907). These error

patterns correspond respectively to what researchers call the remoteness problem. For example,

remoteness means that a model’s underestimates of violence in a unit distant from a capital

city correlate with underestimates of violence in a neighboring unit which is also distant from

the same city. An example, is the spatial probit error model (SPEM). A technique based on the

conditional log likelihood and variance–covariancematrix of themodel can be used to estimate it

(Martinelli and Geniaux 2017). The model provides estimates of a λ parameter which, with a row-

standardized connectivitymatrix, indicates the averagedependence in the errors of a prespecified

set of neighbors on the estimation error in a unit of interest.

For several reasons neighborhood models like the SPEM are not well suited to externally

validate our machine- and human-geocoded events. To begin, neighborhood models may suffer

from “inappropriate discretization” (Lindgren and Rue 2015, 3). The prespecified connectivity

matrices used in neighborhood models treats spatial dependence of errors as a step function—

the same for some subset of units and nonexistant for another subset of units. In reality, the

spatial dependence of errors at different sites may vary continuously in space. In addition, the
λ parameter produced by neighborhood error models is difficult to interpret; it does not tell

us about the impacts of spatial error dependence at specific sites. And it is difficult to infer

7 That is, randomaggregate values over areal units or a latticewithwell defined boundaries; a countable collection of spatial
units (Blangiardo and Cameletti 2015, 173); see also (Weidmann and Ward 2010, 884).
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these impacts from the respective model estimates. The alternative—geostatistical spatial error

models—produce estimates of both the range of spatial error dependence and of the site specific
impact of unobserved factors including measurement errors on the unit of interest. For these

reasons, we fit SPEMmodels for the CINEP, ICEWS, and GED datasets, but relegate the discussion

of the respective results to the Supplementary Appendix.

Geostatistical models analyze point referenced data. These models are based on the idea of a

continuous spatial domain. For example, even though terrorist events are observed at specific

locations and therefore “inherently discrete” these events are interpreted as realizations of a

continuously indexed space-time process (Python et al. 2017, 2018).8 One geostatistical approach
to analyzing these kinds of data are Continuous Domain Bayesian Modeling with INLA.9 Briefly,

this approach “does not build models solely for discretely observed data but for approximations
of entire processes defined over continuous domains” (Lindgren and Rue 2015, 3, emphasis in the
original). It assumes that the data generating process is a Gaussian field, ξ(s ), where s denotes a
finite set of locations, (s1, . . . , sm ). As such it suffers froma “big n problem”; analyzing theGaussian

field is costly computationally (Lindgren, Rue, and Lindström 2011). Therefore, a particular linear,

stochastic partial differential equation (SPDE) is assumed to apply to the Gaussian field:

(κ2−Δ)
α
2 (τξ(s )) =W (s ), s ∈ D , (1)

where Δ is a Laplacian, α is a smoothness parameter such that α = λ + 1 (for two-dimensional

processes), κ > 0 is a scale parameter, τ is a precision parameter, the domain is denoted by D, and
W (s ) is Gaussian spatial white noise. The solution of this equation is a stationary Gaussian field

with the Matérn covariance function:

Cov (ξ(si ),ξ(sj )) = σ2
ξi

1

Γ (λ)2λ−1
(κ | | si − sj | |)λKλ(κ | | si − sj | |), (2)

where | | si − sj | | denotes the Euclidean distance between locations si and sj , σ2
ξi
is the marginal

variance, Γ (λ) = λ!, Kλ is the modified Bessel function of the second kind and order λ > 0. The

distance at which the spatial correlation becomes negligible (for λ > .05) is the range, r. The
solution to the SPDE implies that the formula for themarginal variance isσ2 = Γ (λ)

Γ (α )(4π)
d
2 κ2λτ2

where

d = 2(α − λ). And the formula for the range is r =
√
8λ
κ . In this way, the Gaussian field can be

represented (approximated) by a GMRF. A finite element method using basis functions defined

on a Constrained Refined Delaunay Triangularization (mesh) over a corresponding shapefile of

latitude–longitude event data is used for this purpose.

A hierarchical Bayesian framework can be used to model the data. For dichotomous data like

the discrete observation of a human rights violation, three equations are employed:

yi | ηi ,θ ∼ Ber noul l i (πi ), i = 1, . . . ,m, (3)

ηi | θ = β0 +

nβ∑

k=1

βk zk ,i + ξi , i = 1, . . . ,m, (4)

θ ∼ p(θ), (5)

8 The data, say y (s ), are a random outcome at a specific location and the spatial index, s, can vary continuously in a fixed
domain; s is a two-dimensional vector with latitudes and longitudes (three-dimensional if altitudes are considered).

9 The following description draws fromBlangiardo and Cameletti (2015, Chap. 6) and especially the passage on pp. 234–235
of Python et al. (2017).
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where yi is theobservationatpoint i,m is thenumberof vertices in theDelaunayTriangularization,
the second equation is the linear predictor, here ηi = pr obi t (π), with spatially explicit covariates

zk ,i , ξi the Gaussian field as defined by equations (1) and (2) and approximated by the GMRF at

point i, and equation (1) assigns the hyperparameters θ = (κ,σ2
ξ ).

10

INLA is used to estimate themodel. INLA performs numerical calculation of posterior densities

and in this regard it is more efficient than Markov Chain Monte Carlo methods. Besides estimates

of the effects of spatially explicit covariates on the probability of events and of the range of spatial

error dependence for each dataset, this geostatistical approach produces useful estimates of the

parameters in the GMRF—in particular, the mean and standard deviation of the latent field at

each point in the dataset. These estimates tell us about the impact of uncertainty produced by

both the scarcity (absence) of data and measurement error at each site. The estimates of the

GMRF therefore tell us how human- andmachine-coded data compare in terms of the remoteness

problem.11

3 External Validation of Geolocated FARC HRVs in Colombia

3.1 The Testbed
Our external validation testbed corresponds to Colombia.12 With a domestic insurgency that

has now spanned over five decades, Colombia has been the scene of an egregious number of

HRVs. These violations have been charted at the subnational level by numerous researchers and

nongovernmental organizations (e.g., Holmes, de Piñeres, and Curtin 2007; Guberek et al. 2010;
Lum et al. 2010; Bagozzi et al. 2019). In keepingwithmuch of this past research, our HRV validation
efforts focus on rebel—and specifically, FARC—perpetrated instances of violence against civilians.

Separate human- andmachine-coded databases contain comparable geo-tagged records of such

violations. In particular, both GED and ICEWS code FARC perpetrated HRVs against civilian targets

using similar ontologies, and they use many of the same news source(s) to code events.13

There are also several independent organizations in Colombiawhomonitor HRVs. Through the

data archived by one of these organizations, CINEP, we created a spatially aggregated database

of FARC-directed HRVs for validation purposes (CINEP, 2008). CINEP is unlikely to exhibit many of

the measurement problems that are common in (human- and machine-coded) event datasets. It

has been documenting the FARC conflict in Colombia for over 40 years; it has created an exten-

sive archive of (Spanish language) national and regional Colombian newspapers and associated

reports. These sources—which additionally include victim testimony, nongovernmental organi-

zation reports, and government sources—are far more exhaustive in their coverage of potential

Colombian HRVs than international newswire reports. For these reasons, CINEP’s records of FARC

perpetrated HRVs in Colombia are likely to be substantially more accurate than those of either

ICEWS or GED, thus making it an ideal external validation source (Bagozzi et al. 2019).
For our validation assessments, we aggregate the CINEP, GED, and ICEWS data on FARC perpe-

trated violence toward civilians (hereafter, HRVs) for Colombian municipalities during the years

2002–2009. Details on the source/target actor categories, event types, and geolocation preci-

sion designations used in aggregating our GED, ICEWS, and CINEP data are explained in the

Supplementary Appendix. Our choice of a 2002–2009 time window for analysis is motivated by

three factors. First, past analyses of political violence in Colombia tend to focus on this period

10 For comparability to the SPEM, we employ the probit link function in our geostatistical evaluation of the ICEWS and GED
data. In the Supplementary Appendix, we also report substantively comparable results for standard probit model with no
spatial error component.

11 Amore complexmodel assumes space–time separability. It also decomposes the stochastic part of themodel into a GMRF
and Gaussian white noise both of which are time dependent. The Gaussian white noise component then is interpreted as
measurement error. See Python et al. (2018, 7–8). We return to thesemore complex geostatistical models in the Section 4.

12 The data used in this analysis are available on the Political Analysis Dataverse (Stundal 2021).
13 We provide additional details on these datasets’ ontologies in relation to HRVs, past validation efforts, and news sources,

further below and in the Supplementary Appendix.
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of civil conflict in Colombia. For instance, Bagozzi et al. (2019) consider instances of rebel and
paramilitary violence against civilians in Colombia during the years 2000–2009whereas Lum et al.
(2010) consider lethal violence in Colombia’s Casanare department for 1998–2007. Second, data

availability on our human, machine, and validation event data helped to inform our choice of the

2002–2009 time window. GED reportedly underwent significant improvements about this time

(Croicu and Sundberg 2015, 14) whereas focusing on the post-2000 period allows us to similarly

avoidpotential instability in thenumberof underlying sources codedwithin the ICEWSdata. Third,

awide rangeof relevant political and social developments occurredwithin Colombia itselfmaking

the 2002–2009 period an optimal window for analyzing FARC HRVs. Colombia broke off 3 years

of peace talks with the FARC in early 2002, leading to a sustained multiyear increase in violence,

including a May 2002 rebel-perpetrated massacre of approximately 119 civilians in Bojayá. The

year 2002 also marks the start of Álvaro Uribe’s two 4-year terms as Colombia’s President, and

of the associated hard-line stance that the Colombian government took towards the FARC (and

ELN) prior to the initiation of FARC peace talks by Juan Manuel Santos, Colombia’s subsequent

President.

Following the work in political science (Cho 2003; Cho and Gimpel 2007), sociology (Tolnay,

Deane, and Beck 1996) and criminology (Baller et al. 2001), we also conduct additional validity
assessments for three subperiods: 2002–2004, 2005–2007, and 2008–2009. These three subperi-

ods capture distinctly different conflict phases. During the years 2002–2004, the FARC made use

of the government peace process and associated demilitarized regions established by the Andrés

Arango administration to prepare for future insurgency. These early years were characterized by a

noticeable uptick in violence and an overall rise in the number of clashes between FARC and gov-

ernment security forces. In contrast, during 2005–2007 subperiod the Uribe administration exe-

cuted a counterinsurgency strategywhich led to a sharp decline in overall FARC activity in compar-

ison to the violence of first subperiod. The last subperiod, 2008–2009, was one of relative peace.

The three subperiods thus allow us to evaluate ICEWS and GED over conflict phases of escalation,

de-escalation, and relative peace.14 Finally, we examine the accuracy of ICEWSandGEDgeocoding

in terms of the ability to detect at least one event per municipality in the main cross-section and
then in each subperiod. To save space, we focus on the 2002–2004 and 2005–2007 periods in the

text. Our full analyses for the 2008–2009 subperiod is reported in the Supplementary Appendix.

3.2 Frequencies of Agreement in Geocodings of ICEWS and GED with CINEP
Webeginwith an assessment basedon the full 2002–2009datasets. Figure 1 displays the observed

FARC HRVs obtained from the ICEWS, GED, and CINEP data, indicating which municipalities were

reported to experience at least one reported FARC HRV between 2002 and 2009. There are several

noticeable differences in the patterns in the maps. ICEWS records more events both in the north

and south of Colombia than did GED. Looking at the map for CINEP, both ICEWS and GED appear

to underreport FARC HRVs especially in the west and south of the country. Yet the confusion

matrix, Table 1, indicates that there is roughly the same level agreementbetween ICEWSandCINEP

(73.4%) as between GED and CINEP (78.5%). The Cohen’s kappa scores for both datasets are in the

“fair” range of 0.20–0.40. For all the municipalities in the entire study period then, the raw data

do not show major differences in the geocoding of ICEWS and GED. Rather, they exhibit spatial

similarities in coverage of FARC HRVs.

Because we are interested in the problem of underreporting as a function of remoteness,

we next assess the accuracy of the datasets in a collection of journalistically remote and jour-

nalistically proximate locations. To be specific, we chose five journalistically remote and five

journalistically proximate municipalities from among those which CINEP reported at least five

14 Once more, in the Section 4, we discuss an extension which allows for space time error analysis by municipality year.
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Table 1. Municipality-event confusion matrix, 2002–2009 (confidence intervals in brackets).

2002–2009 ICEWS GED

No event Event No event Event

CINEP No event 736 92 763 65

Event 205 83 175 113

Precision accuracy (%) 73.4 [70.7, 76.0] 78.5 [76.0, 80.9]

Cohen’s Kappa 0.20 [0.13, 0.28] 0.36 [0.29, 0.43]

Figure 1. Observed FARC events.

FARC HRVs between 2002 and 2009. Five percent of all FARC HRVs reported by CINEP occurred in

these ten municipalities in the study period. Journalistic remoteness and journalistic proximity

(hereafter “remote” and “nonremote”) were defined in terms of distance from the capitol and

largest city in Colombia, Bogota. Bogota is the likely location of the journalists who supply the

information to the newswires codedby ICEWSandGED. This is because in the study periodBogota

was the safest location in Colombia and also the home of the country’s international airport.

Figure 2 depicts the selected municipalities.15

Table 2 contains these additional external validity assessments. The top panel reports the

results for at least one reported FARC HRV in each of the eight years in each cluster of five

municipalities. Both ICEWS and GED are slightly more accurate in reporting remote than non-

remote FARC HRVs. But the confidence intervals for their accuracy statistics overlap. The same

is true of the confidence intervals for their accuracy in reporting FARC HRVs in our selected

nonremote municipalities. Only the confidence interval for the Cohen’s kappa statistic for GED

for the selected remote municipalities does not span zero. The middle and bottom panels repeat

the assessment for the two subperiods, 2002–2004 and 2005–2007, respectively. Both ICEWS and

GED are slightly more accurate in the remote than in the nonremote selected municipalities in

the former subperiod. Once more the confidence intervals for their accuracy scores overlap; the

confidence intervals for the Cohen’s kappa statistics for the 2002–2004 subperiod are all wide and

span zero. In contrast, ICEWS is a bitmore accurate thanGED in the remote selectedmunicipalities

in the 2005–2007 subperiod; the confidence interval for its Cohen’s kappa statistic is wide but

15 The level of FARC HRVs and exact (centriod) distances of each of the ten selected municipalities from Bogota are reported
in the Supplementary Appendix.
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Figure 2. Selected journalistically remote and journalistically proximate municipalities.

in this case it does not span zero. GED hence is more prone to underreporting than ICEWS in

the remote selected municipalities in 2005–2007. Otherwise the validity of the two datasets in

2005–2007 is indistinguishable. Overall this additional analysis of the raw data does not show a

remoteness problem. It also does not show one of the datasets is more externally valid than the

other.

While useful, this analysis of the raw data is limited to comparisons of geocodings for a small

number (10) of selected (high FARC HRV) municipalities. We could examine individual misclassifi-

cation errors at other specific sites (municipalities) for eachdataset. But itwouldbedifficult to sort

out the effect of observed factors like eachmunicipality’s terrain andpopulation fromunobserved

factors that might be responsible for geocoding errors. We also could examine the accuracy

of ICEWS and GED over more subperiods of municipalities and years. If we examined ICEWS’

and GED’s accuracy in each municipality for the entire (pooled) 8-year time period we would

have 1,116 comparisons with CINEP for each dataset. If we conducted the same municipality by

municipality assessment for each year we would have 8×1,116 = 8,928 comparisons with CINEP

for each dataset. These additional assessments would be not just time consuming but difficult to

synthesize in amanner that offers insights beyond those provided in Tables 1 and 2. Our inferences

about the impact of remoteness abovearebasedonour twofolddivisionof tenmunicipalitieswith

high levels of FARV HRVs into journalistically remote and journalistically proximate categories.

The average impact of distance on spatial error interdependence over all 1,116 municipalities,

regardless of their level of FARC HRVs—what we called the “range”—is not revealed by these

initial validity assessments. Spatialmodeling gives us insights into the average impact of observed

covariates and unobserved factors on geocoding accuracy. Spatial modeling also allows us to

analyze the external validity of ICEWS and GED for the entire sample of municipalities in 2002–

2009 and our subperiods including the determinants of underreporing (the remoteness problem).

In these ways, spatial modeling is a valuable complement to the analysis of the raw data.

3.3 External Validity Assessment with the Geostatistical Spatial Error Model
Drawing upon earlier work on the remoteness problem in political violence event data mea-

surement and analysis (Davenport and Ball 2002; Hammond and Weidmann 2014; Weidmann
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Table 2. Municipality-event confusion matrices for selected municipalities, 2002–2009, 2002–2004 and 2005–2007 (confidence intervals in brackets).

Selected Non-Remote Municipalities

2002 - 2009
ICEWS GED

No Event Event No Event Event

CINEP No Event 21 0 21 0

Event 18 1 15 4

Precision Accuracy (%) 55.0 [38.5, 70.7] 62.5 [45.8, 77.3]

Cohen’s Kappa 0.06 [-0.27, 0.38] 0.22 [-0.09, 0.53]

Report at least one event over eight years.

Selected Remote Municipalities

2002 - 2009
ICEWS GED

No Event Event No Event Event

CINEP No Event 18 3 21 0

Event 11 8 12 7

Precision Accuracy (%) 65.0 [48.3, 79.4] 70.0 [53.5, 83.4]

Cohen’s Kappa 0.28 [-0.02, 0.59] 0.38 [0.09, 0.67]

Report at least one event over eight years.

2002 - 2004
ICEWS GED

No Event Event No Event Event

CINEP No Event 3 0 3 0

Event 11 1 10 2

Precision Accuracy (%) 26.7 [7.8, 55.1] 33.3 [11.8, 61.6]

Cohen’s Kappa 0.04 [-0.26, 0.33] 0.07 [-0.26, 0.41]

Report at least one event over three years.

2002 - 2004
ICEWS GED

No Event Event No Event Event

CINEP No Event 1 1 2 0

Event 8 5 7 6

Precision Accuracy (%) 40.0 [16.3, 67.7] 53.3 [26.6, 78.7]

Cohen’s Kappa -0.05 [-0.48, 0.39] 0.19 [-0.25, 0.63]

Report at least one event over three years.

2005 - 2007
ICEWS GED

No Event Event No Event Event

CINEP No Event 10 0 10 0

Event 5 0 4 1

Precision Accuracy (%) 66.7 [38.4, 88.2] 73.3 [44.9, 92.2]

Cohen’s Kappa 0.00 [-0.72, 0.72] 0.25 [-0.38, 0.88]

Report at least one event over three years.

2005 - 2007
ICEWS GED

No Event Event No Event Event

CINEP No Event 9 1 10 0

Event 2 3 5 0

Precision Accuracy (%) 80.0 [51.9, 95.7] 66.7 [38.4, 88.2]

Cohen’s Kappa 0.53 [0.05, 1.01] 0.00 [-0.72, 0.72]

Report at least one event over three years.
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2016), we collected data on both spatial and aspatial covariates. For the former, we used distance

from the Colombian capitol of Bogota in logged kilometers.16 For the latter, we used municipality

population and a terrain ruggedness index (TRI).17

Centroids for our 1,116 municipalities served as the initial points for our Constrained Refined

Delaunay Triangulation. We set the maximum edge length on the triangulation to 1.6 degrees

which corresponds to about 180 km at the Equator; this produces a mesh of 196 vertices akin to

the 141 vertices in themesh employedbyPython et al. (2017) in their study of terrorism inNigeria.18

As in Python et al. (2017), the hyperparameters of our model essentially are the default values
in R-INLA. We set λ in equation (2) to 1, leading the smoothing parameter, α , to equal to 2. R-

INLA employs Neumann boundaries. At these boundaries, variances are inflated. To avoid this

problem, a baseline range is calculated to ensure a range smaller than the size of the domain

size (mesh). Lindgren and Rue (2015, 12) call this the “prior median for the spatial range.” Using

the solution to the SPDE, from this baseline range, baseline τ and baseline κ parameters can be

derived. The baseline τ and baseline κ parameters are used in the parameter basis functions of

the estimation. To the baseline values for τ and for κ are added the θ 2-tuple in equation (5).

Specifically, θ1 is added to log(τ0) and θ2 is added to log(κ0). θ1 and θ2 are assumed to be jointly

normally distributed. Our hyperparameter means are set to zero; and their precisions are set to

0.1 and 1, respectively. We assign Gaussian priors withmean 0 and precision 0.001 to the intercept

and covariate coefficients.19

Figures 3 and 4 present the results of our geostatistical analysis with the three datasets for

observed FARC HRVs and underreporting of these events respectively. The results for the entire

period, 2002–2009, can be found in the first columns of these figures.20 In terms of prediction

of FARC-HRVs presented in Figure 3, the results for the ICEWS and GED datasets, like the model

for the ground truth dataset, CINEP, do not depend on the distance from Bogota. Rather for

all three datasets, predictions of FARC-HRVs depend positively on municipality population and

TRI (although the 2.5% left credible interval for TRI for the ICEWS model is nearly zero). The

determinants of underreporting in 2002–2009—the failure of ICEWS or GED to report a FARC-HRV

when a FARC-HRV is reported by CINEP—are reported in the first column of Figure 4. The statistical

results are qualitatively identical; they indicate that for both the machine- and human-geocoded

datasets underreporting is related to population and TRI. So while there is some evidence that

ICEWS’ machine geocoding depends less on TRI than GED’s human geocoding, the determinants

of their predictions and underreporting are very similar.

There is evidence that the errors of the models based on the three datasets are spatially inter-

dependent. For the period 2002–2009 of observed FARC–HRVs in Figure 3, none of the credible

intervals for any of the GMRF parameters span zero. But the GMRF parameters tell somewhat

16 Distance was estimated using municipality centroids and the latitude and longitude for Bogota extracted from a shapefile
projected with a South America Albers Equal Area Conic.

17 As taken from the WorldPop Global Population Data and the EarthEnv project (Amatulli et al. 2018), respectively. While
others have favored usingmountainous terrain (Hammond andWeidmann, 2017), we employ themore precise TRI, which
better captures difficult terrain favored by rebel groups. Additionally, the small resolution of the data (< 1 km) allow us to
meaningfully estimate average terrain ruggedness in small Colombianmunicipalities.

18 Python et al. (2017) is a good benchmark since (i) it studies a related phenomenon, terrorism, and (ii) Colombia is roughly
the same size as Nigeria. Note that our results are not sensitive to the use of centroids. A random draw of locations within
municipalities yielded the same result reported here.

19 Boundary effects inflate the variance by a factor of 2 along straight boundaries and by a factor of 4 near right angle corners
(Lindgren and Rue 2015, 6). Recall that the SPDE solution included formulae for the marginal variance and range. Using
these formulae, one can derive from the baseline range, the baseline log(τ) and log(κ) values. In general, θ1 = log(τ) and
θ2 = log(κ). These hyperparameters are assumed to the jointly normally distributed. With the baseline range set at 1/5 of
the mesh domain size, the precision for θ2 implies there is a 95% probability that the actual range is less than the domain
size (Lindgren and Rue 2015, 6). We employ R-INLA version 21.2.23; it is available at https://www.r-inla.org/.

20 Tables containing the coefficient values and credible intervals behind Figures 3 and 4 are in the Supplementary Appendix.
These figures present posterior median parameter estimates and 95% highest posterior densities. A parallel set of the
results for the entire period analysis when using neighborhood-based SPEMs also can be found in the Supplementary
Appendix.
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Figure 3. Coefficient and GMRF parameter values for geostatistical models based on ICEWS, GED, and CINEP
datasets, 2002–2009, 2002–2004, and 2005–2007.

different stories about the machine versus human coding of FARC HRVs. The range parameter

is indicative of the remoteness problem. And the median estimate of the range of spatial error

dependence for the ICEWS dataset is closer to that of the errors of the CINEP model. The σ2
ξ

parameter tells us about uncertainty in prediction due to data sparseness andmeasurement error.

Again, for 2002–2009 the median estimate of this parameter for the ICEWS model is closer to the

median estimate for CINEPmodel than that of the GEDmodel.21

The left panel of Figure 5 depicts for the 2002–2009 period the receiver operating characteristic

(ROC) curves for predictions of FARC–HRVs based on the ICEWS and GED datasets using the

external CINEP dataset as ground truth. These curves and the associated area under the curve

(AUC) statistics show that the performance of the models based on the machine- and human-

coded datasets are roughly comparable. The AUC for the GED-basedmodel is slightly higher than

the AUC for the ICEWS model but their confidence intervals overlap. In sum, our geostatistical

analysis for theColombiacase shows that thereare spatiallydependenterrors inall threedatasets.

However, as in our analysis based on the selected (non)journalistically remote municipalities,

there is no evidence that the machine-geocoded dataset is less externally valid than the human-

coded dataset.

21 Error bands for these range estimates are reported in Figure A.9 of the Supplementary Appendix. Site specific estimates of
theprobability of FARCHRVsandofmeanerrors, and themarginal variancesof theseerrors, aredepicted inSupplementary
Figure A.8.

Logan Stundal et al. � Political Analysis 92

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
1.

40
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2021.40


Figure 4. Coefficient and GMRF parameter values for geostatistical models of underreporting of ICEWS and
GED compared to CINEP, 2002–2009, 2002–2004, and 2005–2007.

Figure 5. ROC curves and AUC statistics for ICEWS, GED, and CINEPmodels of FARC–HRVs.

Figures 3–5 also report the results for the geostatistical analysis of the datasets in the sub-

stantively important subperiods of the Colombian conflict, specifically, for 2002–2004 and 2005–

2007.22 Briefly, distance from Bogota again does not consistently predict FARC–HRVs in any of the

22 The results for the subperiod 2008–2009 are in the Supplementary Appendix.
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three models. That being said, the estimate for this variable does not overlap zero in the 2005–

2007 ICEWS model, possibly indicating period-specific factors during this more intense conflict

period. The coefficients for population are consistent predictors for all three models across the

subperiods with parmater values not overlapping with zero. The difference is that in the 2002–

2004 subperiod the coefficient on TRI is not a reliable predictor for the ICEWS based model

while it is for the GED and CINEP based models. In contrast, for the 2005–2007 subperiod, the

coefficient on TRI is reliable for the GED model but not for the ICEWS and CINEP models. The

determinants of underreporting by ICEWS and GED are qualitatively identical in both of these

subperiods. As regards the GMRF parameters for the subperiod models, the median estimate of

the range of spatial error dependence for ICEWS is closer to that of the model errors for CINEP

in both subperiods; the median estimate for the spatial error dependence from the GED model

in the 2005–2007 is much larger than the CINEP median range estimate. Finally, the ROC curves

for the predictions based on the ICEWS and GED models in the two subperiods are very similar

and the GEDmodels’ AUCs are only slightly better than those of the ICEWSmodels. Therefore, the

subperiod analyses also do not show that the machine-geocoded data are less externally valid

than the human-geocoded data.

Our results do suggest some subtle differences in the validity of these two datasets. GED

appears to miss more HRVs than ICEWS because, as we explain in the Supplementary Appendix,

ICEWS uses a larger collection of news sources and recovers more raw events. As a result, our

model-based analysis of ICEWS-derived HRV events—and of the associated GMRF parameters

discussed above—indicate that ICEWS has somewhat better event coverage, especially in some

subperiods of the conflict. In our models’ coefficient estimates and predictions, this superior

coverage offsets ICEWS’ potential shortcomings in machine-based geolocation accuracy. At the

same time, our supplemental results—especially regarding the range estimates for the GMRF

(Supplememtary Figure A.9)—imply that GED’s sparser coverage still produces spatial model

errors and spatial interdependence estimates that better match the spatial pattern of errors from

models based on the ground truth dataset, CINEP. This is likely owing to GED’s relatively more

accurate human-based event geolocations (i.e., among the events thatGEDdoes capture), relative

to ICEWS’machine-basedgeolocation routines. In thisway, our results help researchersusingboth

kinds of data to understand how remoteness affects the accuracy of their coding methods.

4 Discussion

This article develops and implements a framework for the subnational validation of machine-

coded event data. Past research reviewed above and in the Supplementary Appendix suggests

that the two event datasets evaluated here—ICEWS and GED—are currently considered among

the most subnationally accurate, global machine- and human-coded event datasets available. As

such our findings obtained from these two sources can be viewed as a “ceiling” for the spatial

validity of currently available global machine- and human-coded datasets. Yet previous spatial

validationsof these twodatasets haveonlybeen implementedat thepremodeling stage (Eck2012;

Lautenschlager, Starz, and Warfield 2017). Like the confusionmatrices discussed above, this does

not allow one to assess their spatial validity in relation to, and conditional on, covariates such as

remoteness. In implementing spatial validation at themodeling stagewith the aid of ground truth

data (CINEP) our article addresses this deficiency while providing a stringent test for evaluating

subnational geolocation accuracy of machine- and human-coded event data.

Our findings also significantly improve upon previous external validation assessments of

machine- and human-coded event data. Past spatial statistical comparisons of human- and

machine-coded event data find that themachine-codedGDELT data are significantly less accurate

thanhuman-codeddatadue to remotenessproblems, concludingwith respect toGDELT that “[f]or

geo-spatial analyses of violence, thismay be reason toworry” (HammondandWeidmann 2014, 5).
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Yet these past analyses are limited to a very narrow—and arguably suboptimal—subset of spatial

statistical models andmachine-coded event datasets. In extending this spatial statistical analysis

to a broader set of spatial statistical models—and the more accepted and widely used machine-

coded event dataset (ICEWS)—we find that these earlier worries may no longer hold. Specifically,

we demonstrate that with the most commonly used neighborhood (Supplementary Appendix)

and geostatistical spatial models and for a relatively fine grained level of spatial (dis)aggregation,

machine- and human-coded event data produce comparable inferences, often yield substantively

indistinguishable predictions, and exhibit similar rates of (remoteness-induced) underreporting

of FARC HRVs. Yet these models also offer unique insights into the different sources of spatial

(in)accuracy in each dataset, where our findings suggest that ICEWS’ noisier geolocation accuracy

may be counterbalanced by its superior recall relative to GED when it comes to spatial model

inference and prediction.

Additional validity assessments of human rights event data are clearly called for. Our binary,

municipality-period event indicators collapse higher frequencies of HRVs in some instances. Such

collapsing is commonplace in the subnational conflict literature and our subperiod findings

suggest that this is not substantially altering our conclusions with respect to time. Nevertheless

analyses of event frequencies or of more fine grained time periods is an important next step.

Because our model-based validation framework is amendable to assessments of other event

datasets and subnational contexts, comparable evaluations of other prominent machine- and

human-coded event datasets should likewise be implemented to enhance the generalizability of

our findings. Although not widely available, ground truth datasets like CINEPmust be included in

these assessments in order to gauge the external validity of the geocoded data. To this end, the

SIGACTS dataset (e.g., Weidmann 2016) is an additional testbed for an extension of our current

assessments. Event data’s temporal dynamics also should be incorporated into future validity

assessments. Taking a cue from our studies of subperiods in the Colombian case, this will be

rigorously implemented for Iraq as a next step in our research agenda. In this extension, we will

employ the full spatio-temporal version of our geostatistical models analyzing coding errors by

both years andmunicipality (Python et al. 2018). Such an extension will produce amore complete
understanding of the validity of machine- and human-coded event data.
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