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Abstract Let Un(q) denote the upper triangular group of degree n over the finite field Fq with q

elements. It is known that irreducible constituents of supercharacters partition the set of all irreducible
characters Irr(Un(q)). In this paper we present a correspondence between supercharacters and pattern
subgroups of the form Uk(q) ∩ wUk(q), where w is a monomial matrix in GLk(q) for some k < n.
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1. Introduction

Let q be a power of a prime p and let Fq be a field with q elements. The group Un(q)
of all upper triangular (n × n)-matrices over Fq with all diagonal entries equal to 1 is
a Sylow p-subgroup of GLn(Fq). It was conjectured by Higman [8] that the number
of conjugacy classes of Un(q) is given by a polynomial in q with integer coefficients.
Isaacs [10] showed that the degrees of all irreducible characters of Un(q) are powers of
q. Huppert [9] proved that character degrees of Un(q) are precisely of the form {qe : 0 �
e � µ(n)}, where the upper bound µ(n) was known to Lehrer [13]. Lehrer conjectured
that each number Nn,e(q) of irreducible characters of Un(q) of degree qe is given by
a polynomial in q with integer coefficients. Isaacs [11] suggested a strengthened form
of Lehrer’s Conjecture, stating that Nn,e(q) is given by a polynomial in (q − 1) with
non-negative integer coefficients. So, Isaacs’s Conjecture implies Higman’s and Lehrer’s
Conjectures.

Many efforts have been made to understand more about Un(q); see [1, 3, 5, 7, 10,
11,14,15], among others. Supercharacters arise as tensor products of some elementary
characters to give a ‘nice’ partition of all non-principal irreducible characters of Un(q)
(see [1, 12]). Supercharacters have been defined for Sylow p-subgroups of other finite
groups of Lie type (see [2]), and in general for algebra groups (see [5]).
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Here, for Un(q) we show a natural correspondence between supercharacters and pattern
subgroups (Theorem 2.8). To highlight the main idea of construction, we have deferred
all of our proofs to § 3.

2. Supercharacters and pattern subgroups

Let Σ = Σn−1 = 〈α1, . . . , αn−1〉 be the root system of GLn(q) with respect to the
maximal split torus equal to the diagonal group (see [4, Chapter 3]). Set αi,j = αi +
αi+1 + · · · + αj for all 0 < i � j < n. Denote by Σ+ the set of all positive roots. The
root subgroup Xαi,j

is the set of all matrices of the form In + c · ei,j+1, where In = the
identity (n × n)-matrix, c ∈ Fq and ei,j+1 is equal to the zero matrix except for a ‘1’ at
entry (i, j +1). The upper triangular group Un(q) is generated by all Xα, where α ∈ Σ+.
We write U for Un(q) if n and q are clear from the context. For convenience when using
the root system, we consider the upper triangular group as a tableaux:⎛

⎜⎜⎜⎜⎜⎝

1 ∗ ∗ ∗ ∗
· 1 ∗ ∗ ∗
· · 1 ∗ ∗
· · · 1 ∗
· · · · 1

⎞
⎟⎟⎟⎟⎟⎠ →

α1 α1,2 α1,3 α1,4

α2 α2,3 α2,4

α3 α3,4

α4

A subset S ⊂ Σ+ is called closed if, for each α, β ∈ S such that α+β ∈ Σ+, α+β ∈ S.
A pattern subgroup of U is a group generated by all root subgroups Xα, where α ∈ S a
closed positive root subset.

Let G be a group. Set G× = G\{1}. Denote by Irr(G) the set of all complex irreducible
characters of G, and let Irr(G)× = Irr(G)\{1G}. For H � G, let Irr(G/H) denote the set
of all irreducible characters of G with H in the kernel. If K � G such that G = H � K,
then for each character ξ of K we denote the inflation of ξ to G by ξG, i.e. ξG is the
extension of ξ to G with H ⊂ ker(ξG). Furthermore, for H � G and ξ ∈ Irr(H), we define
by Irr(G, ξ) = {χ ∈ Irr(G) : (χ, ξG) �= 0} the irreducible constituent set of ξG, and for
χ ∈ Irr(G) we denote its restriction to H by χ|H .

For a field K, let K× be its multiplicative group. In the whole paper, we fix a non-trivial
linear character ϕ : (Fq, +) → C×. For each α ∈ Σ+ and s ∈ Fq, the map φα,s : Xα → C×,
xα(d) �→ ϕ(ds) is a linear character of the root subgroup Xα, and all linear characters of
Xα arise in this way.

For each αi,j , we define

arm(αi,j) = {αi,k : i � k < j} and leg(αi,j) = {αk,j : i < k � j}.

If i = j, αi,i = αi, then arm(αi) and leg(αi) are empty. For each α ∈ Σ+, we define the
hook of α as h(α) = arm(α)∪ leg(α)∪{α}, the hook group of α as Hα = 〈Xβ : β ∈ h(α)〉,
and the base group Vα = 〈Xβ : β ∈ Σ+ \ arm(α)〉. Since [Vα, Vα] ∩ Xα = {1}, for each
s ∈ F×

q there exists a linear λα,s ∈ Irr(Vα) such that λα,s|Xα = φα,s and λα,s|Xβ
= 1Xβ

for other root subgroups Xβ ⊂ Vα, β �= α. Denote by Irr(Vα/[Vα, Vα])× the set of all
these linear characters of Vα.
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Lemma 2.1. λU
α,s is irreducible for all s ∈ F×

q .

Proof. See [1, Lemma 2] or [12, Lemma 2.2]. �

We call λU
α,s an elementary character of U associated to α. A basic set D is a non-

empty subset of Σ+ in which none of the roots are in the same row or column. For each
basic set D, define

E(D) =
⊕
α∈D

Irr(Vα/[Vα, Vα])×.

For each basic set D and φ ∈ E(D), we define a supercharacter, also known as basic
character in [1],

ξD,φ =
⊗

λα,s∈φ

λU
α,s.

It turns out that each supercharacter ξD,φ is induced from a linear character of a pattern
subgroup.

Definition 2.2. We define

VD =
⋂

α∈D

Vα and λD =
⊗

λα,s∈φ

λα,s|VD
.

Lemma 2.3. We have ξD,φ = λU
D.

Proof. See [12, Lemma 2.5]. �

It is easy to see that VD is generated by all Xβ , where β ∈ Σ+ \ (
⋃

α∈D arm(α)), and
λD is a linear character of VD. For each basic set D, it can be proven that the diagonal
subgroup of GLn(q) acts transitively on E(D) by conjugation. So it makes sense when
we write λD here instead of λD,φ, and it also says that the decomposition of ξD,φ is
dependent only on D. To know more about supercharacters, see, for example, [5, 6].
Here, we recall the main role of supercharacters as a partition of Irr(U)×.

Theorem 2.4. For each χ ∈ Irr(U)×, there exist uniquely a basic set D and φ ∈ E(D)
such that χ is an irreducible constituent of ξD,φ.

Proof. See [1, Theorem 1] or [12, Theorem 2.6]. �

Denote by Irr(ξD,φ) the set of all irreducible constituents of ξD,φ. Here, to prove Hig-
man’s Conjecture, it suffices to prove that |Irr(ξD,φ)| is a polynomial in q.

Now for each basic set D of size k = |D|, we define an associated monomial (k × k)-
matrix wD ∈ GLk(q). First of all, we define two partial orders on Σ+.

Definition 2.5. We define <r and <b on Σ+ as follows:

(i) αi,j <r αl,k if j < k (i.e. to the right);

(ii) αi,j <b αl,k if i < l (i.e. to the bottom).
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i, j i, j i, jν τj

τ τj <b   i τ τi <b   j τ τi <b   j τ τi <b   j

τi

γ γγ  τi =  i, j  τi τi

τj
τj τj

Figure 1. Positions of νi,j and γi,j .

An easy way to understand these two orders is <r standing for left to right and <b for
top to bottom. It is noted that, on a basic set, <r and <b are total orders.

Now we fix a basic set D of size k ascending order of <r. Let D = {τ1, . . . , τk}, where
τi <r τj if i < j. We define wD = (ai,j) ∈ GLk(q) as follows:

ai,j =

{
1 if τj is the ith element of D in ascending order <b,

0 otherwise.

For example, if D = {α2,3, α1,4, α3,5}, |D| = 3,

α1,4

α2,3

α3,5

then

wD =

⎛
⎜⎝0 1 0

1 0 0
0 0 1

⎞
⎟⎠ .

It is clear that wD is a monomial matrix in the Weyl group Sk of GLk(q). Here, wD

somehow gives pivots of D by considering only rows and columns containing roots in D.
Hence, it is equivalent to applying the (total) orders <r, <b to these monomial matrices
on their non-zero entries.

For each pair 0 < i < j � k, if τi <b τj , let γi,j be the root on the row of τi such
that γi,j + τj ∈ Σ+; otherwise, i.e. τj <b τi, let νi,j be the root on the row of τj such
that νi,j + τi ∈ Σ+. For example, τi = αm,i, τj = αl,j , where i < j, so if αm,i <b αl,j ,
i.e. m < l, then γi,j = αm,l−1; otherwise, if αl,j <b αm,i, i.e. l < m, then νi,j = αl,m−1.
It is easy to see that νi,j exists if and only if two hooks h(τi) and h(τj) are parallel;
otherwise, γi,j exists (Figure 1).

Let ΓD be the set of all γi,j , let ΛD be the set of all νi,j and let ∆D = ΓD ∪ΛD. Hence,
by the definitions for the existence of γi,j and νi,j , ΓD ∩ ΛD = ∅.

Definition 2.6. We define RD = 〈Xγ : γ ∈ ΓD〉 and CD = 〈Xν : ν ∈ ΛD〉.
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The next lemma provides interesting correspondences between the size of D and ∆D,
and between wD and ΓD or ΛD. Moreover, it shows that 〈VD, RD〉 = VDRD, and the
pattern subgroups RD, CD are only determined by wD in a natural way.

Lemma 2.7. Let D be a basic set of size k. The following are true.

(i) ∆D is closed and 〈Xα : α ∈ ∆D〉 is isomorphic to Uk(q).

(ii) ΓD is closed. For each pair i < j, if γi,s, γj,r exist and γi,s + γj,r ∈ Σ+, then s = j

and γi,j + γj,r = γi,r.

(iii) ΛD is closed. For each pair i < j, if νi,s, νj,r exist and νi,s + νj,r ∈ Σ+, then s = j

and νi,j + νj,r = νi,r.

(iv) RD is isomorphic to Uk(q) ∩wDUk(q) and CD is isomorphic to Uk(q) ∩w0wDUk(q),
where

w0 =

⎛
⎜⎝

0 · · · 1
...

. . .
...

1 · · · 0

⎞
⎟⎠

is the longest element in Sk.

(v) VDRD is a pattern subgroup of U and RD normalizes VD.

For example, let D = {α1,2, α3,4, α4,5, α2,6} be a basic set in Σ+
6 :

U7(q) =

α1,2

α2,6

α3,4

α4,5

and

RD =
α1,2

, CD = .

The next result is the main theorem, which provides a correspondence between super-
characters ξD,φ and pattern subgroups RD.

Theorem 2.8. Let ξD,φ be a supercharacter. The following are true.

(i) ξD,φ = (λVDRD

D )U .

(ii) For each χ ∈ Irr(VDRD, λD), χU ∈ Irr(ξD,φ).

(iii) If χ1 �= χ2 ∈ Irr(VDRD, λD), then χU
1 �= χU

2 .

https://doi.org/10.1017/S0013091512000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091512000156


182 T. Le

Therefore, to decompose ξD,φ, it suffices to decompose λVDRD

D . Moreover, the induced
character λVDRD

D is equal to
(λD|RD

VD∩RD
)VDRD

⊗ θ,

where θ is some linear character of VDRD (in Lemma 3.1). We see that λD|RD

VD∩RD
is a

‘very special’ constituent of the regular character 1RD . Hence, the decomposition method
of all supercharacters ξD,φ of Un(q) with the same wD is generally restricted to the one
of the regular character 1RD .

Here, we attempt to make a link for this special pattern RD = Uk(q) ∩ wDUk(q) in
Lemma 2.7. Denoting U ∩ wU by Uw, where U = Un(q) and w ∈ Sn is the Weyl group of
GLn(q), Thompson [16] conjectured that, for each pair r, s ∈ Sn, the cardinality of the
double coset Ur \U/Us is a polynomial in q with integer coefficients. In addition, Uw also
takes an important role when one studies GLn(q) as groups with a (B, N)-pair, such as,
for example, the Bruhat decomposition.

From Theorem 2.8 and Lemma 2.7 (v), we obtain a nice decomposition of ξD,φ.

Corollary 2.9. Let ξD,φ be a supercharacter. The following are true:

(i) Irr(ξD,φ) = {χU : χ ∈ Irr(VDRD, λD)};

(ii) ξD,φ =
∑

χ∈Irr(VDRD,λD) χ(1)χU .

Theorem 2.4, Lemma 2.7 and Corollary 2.9 give a clear proof for the following corollary,
which is a different version of [1, Theorem 1.4].

Corollary 2.10.

(ξD,φ, ξ′
D′,φ′) =

{
[VDRD : VD] if (D, φ) = (D′, φ′),

0 otherwise.

3. All proofs

In this section, we prove Theorem 2.8 mainly to give a correspondence between super-
characters ξD,φ and pattern subgroups Uk(q) ∩wDUk(q), where k = |D|. First, we shall
prove Lemma 2.7.

Proof of Lemma 2.7. Suppose that D = {τ1, . . . , τk} in ascending order <r.

(i) If we rearrange D in ascending order of <b to be {θ1, . . . , θk}, it is clear that, on
the row of θi, ∆D has (k − i) roots and the row of θk does not have any root in ∆D.

For each pair i < j ∈ [1, k], let ωi,j ∈ ∆D be the root on the row of τi such that
ωi,j + τj ∈ Σ+. (Note that ωi,j is either γ ∈ ΓD or ν ∈ ΛD.) Hence, if τi = αi1,i2 <b τj =
αj1,j2 , i.e. i1 < j1, we have ωi,j = αi1,j1−1. Therefore, for each ωi,j = αi1,j1−1 <r ωm,l =
αm1,l1−1 ∈ ∆D, if ωi,j + ωm,l ∈ Σ+, then j1 must equal m1, and ωi,j + ωj,l = αi1,l1−1 =
ωi,l. This shows that ∆D is closed, and the longest root in ∆D is ω1,2+· · ·+ωk−1,k = ω1,k.
So ωi,j corresponds to αi,j−1 in the positive root set Σ+

k−1. Therefore, 〈Xα : α ∈ ∆D〉 is
a pattern subgroup isomorphic to Uk(q).
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(ii) With the same argument as in (i), by the definition of γi,s and γj,r, if γi,s + γj,r ∈
Σ+, then s = j. By the transitive property of <r and <b on τi, τj , τr, from τi <r, <b τj

and τj <r, <b τk we have τi <r, <b τr. So γi,r exists and γi,j + γj,r = γi,r follows.

(iii) The argument of (ii) holds for νi,s and νj,r ∈ ΛD.

(iv) Let wD = (wi,j) ∈ Sk ⊂ GLk(q). Since wD is a monomial matrix, w−1
D = wT

D,
the transpose of wD. For each X = (xi,j) ∈ Uk(q), we observe Y := wD · X · w−1

D . Let
Y = (yi,j). For each pair i < j, we have

yi,j =
∑

s,r∈[1,k]

wi,sxs,rwj,r.

Since i, j are fixed, there exist unique 1 � f, h � k such that wi,f = 1 = wj,h, and others
wi,s = 0 = wj,r. Hence, yi,j = wi,fxf,hwj,h.

Since h �= f and all xs,r = 0 if r < s, we have the following:

• yi,j = 0 if f > h, i.e. wi,f <b wj,h and wj,h <r wi,f ;

• yi,j has non-zero value if f < h, i.e. wi,f <b wj,h and wi,f <r wj,h.

So RD is isomorphic to Uk(q) ∩wDUk(q) by the definition of γi,j ∈ ΓD. And, hence, CD

is isomorphic to Uk(q) ∩w0·wDUk(q) by (i)–(iii) and ∆D = ΓD ∪ ΛD.

(v) From the definition of γi,j , it is easy to check that RD normalizes VD. Hence, VDRD

is a pattern subgroup of U . �

Set
KD = 〈Xα : Xα ⊂ VD and α /∈ D〉 = 〈Xα : Xα ⊂ VD ∩ ker(λD)〉.

It is clear that KD is normal in VD, [VD : KD] = q|D| and VD = KD ·
∏

τ∈D Xτ . To prove
Theorem 2.8, we need the following lemma.

Lemma 3.1. Let ξD,φ be a supercharacter. The following are true.

(i) KD ⊂ ker(λVDRD

D ). Moreover, λVDRD

D (x) = [VDRD : VD]λD(x) for all x ∈ VD.

(ii) (KD ∩ RD) � RD and (VD ∩ RD)/(KD ∩ RD) ⊂ Z(RD/(KD ∩ RD)).

(iii) Let φ̄D = {λα,s ∈ φ : Xα � RD}. We have

λVDRD

D = (λD|RD

VD∩RD
)VDRD

⊗
( ⊗

λα,s∈φ̄D

(λα,s|VD
)VDRD

)
.

Proof. (i) It is enough to show the statement for all Xα ⊂ VD. By Lemma 2.7 (v)
VD � VDRD, we have

λVDRD

D (x) =
1

|VD|
∑

y∈VDRD

λD(xy)

for all x ∈ VD. For each x ∈ Xα, we suppose that there is Xβ ⊂ VDRD such that
α + β ∈ Σ+, and hence Xα+β ⊂ VD. We shall show that λD(xy) = λD(x) for all y ∈ Xβ .

Since Xτ ∩ [VD, VD] = {1} for all τ ∈ D, we have Xα+β ⊂ KD ⊂ ker(λD). Thus,
[λD(x), λD(y)] = λD([x, y]) = 1 since [x, y] ∈ Xα+β , i.e. λD(x)−1λD(xy) = 1.
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(ii) By the definition of KD � VD and VD = KD ·
∏

τ∈D Xτ , it suffices to show that
(KD ∩ RD) � RD. This is clear because for all Xα ⊂ KD ∩ RD and all Xβ ⊂ RD either
α + β �∈ Σ+ or Xα+β ⊂ KD ∩ RD.

(iii) The inflations to VDRD of λD|RD

VD∩RD
and λα,s|VD

, for all λα,s ∈ φ̄D, follow directly
from (i). �

By Lemma 3.1 (iii), if RD∩VD = {1}, λVDRD

D is equivalent to 1RD , the regular character
of RD. In general, λVDRD

D is equivalent to a constituent of 1RD with RD ∩ KD in the
kernel. Now we prove Theorem 2.8.

Proof of Theorem 2.8. (i) This is clear by the transitivity of induction.

(ii) Suppose that D = {τ1, . . . , τk} in ascending order <r and

λD =
⊗
τi∈D

λτi,si
|VD

,

where si ∈ F×
q .

First, we show that, for each χ ∈ Irr(VDRD, λD), χU is irreducible. By the transitive
property of induction, we shall induce χ from VDRD to U by a sequence of inductions
along the arms of τ1, τ2, . . . , τk respectively by <r order. Now we setup these such induc-
tion steps.

For each τi ∈ D, let A(τi) = {α ∈ arm(τi) : Xα � VDRD}, and ci = |A(τi)|. Let
d0 = 0 and di = di−1 + ci for all i ∈ [1, k]. Now, if ci > 0, i ∈ [1, k], we arrange A(τi) in
decreasing order <r to be {βdi−1+1, . . . , βdi−1+ci

}. Let M0 = VDRD, Mi+1 = Mi � Xβi

for all i ∈ [1, dk]. It is clear that Mdk+1 = U and Xβj normalizes Mj ; hence, this sequence
of pattern subgroups is well defined.

For each βj ∈ arm(τi), j ∈ [1, dk], there exists a unique δ ∈ leg(τi) such that βj +δ = τi

and Xδ ⊂ KD, since if Xδ � KD, there exists τm ∈ D such that δ ∈ arm(τm), so
τi <r τm, τi <b τm, and this implies βj = γi,m. We number this δ as δj , and let
L(D) = {δj : j ∈ [1, dk]}. By Lemma 3.1 (i), Xδ ⊂ ker(χ) for all δ ∈ L(D). Now we
proceed the induction of χ from VDRD to U via a sequence of pattern subgroups along
the arms of all τi ∈ D, namely from M0 to M1, . . . , Mdk+1 = U .

Suppose that χMj ∈ Irr(Mj) for some Mj , j ∈ [1, dk + 1], and Xδt
⊂ ker(χL) for all

t ∈ [j, dk]. If j = dk + 1, the proof is complete. Otherwise, the next induction step is
from Mj to Mj+1 = MjXβj , and we suppose that it happens on the arm of τi. For each
x ∈ X×

βj
, since [Xδj

, x] = Xτi
, there is some y ∈ Xδj such that λτi,si([y, x]) �= 1 and

x(χMj )(y) = χMj (yx) = χMj ([y, x]y) = λτi,si([y, x])χMj (y) �= χMj (y) = χMj (1).

Hence, Xδj � ker(x(χMj )), and
x(χMj ) �= χMj for all x ∈ X×

βj
.

This shows that the inertia group IMjXβj
(χ) = Mj and χMjXβj ∈ Irr(MjXβj , λD).

It is easy to check directly that Xδt ⊂ ker(χMjXβj ) for all t ∈ [j + 1, dk] by using
[Xβj , Xδt ] ⊂ ker(χMj ). Therefore, we have χU is irreducible for all χ ∈ Irr(VDRD, λD)
by induction on j.
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(iii) Now suppose χ1 �= χ2 ∈ Irr(VDRD, λD) and χ
Mj

1 �= χ
Mj

2 for some Mj . As above,
it is enough to show that

χ
MjXβj

1 �= χ
MjXβj

2 ,

where βj ∈ arm(τi). Note that

Xδj ⊂ ker(χMj

1 ) ∩ ker(χMj

2 ).

By the Mackey Formula with the double coset Mj \ MjXβj
/Mj represented by Xβj ,

(χ
MjXβj

1 , χ
MjXβj

2 ) =
∑

x∈Xβj

(χMj

1 ,x(χMj

2 )).

By using the same argument as in (ii),

Xδj � ker(x(χMj

2 )) for all x ∈ X×
βj

.

Hence, x(χMj

2 ) �= χ
Mj

1 for all x ∈ X×
βj

since Xδj ⊂ ker(χMj

1 ). Therefore,

(χ
MjXβj

1 , χ
MjXβj

2 ) = (χMj

1 , χ
Mj

2 ) = 0,

since χ
Mj

1 �= χ
Mj

2 by the above assumption on Mj . �

Note that VDRD is not normal in U . In the proof of Theorem 2.8, although all induc-
tions from VDRD to U are irreducible, Clifford correspondence cannot be applied. The
technique of a sequence of inductions from Mj to Mj+1 ⊂ NU (Mj) has been used to
control distinct induced characters.

Since VD is normal in VDRD and VDRD/VD
∼= RD/(VD ∩ RD), by Theorem 2.8

and Lemma 3.1 (iii), we only need to decompose λD|RD

VD∩RD
instead of decomposing the

supercharacter ξD,φ = λU
D. Hence, all work is restricted to a pattern subgroup of Uk(q),

where k = |D| < n.

Proof of Corollary 2.9. Theorem 2.8 gives a one-to-one correspondence on the
multiplicities and degrees between Irr(VDRD, λD) and Irr(ξD,φ), i.e.

|Irr(VDRD, λD)| = |Irr(ξD,φ)|,

and if χ ∈ Irr(VDRD, λD) has multiplicity t, then χU ∈ Irr(ξD,φ) also has multiplicity t,
and

χU (1) = [U : VDRD]χ(1).

Therefore, it is enough to show that χ ∈ Irr(RD, λD|VD∩RD
) has multiplicity χ(1).

By Lemma 3.1 (i),

KD ∩ RD ⊂ ker(λD|VD∩RD
) ∩ ker(λD|RD

VD∩RD
)

is normal in RD. So λD|VD∩RD
can be considered as a linear character of the quotient

group RD/(KD ∩RD). By Lemma 3.1 (ii), (VD ∩RD)/(KD ∩RD) ⊂ Z(RD/(KD ∩RD)),
λD|VD∩RD

is a linear character of the centre and the claim holds. �
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