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A NOTE ON PARTITION-INDUCING
AUTOMORPHISM GROUPS

BY
MARTIN R. PETTET

ABSTRACT. We consider a finite group G with a group A acting
on it in such a way as to induce a partition of G# (a situation which
arises in the study of centralizer near-rings). With the additional
hypothesis that (|A“|,|G|) =1, it is shown that either A is semiregu-
lar on G* or G is an irreducible module for A.

1. Introduction. If A is a finite group acting on a set X, we shall say the
action of A is “partitive” if the sets Cx(C4(x)), x € X, partition X. This is easily
seen to be an extension of the more familiar notion of half-transitivity. In this
note, we take X to be the set G* of non-identity elements of a finite group G
and A to be a group of automorphisms of G. The author’s main motivation for
studying this situation is a result of C. Maxson and K. Smith [4], that partitivity
is equivalent to the semisimplicity of the centralizer near-ring C(A, G).

Clearly the symmetric group S; acts partitively on itself by conjugation. On
the other hand, it was shown in an earlier note [5] that if A is a nilpotent group
acting partitively on G*#, then either A is semiregular on G* or G is an
irreducible module for A (of dimension at most 4). It seems reasonable to ask
whether weaker assumptions about the structure of A will suffice to force a
similar conclusion (but without the dimension restriction). Here we observe the
following:

THEOREM. Suppose G is a finite group and A <Aut G such that A acts
partitively on G*. If (|A“|,|G|) =1, then either A is semiregular on G* or G is
an irreducible module for A. (A® denotes the ‘nilpotent residual” of A, the
smallest normal subgroup of A such that A/A® is nilpotent).

One immediate consequence of the theorem is that if ((A®|,|G|])=1 and
C(A, G) is semisimple but not simple, then C(A, G) has the additive structure
of a vector space. As a purely group theoretic result, the theorem may be
regarded as a generalization of Theorem I of [3].
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2. Proof of the theorem. Let the pair (A, G) be a counterexample to the
theorem with |A|+|G| minimal.

(2.1) G contains a proper non-trivial A-invariant subgroup.

Proof. By [5], A°#1 so C5(A®)#G. We may, therefore, assume
C5(A®)=1 so by [2, Theorem 6.2.2], G has a unique A“-invariant Sylow
p-subgroup for each prime p. Since A“ < A, such subgroups are A-invariant so
from [5, Lemma 2.2], we conclude that G is a p-group. Hence, we may assume
G=0,Z(G)) so G is a GF(p) [A]-module. Since G is not A-irreducible,
(2.1) is proved.

(2.2) G contains a unique maximal A-invariant subgroup U. Moreover,
either A/C,(U) is semiregular on U” or U is an irreducible A-module.

Proof. See proof of (4.2) in [5].

(2.3) U is nilpotent.

Proof. From (2.2) and Thompson’s theorem [2, Theorem 10.2.1].
2.4) U=Z(G).

Proof. Suppose first that C5(A®)=1. As argued in (2.1), G is a p-group so
U<=G. If U£Z(G) then by (2.2), A/C,(U) is semiregular on U# and
Cs(U)=U. By [2, Theorem 2.2.3], [G, Co(U)]=U. Now let U< G,= G with
|Go:Ul=p and let Ay=CA(Go/U). If ue U”, Co(u)=Co(U)=C,(G/U) =<
Ao and if x € Go\U, Ca(x)=<Ca(G,/U)= A,. It follows that A, = Ao/Ca(Gy)
acts partitively on G so, since this action is neither irreducible nor semiregu-
lar, the inductive hypothesis implies Go=G and A,=A. But then G =
[G, A°]1=[G,, Ap]=U, a contradiction.

Thus, we may assume C5(A“)# 1 so by (2.2), U=Cg(A®). Since A°# 1 by
[5], U=Cs(A®) so by a lemma of Glauberman (Theorem 3, Corollary 1 of
[1]), U controls G-fusion in itself. If P is a Sylow p-subgroup of U, then
U= Ng(P) by (2.3) so P<=G or Ng(P) = U. But in the latter case, P is a Sylow
subgroup of G which controls G-fusion itself and hence, G is p-nilpotent,
contradicting (2.2). Thus P<=G for every choice of P, whence again U=G.
Now by [2, Theorem 2.2.3], [G, A°]=Cs(U). If U#Z(G) then C5(U)=U
by (2.2) so [G, A®, A°]=1. By [2, Theorem 5.3.6], we conclude that A“ =1,
contradicting [5]. Thus, U= Z(G) as required.

(2.5) G is a p-group of exponent p and nilpotence class at most 2.

Proof. The argument in (4.8) of [5] shows that G has exponent p. Then
G'# G so by (2.2) and (2.4), G'=Z(G).

(2.6) We may assume G is a module for A over GF(p).
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Proof. See (4.9) of [5].

Let K= 0O,(A) so, by hypothesis, A®=<K. Since A/K is nilpotent, it is a
p-group.
(2.7) G/U is isomorphic to an A-submodule of U.

Proof. By Maschke’s theorem, G = U@ V for some K-submodule V of G.
By (2.2), V*# V for some a € A so the projection V* — U (with respect to
the decomposition G = U@ V) is a non-trivial K-homomorphism. Since V=
G/U=YV as K-modules, Homg(G/U, U)#0. Now A acts on the p-group
Homg(G/U, U) (where, if fe Homg(G/U, U) and o€ A, f7(x)=f(x" ") for
all xeG/U) and K is in the kernel of this action, so A/K acts on
Homg (G/U, U). Since A/K is also a p-group, it fixes a non-zero element f of
Homg (G/U, U). Then fe Hom, (G/U, U) and, since G/U is A-irreducible, f is
injective.

(2.8) The final contradiction.

Let f:G/U — U be an A-monomorphism (by (2.7)). Then for every x € G,
Ca(x)=Co(xU) = Co(f(xU)). Since f(xU)e U, partitivity implies that if x ¢
G\U, then C,(x)= CA(f(xU)) so C,(x)=C,(xU).

Now suppose uc U” and xe G\U. If a€Cx(xu), x 'x*=uueU so
a € Cp(xU) = Cx(x). Thus, Cu(xu)=C,(x)NC,(u) so by [5, Lemma 2.1],
C,(x) = Ca(u). It follows that A is semiregular on G*, a contradiction.
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