Canad. Math. Bull. Vol. 56 (3), 2013 pp. 593-601
http://dx.doi.org/10.4153/CMB-2011-186-3
(© Canadian Mathematical Society 2011

On the p-norm of an Integral Operator in
the Half Plane

Congwen Liu and Lifang Zhou

Abstract. 'We give a partial answer to a conjecture of Dostani¢ on the determination of the norm of a
class of integral operators induced by the weighted Bergman projection in the upper half plane.

1 Introduction

LetII = {z € C: Imz > 0} be the upper half-plane. For 1 < p < oo, let LP(II) be
the space of measurable functions on IT with

1/p
1flly = ( / If(z)l"dA(z)> <,

where dA = (1/7)dxdy denotes the (normalized) Lebesgue measure on the complex
plane.
In [2], Dostani¢ considered, for o« > —1, the integral operator

mw)®

Kof(z) =2°(a+1) / o (WAAG).

This operator appears in a natural way when one considers the orthogonal projection
P, from the weighted Hilbert space L*(II, dA,) onto the weighted Bergman space
2/ 2(I1), where

dA,(z2) = (a+ 1)(2Imz)“dA(z)

and 77 (I0) is the closed subspace of all analytic functions in L*(II, dA,, ). Explicitly,
P, is an integral operator on L*(II, dA,),

_ a2 f(W)
Paflz) =1 /H @ dA,(w).

It is easy to prove that when 1 < p < oo, K,, is bounded on L?(II), which immedi-
ately implies that the Bergman projection P, is also bounded, in view of the obvious
relation || P, ||, < [|Kal[p. Here || Py, and [| K, ||, respectively, denote the operator
norms of P, and K, acting on LP(II).

Moreover, Dostani¢ proved the following in [2].
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Theorem 1.1 Supposethat1 < p < oo. Then, fora =2n,n=20,1,2,...,

a+1 1 1
L Kl = = p(an - yp(Y).
. el = a0 )G
Dostani¢ conjectured that (1.1) is valid forany « > —1,p > l and p(a+ 1) > 1.
In this note we confirm this conjecture under the additional assumption that p >
3/(a + 2). More precisely, our main result is the following theorem.

Theorem 1.2 Forany o > —1, p > 1 such that p > max{1/(a + 1),3/(a +2)},
we have

[Kall, = Fa;lf(a+ 1-— %)I‘(%)

2(1+«/2)

Figure 1: The solid shaded regions indicate the points (c, p) for which || K, ||, is exactly deter-
mined, while the crosshatch regions indicate where the question is still open.

It would be of interest to reformulate Theorem 1.2 as an integral inequality. For
simplicity, we consider only the case o = 0.

Corollary 1.3 Letl < p < ccandq:= p/(p—1) (the dual exponent). If f € LP(II)
and g € LY(I1), then

f(2)g(w) T
‘/H HmdA(z)dA(w) Sm”f”p”gnq'

Moreover, when p > 3/2, the constant 7 csc(m / p) is sharp.
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Note the analogy of this result with the classical Hilbert inequality [5, Theorem
316]. If f € LP(0,00) and g € L(0, 00), then

=T fxgly)
‘/0 0 xX+y dxdy < sin (ﬂ_/p)Hf”U’OOO)HgHL‘i(Ooo

and the constant 7 csc(m/ p) is the best possible. So Corollary 1.3 may be thought of
as some kind of the “2-dimensional Hilbert inequality”.

We now mention other related works. The norm of the Berezin transform on unit
disc is calculated in [3]. There is also a nice paper of similar nature by K. Zhu [9],
where an asymptotic formula for the norm of the Bergman projection on L? spaces of
the unit ball is given. Also, although not directly related to our results, the determina-
tion of the exact L? norm of singular integral operators has been studied extensively.
Results of this type include Pichorides’ determination of the p-norm of the Hilbert
transform [8] and Iwaniec—Martin’s work on the Riesz transform [7]. Also, an out-
standing open problem of the past 25 years, known as the Iwaniec conjecture, is the
computation of the p-norm of the Beurling—Ahlfors transform [6]. For the present
best known estimates on the L?-norm of the Beurling—Ahlfors transform, see [1] and
references therein.

2 Preliminaries

A number of hypergeometric functions will appear throughout. We use the classical
notation ,F; (a, b; ¢; z) to denote

00 k
2Fy (a, by ¢ 2) = Z (@bl 2.

20 K
with ¢ £ 0,—1,—2,..., where
(a)g=1, (a=ala+1)---(a+k—1) fork>1.

We list a few formulas for easy reference (see [4, Chapter II]):

I'(c)'(c —a—b)
I'(c—a)'(c—b)’

(22) 2Fi(a, b 62) = (1 —2) " F (c—a,c— by ¢ 2).

(2.1) 2Fi (a, b; ¢; 1) = Re(¢c—a—1Db) > 0.

(23) 2Fi 0,56 2 = tro— / P = 0 LF (0, b s £2) dr,

Rec>Re\ > 0; |arg(l —z)| < m; z # L.

The following two lemmas are well known; we include the proofs for the reader’s
convenience.
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Lemma 2.1 Suppose thata > 0,b > —1, and2a — b > 2. Then

(Im w)? b+ DI'(2a—b—2) 2b—2a
(2.4) / P ————dA(w) = 220 (Im2z) :

Proof It will be convenient to use real coordinates, so we let z := x + iy and w :=
u + iv. We compute

/ (Imwl)j“dA(W) - /ooo{/R (G- u)ziu(y naT A
- / /Ru2+(yu+v)2] }Vbdv
o] b
:%{ R(1+142)a}{/0 (y—il—/j)‘;l}
—1/2 [e ] b
L w

Recall the well-known identity

o P lgy 3
; m— (p,9),

where B is the Beta function. We then have

b
/MdA(w) - %B(%,a—%)B(b+l,2a—b—2) (Im z)~ 2442

m |z — W
Finally, an application of the formula
1
I'(2z) = 71'_1/2222_1F(Z)F(Z + E)

completes the proof. ]

Lemma 2.2 Fora € Randb > —1, we have

1 [ dae
2.5 — | ———— =F 5 1 [z?)
(2.5) 21 /o 1= ze-0pa = 27 (a a5 1 af)
and
(1- |W|2)b 1 2
2.6 ———dA = —F 3 2+ b; .
(2.6) T W) = =52F1 (a, a |2*)

Proof We first recall that the binomial expansion

Q=N"=> (@ 5
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holds for A € D and a € C. This, together with the well-known fact

2m
i ei(m_k)9d9: 17 m:k
27 0 07 m % k?

allows us to rewrite the left-hand side of (2.5) as
2T o0 0 [e%e]
(Dk ko (@)m Z gimb (a)k 2k
IS e S Gz b = S { e} T
k=0 m=0 k=0

which is exactly the right hand side of (2.5).

Next,
[ mmm = ;/01(1 - rz)b{/om ujeeiﬂzﬂ}rdr
— [t (0 )
Equation (2.6) then follows from an application of (2.3). .

The following lemma is crucial.

Lemma 2.3 Fora € Randb > —1, we have

b
2.7) / - (Imw) dA(w) _
.

w|2a|w + i|2b—2a+4
22a—2b—2 _2
|z +i| 7 F (a, a; 2+ b; |Zl|) .
z

1+5b

Proof Recall that the inverse Cayley transform

z—1

(= ¢(z) ==

maps the upper half plane II conformally onto the unit disc D. Also, it is easy to
check that for any z, w € I,

2

dlz—w*
1o =
,  A4lmw
(2.8) 1 — |p(w)|* = m,
, _ 2
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Now we write the left-hand side of (2.7) as

22a—2b—2|z+i|—2a/{ |Z+i|2|W_+ i|2}u{ 4II1'1W }b{ 2 ' }ZdA(W) _
- 4|z — w? |w+1]? |w + 1|2

2\b
22a 2b— 2|Z+ | Za/ |1 |¢(W)| )2a|¢( )| dA(W)

P(2)p(w)|
After the change of the variable { = ¢(w), we get
(Imw)bdA(W) 20—2b—2 =2 (1 - |C‘2)b
=27 “ ———dA(().
/ |Z*W‘2“|W+i|2b72u+4 |Z+1| D ‘1 _ ¢(Z)C|2ad (C)
The lemma then follows from (2.6) and (2.8). [ |

3 The Proof of Theorem 1.2

It has been proved in [2, p. 227] thatifa > —1, p > 1,and p(a+ 1) > 1, then

%ol < gt (ot 1= 5)T(5)-

So we only need to prove that

a+1 1 1
> - - _ = _
Xallp = F2(1+a/2)1“(a+1 p)r(p>
provided that

(3.1) >—1,p>1 d > { ! 5 }
. a> — an max{ ——, —— ¢.
P p a+l a+2

Fix 0 < ¢y < 1 and for € € (0, €], consider the function

(2) = (Im z)(<=V/p
ﬁ |Z+1|2+a+26 1/p"

Note that our assumption (3.1) (more precisely, the condition p > 3/(« + 2)) guar-
antees that f, € LP(II) . Moreover, by (2.4), we have

LeI'2p+ap+e—3)
22p+pa+25—4f2(p + pa/z +e— 1)'

(3.2) I£ellp =
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Also, by Lemma 2.3 and (2.2), we have

. (Im w)** = D/PdA(w)
iK(’fE(Z) =2%(a+ I)A |Z _ W|2+a|w+ i|2+a+2(€—1)/1’

272D/ (o +1)
Ca+l+(e—1)/p

a a e—1 |z—i?
<P (142 14 5240+ ——5 ——

| : | —(2+a)

p 7 lz+iP
B 2—2(s—1)/p(a +1) | ) —(2+(y)( |z — i|2) (e=1)/p
= |z +i| 1- -
a+l+(e—=1)/p |z +i]?

a e—1 a e—1 e—1 |z—i?
X Fi (14 =+ ——,1+—+ ;2+a+ ; —— | .
2 p 2 p p o lz+i]?

Note that the condition p > 1/(a + 1) is sufficient for the application of Lemma 2.3;
the condition p > 3/(« + 2) is not necessary here. We write this in the form

a+1 (Imz)te—V/p ( |z—i|2)

3.3 K fe = ; s -
(3.3) fe(@) a+1+(e—1)/p|z+ilrrot2le=D/p |z +1i]?

where

-1 -1 -1
\I/(e,/\):zFl(HOLﬁLG,1+O[+E ;2+a+€ ;A).
2 p p p
Lemma 3.1 The function

y»—>\I/<e |x+iy—i|2>
" x + iy +if?

is a decreasing function on (0, 1) when x € R and e € [0, €y] are fixed.

Proof We first notice that the hypergeometric function W(e, t) is an increasing func-
tion of ¢ on the interval [0, 1), since all its Taylor coefficients are positive. Next, an
easy calculation shows

0 <|x+iy—i|2) 4 4y — 1)
oy \|x+iy+il2/ |x+iy+if*
which implies that the function y +— |x + iy — i|*/|x + iy +i|* is decreasing on [0, 1)
for any fixed x € R. The lemma is proved.

Define

F2+a+(e—1)/p)T((—e+1)/p)
I2(1+a/2) '

U*(e) :=
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Lemma 3.2 Foreache € (0,¢y] and x € R

NETRTE:
tim (e, berly —if ) = v
y—0* |x + iy +1|?

Moreover, the convergence is uniform on [0, €].

Proof The first statement follows immediately from (2.1). To prove the second as-
sertion, we view W (e, |x +1iy —i|*/|x+1iy +i|*) as a family of continuous functions of
e on [0, ¢] indexed by y. By Lemma 3.1 and the first assertion, we know that these
functions tend monotonically to ¥* pointwise as y ~\, 0. Besides, U* is continuous
on [0, €]. Therefore, the convergence is uniform by Dini’s theorem. [ |

Lemma 3.2 implies that for any 1) > 0, there exists a § € (0, 1), independent of ¢,
such that

lx+iy —if? P2+a+(e—1)/p)L((—e+1)/p)
\Ij(e’ |x+iy+i|2) 2 (=) I2(1+a/2) ’

whenever 0 < y < 6. Combining this with (3.3), we conclude that

K, f(2) > (1 _”)mr(”“e;ﬁ(l

€
)fe(Z)XE-
where E := {z: 0 < Imz < 6}. Since || Ko ||, > [| Ko fellp/] fel| p» we have

(a+1) e—1 1—e¢
1Kallp > (1 —n)7F2(1+a/2)F<1+a+T)F( ; )

1/p
x (1 105 : Iﬁ(z)l"dA(z)>

Lemma 3.3

(3.4) lim [|£]|,? /H y |f.(2)[PdA(z) = 0.

e—0+

Proof A similar calculation to Lemma 2.1 leads to

, 00 x—1/2 oo ye—l
/H\E ‘fe(Z)| dz = { /) (1 +x)p+pa/2+eldx} { /5 (1 + y)2p+pnz+2€—3 dy}

r(1/2)C(p+ paj2+e—3/2) [ yel
= — d)/,
T(p+pa/2+e—1) 5 (14 y)ptpat2e=s

Also,

oo e—1
J _
/5 (1+ y)2p+pa+25 3 - / / (1 + y)2p+pa+26 de

/ 15 1
2P+Pa 28 2p+pa—3'
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Note that § is independent on € (by Lemma 3.2). Thus,

sup / |f:(2)|Pdz < o0,
I\E

€€[0,e0]

but in view of (3.2), lim,_¢+ || f¢||,* = 0, which proves (3.4). ]

Now, letting ¢ — 07, we have

1%, > 1 —n)rzg?:;)/z)l“(wra— %)r(%).

Since 7) is arbitrary, this completes the proof of Theorem 1.2.
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